bool RandomForests::train(LabelledClassificationData trainingData){ //Clear any previous model clear(); const unsigned int M = trainingData.getNumSamples(); const unsigned int N = trainingData.getNumDimensions(); const unsigned int K = trainingData.getNumClasses(); if( M == 0 ){ errorLog << "train(LabelledClassificationData labelledTrainingData) - Training data has zero samples!" << endl; return false; } numInputDimensions = N; numClasses = K; classLabels = trainingData.getClassLabels(); ranges = trainingData.getRanges(); //Scale the training data if needed if( useScaling ){ //Scale the training data between 0 and 1 trainingData.scale(0, 1); } //Train the random forest forestSize = 10; Random random; DecisionTree tree; tree.enableScaling( false ); //We have already scaled the training data so we do not need to scale it again tree.setTrainingMode( DecisionTree::BEST_RANDOM_SPLIT ); tree.setNumSplittingSteps( numRandomSplits ); tree.setMinNumSamplesPerNode( minNumSamplesPerNode ); tree.setMaxDepth( maxDepth ); for(UINT i=0; i<forestSize; i++){ LabelledClassificationData data = trainingData.getBootstrappedDataset(); if( !tree.train( data ) ){ errorLog << "train(LabelledClassificationData labelledTrainingData) - Failed to train tree at forest index: " << i << endl; return false; } //Deep copy the tree into the forest forest.push_back( tree.deepCopyTree() ); } //Flag that the algorithm has been trained trained = true; return trained; }
bool RandomForests::train_(ClassificationData &trainingData){ //Clear any previous model clear(); const unsigned int M = trainingData.getNumSamples(); const unsigned int N = trainingData.getNumDimensions(); const unsigned int K = trainingData.getNumClasses(); if( M == 0 ){ errorLog << "train_(ClassificationData &trainingData) - Training data has zero samples!" << endl; return false; } if( bootstrappedDatasetWeight <= 0.0 || bootstrappedDatasetWeight > 1.0 ){ errorLog << "train_(ClassificationData &trainingData) - Bootstrapped Dataset Weight must be [> 0.0 and <= 1.0]" << endl; return false; } numInputDimensions = N; numClasses = K; classLabels = trainingData.getClassLabels(); ranges = trainingData.getRanges(); //Scale the training data if needed if( useScaling ){ //Scale the training data between 0 and 1 trainingData.scale(0, 1); } //Flag that the main algorithm has been trained encase we need to trigger any callbacks trained = true; //Train the random forest forest.reserve( forestSize ); for(UINT i=0; i<forestSize; i++){ //Get a balanced bootstrapped dataset UINT datasetSize = (UINT)(trainingData.getNumSamples() * bootstrappedDatasetWeight); ClassificationData data = trainingData.getBootstrappedDataset( datasetSize, true ); DecisionTree tree; tree.setDecisionTreeNode( *decisionTreeNode ); tree.enableScaling( false ); //We have already scaled the training data so we do not need to scale it again tree.setTrainingMode( trainingMode ); tree.setNumSplittingSteps( numRandomSplits ); tree.setMinNumSamplesPerNode( minNumSamplesPerNode ); tree.setMaxDepth( maxDepth ); tree.enableNullRejection( useNullRejection ); tree.setRemoveFeaturesAtEachSpilt( removeFeaturesAtEachSpilt ); trainingLog << "Training forest " << i+1 << "/" << forestSize << "..." << endl; //Train this tree if( !tree.train( data ) ){ errorLog << "train_(ClassificationData &labelledTrainingData) - Failed to train tree at forest index: " << i << endl; clear(); return false; } //Deep copy the tree into the forest forest.push_back( tree.deepCopyTree() ); } return true; }
bool RandomForests::train_(ClassificationData &trainingData){ //Clear any previous model clear(); const unsigned int M = trainingData.getNumSamples(); const unsigned int N = trainingData.getNumDimensions(); const unsigned int K = trainingData.getNumClasses(); if( M == 0 ){ errorLog << "train_(ClassificationData &trainingData) - Training data has zero samples!" << std::endl; return false; } if( bootstrappedDatasetWeight <= 0.0 || bootstrappedDatasetWeight > 1.0 ){ errorLog << "train_(ClassificationData &trainingData) - Bootstrapped Dataset Weight must be [> 0.0 and <= 1.0]" << std::endl; return false; } numInputDimensions = N; numClasses = K; classLabels = trainingData.getClassLabels(); ranges = trainingData.getRanges(); //Scale the training data if needed if( useScaling ){ //Scale the training data between 0 and 1 trainingData.scale(0, 1); } if( useValidationSet ){ validationSetAccuracy = 0; validationSetPrecision.resize( useNullRejection ? K+1 : K, 0 ); validationSetRecall.resize( useNullRejection ? K+1 : K, 0 ); } //Flag that the main algorithm has been trained encase we need to trigger any callbacks trained = true; //Train the random forest forest.reserve( forestSize ); for(UINT i=0; i<forestSize; i++){ //Get a balanced bootstrapped dataset UINT datasetSize = (UINT)(trainingData.getNumSamples() * bootstrappedDatasetWeight); ClassificationData data = trainingData.getBootstrappedDataset( datasetSize, true ); Timer timer; timer.start(); DecisionTree tree; tree.setDecisionTreeNode( *decisionTreeNode ); tree.enableScaling( false ); //We have already scaled the training data so we do not need to scale it again tree.setUseValidationSet( useValidationSet ); tree.setValidationSetSize( validationSetSize ); tree.setTrainingMode( trainingMode ); tree.setNumSplittingSteps( numRandomSplits ); tree.setMinNumSamplesPerNode( minNumSamplesPerNode ); tree.setMaxDepth( maxDepth ); tree.enableNullRejection( useNullRejection ); tree.setRemoveFeaturesAtEachSpilt( removeFeaturesAtEachSpilt ); trainingLog << "Training decision tree " << i+1 << "/" << forestSize << "..." << std::endl; //Train this tree if( !tree.train_( data ) ){ errorLog << "train_(ClassificationData &trainingData) - Failed to train tree at forest index: " << i << std::endl; clear(); return false; } Float computeTime = timer.getMilliSeconds(); trainingLog << "Decision tree trained in " << (computeTime*0.001)/60.0 << " minutes" << std::endl; if( useValidationSet ){ Float forestNorm = 1.0 / forestSize; validationSetAccuracy += tree.getValidationSetAccuracy(); VectorFloat precision = tree.getValidationSetPrecision(); VectorFloat recall = tree.getValidationSetRecall(); grt_assert( precision.getSize() == validationSetPrecision.getSize() ); grt_assert( recall.getSize() == validationSetRecall.getSize() ); for(UINT i=0; i<validationSetPrecision.getSize(); i++){ validationSetPrecision[i] += precision[i] * forestNorm; } for(UINT i=0; i<validationSetRecall.getSize(); i++){ validationSetRecall[i] += recall[i] * forestNorm; } } //Deep copy the tree into the forest forest.push_back( tree.deepCopyTree() ); } if( useValidationSet ){ validationSetAccuracy /= forestSize; trainingLog << "Validation set accuracy: " << validationSetAccuracy << std::endl; trainingLog << "Validation set precision: "; for(UINT i=0; i<validationSetPrecision.getSize(); i++){ trainingLog << validationSetPrecision[i] << " "; } trainingLog << std::endl; trainingLog << "Validation set recall: "; for(UINT i=0; i<validationSetRecall.getSize(); i++){ trainingLog << validationSetRecall[i] << " "; } trainingLog << std::endl; } return true; }
int main(int argc, const char * argv[]) { //Parse the data filename from the argument list if( argc != 2 ){ cout << "Error: failed to parse data filename from command line. You should run this example with one argument pointing to the data filename!\n"; return EXIT_FAILURE; } const string filename = argv[1]; //Create a new DecisionTree instance DecisionTree dTree; //Set the node that the DecisionTree will use - different nodes may result in different decision boundaries //and some nodes may provide better accuracy than others on specific classification tasks //The current node options are: //- DecisionTreeClusterNode //- DecisionTreeThresholdNode dTree.setDecisionTreeNode( DecisionTreeClusterNode() ); //Set the number of steps that will be used to choose the best splitting values //More steps will give you a better model, but will take longer to train dTree.setNumSplittingSteps( 1000 ); //Set the maximum depth of the tree dTree.setMaxDepth( 10 ); //Set the minimum number of samples allowed per node dTree.setMinNumSamplesPerNode( 10 ); //Load some training data to train the classifier ClassificationData trainingData; if( !trainingData.load( filename ) ){ cout << "Failed to load training data: " << filename << endl; return EXIT_FAILURE; } //Use 20% of the training dataset to create a test dataset ClassificationData testData = trainingData.split( 80 ); //Train the classifier if( !dTree.train( trainingData ) ){ cout << "Failed to train classifier!\n"; return EXIT_FAILURE; } //Print the tree dTree.print(); //Save the model to a file if( !dTree.save("DecisionTreeModel.grt") ){ cout << "Failed to save the classifier model!\n"; return EXIT_FAILURE; } //Load the model from a file if( !dTree.load("DecisionTreeModel.grt") ){ cout << "Failed to load the classifier model!\n"; return EXIT_FAILURE; } //Test the accuracy of the model on the test data double accuracy = 0; for(UINT i=0; i<testData.getNumSamples(); i++){ //Get the i'th test sample UINT classLabel = testData[i].getClassLabel(); VectorDouble inputVector = testData[i].getSample(); //Perform a prediction using the classifier bool predictSuccess = dTree.predict( inputVector ); if( !predictSuccess ){ cout << "Failed to perform prediction for test sampel: " << i <<"\n"; return EXIT_FAILURE; } //Get the predicted class label UINT predictedClassLabel = dTree.getPredictedClassLabel(); VectorDouble classLikelihoods = dTree.getClassLikelihoods(); VectorDouble classDistances = dTree.getClassDistances(); //Update the accuracy if( classLabel == predictedClassLabel ) accuracy++; cout << "TestSample: " << i << " ClassLabel: " << classLabel << " PredictedClassLabel: " << predictedClassLabel << endl; } cout << "Test Accuracy: " << accuracy/double(testData.getNumSamples())*100.0 << "%" << endl; return EXIT_SUCCESS; }