示例#1
0
/**
 * Finds a minimal spanning tree on a graph.
 * THIS FUNCTION IS GRADED.
 *
 * @param graph - the graph to find the MST of
 *
 * @todo Label the edges of a minimal spanning tree as "MST"
 *  in the graph. They will appear blue when graph.savePNG() is called.
 *
 * @note Use your disjoint sets class from MP 7.1 to help you with
 *  Kruskal's algorithm. Copy the files into the libdsets folder.
 * @note You may call std::sort (http://www.cplusplus.com/reference/algorithm/sort/)
 *  instead of creating a priority queue.
 */
void GraphTools::findMST(Graph & graph)
{
	vector<Edge> eds = graph.getEdges();
	sort(eds.begin(), eds.end(),myfunction);
	DisjointSets vers;
    vector <Vertex> vertex_list = graph.getVertices();
    vers.addelements(vertex_list.size());

    for (int i = 0; i < eds.size(); i++)
    {

        Vertex u = eds[i].source;
        Vertex v = eds[i].dest;

        if (vers.find(u) != vers.find(v))
        {
            vers.setunion(u,v);
            graph.setEdgeLabel(u,v,"MST");
        }
    }
}
/**
 * Finds a minimal spanning tree on a graph.
 * THIS FUNCTION IS GRADED.
 *
 * @param graph - the graph to find the MST of
 *
 * @todo Label the edges of a minimal spanning tree as "MST"
 *  in the graph. They will appear blue when graph.savePNG() is called.
 *
 * @note Use your disjoint sets class from MP 7.1 to help you with
 *  Kruskal's algorithm. Copy the files into the libdsets folder.
 * @note You may call std::sort (http://www.cplusplus.com/reference/algorithm/sort/)
 *  instead of creating a priority queue.
 */
void GraphTools::findMST(Graph & graph)
{
	vector<Edge> theEdges = graph.getEdges();
    std::sort(theEdges.begin(), theEdges.end());

    DisjointSets theVertexSet;
    vector<Vertex> theVertices = graph.getVertices();
    theVertexSet.addelements(theVertices.size());

    int size = theVertices.size();
    int count = 0;
    vector<Edge>::iterator iter;
    for(iter = theEdges.begin(); iter != theEdges.end(); iter++)
    {
        if(count == size - 1) break;
        if(theVertexSet.find(iter->source) != theVertexSet.find(iter->dest))
        {
            theVertexSet.setunion(iter->source, iter->dest);  
            graph.setEdgeLabel(iter->source, iter->dest, "MST");
            count++;
        }
    }
}
示例#3
0
void SquareMaze::makeMaze(int width, int height)
{

right.clear();
bottom.clear();


maze_width = width;
maze_height = height; 
blocks = maze_width * maze_height; 
right.resize(blocks,true);
bottom.resize(blocks,true); 

DisjointSets maze; 
maze.addelements(blocks); 

srand(time(NULL));

//int x, y; 
bool rightmost=true, bottommost=true; 

int count = 0; 
//int rindex;
	while (count< (blocks - 1)) 
	{
		int rindex = rand() % blocks; 
		int x = rindex%maze_width;
		int y = rindex/maze_width;

		if(x==(maze_width-1))
		rightmost=true;
		else rightmost=false;

		if(y==(maze_height-1))
		bottommost=true;
		else bottommost=false;

		if (( rightmost == true ) && ( bottommost == true ))
		{
			rightmost=rightmost;
		}
		else if (!rightmost  && !bottommost)
		 {
			int action=rand()%3;			
					
			if (action == 0)  
			rightRemove(x,y,  maze,count,rindex);
			
		
			else if (action == 1)
			bottomRemove(x,y,  maze,count,rindex);

			else { 
			if ((maze.find(rindex) != maze.find(rindex+1)) && (maze.find(rindex) != maze.find(rindex+maze_width))&& (maze.find(rindex+1) != maze.find(rindex+1)))
			 { 
				setWall(x, y, 0, false); 
				setWall(x, y, 1, false); 
				maze.setunion(rindex, rindex+1); 
				maze.setunion(rindex, rindex+maze_width);
				count+=2;
			}
		}
		}
		
		
		else if(bottommost)
		{
			int action=rand()%2;			 
			if (action== 1)rightRemove(x,y,  maze,count,rindex);
		}
		
		else
		{
			int action =rand()%2;
			if (action == 1)bottomRemove(x,y,  maze,count,rindex);
		}

	}

}
示例#4
0
void SquareMaze::makeMaze(int width,int height)	
{
	width1=width;
	height1=height;
	int size=width*height;
	right.clear();
	down.clear();//clearing right and down walls just in case
	right=vector<bool>(size, true);//set all walls so they are there we will remove later
	down=vector<bool>(size, true);
	vector<int> blocks(size);//vector for indicies
	
	// map<int, int> maps;
	for(int i=0;i<size; i++)
	{
		blocks.push_back(i);//pushing back the indidces for the maze

		// for(int j=0; j<height1; j++)
		// {
		// 	// maps.insert(make_pair(i,j));
		// }
	}
	DisjointSets set;
	set.addelements(size);//used to stop cycles from being created
	srand(time(0));

	// std::random_shuffle(maps.begin(), maps.end());
	std::random_shuffle(blocks.begin(), blocks.end());//randomly shuffles indicies so it doesnt create the same maze

	// map<int, int>::iterator it;
	vector<int> :: iterator it;

	for(it=blocks.begin(); it!=blocks.end(); it++)
	{
		int x=*it%width;//x and y coords for the index
		int y=*it/width;
		int index=*it; //actual index


		if(x!=width1-1 ) //cant go any farther to the right in this case so dont want to do it
		{
			int index1=index+1;
			if(set.find(index)!=set.find(index1)) //checking if the one to the right of the index is in the same set
			{
				setWall(x,y,0,false);//if they are not in the same set we can remove the wall
				set.setunion(index, index1); //we connect them so they are in the same set
				//works because if we try to remove something in the same set it will create a cycle
			}
		}

		if(y!=height1-1)
		{
			int index2=index+width1;
			if(set.find(index)!= set.find(index2))
			{
				setWall(x,y,1,false); //do the same for if we want to go down
				set.setunion(index, index2);
			}
		}

	}
	




}