示例#1
0
    //--------------------------------------------------------------------------
    Distribution LossDistBinomial::operator()(Size n, Real volume,
                                              Real probability) const {
    //--------------------------------------------------------------------------
        n_ = n;
        probability_.clear();
        probability_.resize(n_+1, 0.0);
        Distribution dist (nBuckets_, 0.0, maximum_);
        BinomialDistribution binomial (probability, n);
        for (Size i = 0; i <= n; i++) {
            if (volume_ * i <= maximum_) {
                probability_[i] = binomial(i);
                Size bucket = dist.locate(volume * i);
                dist.addDensity (bucket, probability_[i] / dist.dx(bucket));
                dist.addAverage (bucket, volume * i);
            }
        }

        excessProbability_.clear();
        excessProbability_.resize(n_+1, 0.0);
        excessProbability_[n_] = probability_[n_];
        for (int k = n_-1; k >= 0; k--)
            excessProbability_[k] = excessProbability_[k+1] + probability_[k];

        dist.normalize();

        return dist;
    }
示例#2
0
    //--------------------------------------------------------------------------
    Distribution LossDistHomogeneous::operator()(Real volume,
                                                 const vector<Real>& p) const {
    //--------------------------------------------------------------------------
        volume_ = volume;
        n_ = p.size();
        probability_.clear();
        probability_.resize(n_+1, 0.0);
        vector<Real> prev;
        probability_[0] = 1.0;
        for (Size k = 0; k < n_; k++) {
            prev = probability_;
            probability_[0] = prev[0] * (1.0 - p[k]);
            for (Size i = 1; i <= k; i++)
                probability_[i] = prev[i-1] * p[k] + prev[i] * (1.0 - p[k]);
            probability_[k+1] = prev[k] * p[k];
        }

        excessProbability_.clear();
        excessProbability_.resize(n_+1, 0.0);
        excessProbability_[n_] = probability_[n_];
        for (int k = n_ - 1; k >= 0; k--)
            excessProbability_[k] = excessProbability_[k+1] + probability_[k];

        Distribution dist (nBuckets_, 0.0, maximum_);
        for (Size i = 0; i <= n_; i++) {
            if (volume * i <= maximum_) {
                Size bucket = dist.locate(volume * i);
                dist.addDensity (bucket, probability_[i] / dist.dx(bucket));
                dist.addAverage (bucket, volume*i);
            }
        }

        dist.normalize();

        return dist;
    }
示例#3
0
    //--------------------------------------------------------------------------
    Distribution LossDistBucketing::operator()(const vector<Real>& nominals,
                                    const vector<Real>& probabilities) const {
    //--------------------------------------------------------------------------
        QL_REQUIRE (nominals.size() == probabilities.size(), "sizes differ: "
                    << nominals.size() << " vs " << probabilities.size());

        vector<Real> p (nBuckets_, 0.0);
        vector<Real> a (nBuckets_, 0.0);
        vector<Real> ap (nBuckets_, 0.0);

        p[0] = 1.0;
        a[0] = 0.0;
        Real dx = maximum_ / nBuckets_;
        for (Size k = 1; k < nBuckets_; k++)
            a[k] = dx * k + dx/2;

        for (Size i = 0; i < nominals.size(); i++) {
            Real L = nominals[i];
            Real P = probabilities[i];
            for (int k = a.size()-1; k >= 0; k--) {
                if (p[k] > 0) {
                    int u = locateTargetBucket (a[k] + L, k);
                    QL_REQUIRE (u >= 0, "u=" << u << " at i=" << i << " k=" << k);
                    QL_REQUIRE (u >= k, "u=" << u << "<k=" << k << " at i=" << i);

                    Real dp = p[k] * P;
                    if (u == k)
                        a[k] += P * L;
                    else {
                        // no update of a[u] and p[u] if u is beyond grid end
                        if (u < int(nBuckets_)) {
                            // a[u] remains unchanged, if dp = 0
                            if (dp > 0.0) {
                                // on Windows, p[u]/dp could cause a NaN for
                                // some very small values of p[k].
                                // Writing the above as (p[u]/p[k])/P prevents
                                // the NaN. What can I say?
                                Real f = 1.0 / (1.0 + (p[u]/p[k]) / P);
                                a[u] = (1.0 - f) * a[u] + f * (a[k] + L);
                            }
                            /* formulation of Hull-White:
                               if (p[u] + dp > 0)
                                  a[u] = (p[u] * a[u] + dp * (a[k] + L))
                                         / (p[u] + dp);
                            */
                            p[u] += dp;
                        }
                        p[k] -= dp;
                    }
                }
                QL_REQUIRE(a[k] + epsilon_ >= dx * k && a[k] < dx * (k+1),
                           "a out of range at k=" << k << ", contract " << i);
            }
        }

        Distribution dist (nBuckets_, 0.0, maximum_);
        for (Size i = 0; i < nBuckets_; i++) {
            dist.addDensity (i, p[i] / dx);
            dist.addAverage (i, a[i]);
        }

        return dist;
    }