示例#1
0
void buildGIDs(std::vector<std::vector<int> > & gids,const Epetra_Map & map)
{
   int numLocal = map.NumMyElements();
   int numHalf = numLocal/2;
   numHalf += ((numHalf % 2 == 0) ? 0 : 1); 

   gids.clear();
   gids.resize(3);

   std::vector<int> & blk0 = gids[0];
   std::vector<int> & blk1 = gids[1];
   std::vector<int> & blk2 = gids[2];
   
   // loop over global IDs: treat first block as strided
   int gid = -1;
   for(int i=0;i<numHalf;i+=2) {
      gid = map.GID(i);
      blk0.push_back(gid);

      gid = map.GID(i+1);
      blk1.push_back(gid);
   }

   // loop over global IDs: treat remainder as contiguous
   for(int i=numHalf;i<numLocal;i++) {
      gid = map.GID(i);
      blk2.push_back(gid);
   }
}
示例#2
0
    static void UpdateComponent( spaceT const& Xh, Epetra_MultiVector& sol, Epetra_MultiVector& comp )
    {
        Epetra_Map componentMap ( epetraMap( Xh->template functionSpace<index>()->map() ) );
        Epetra_Map globalMap ( epetraMap( Xh->map() ) );

        int shift = Xh->nDofStart( index );

        int Length = comp.MyLength();

        for ( int i=0; i < Length; i++ )
        {
            int compGlobalID = componentMap.GID( i );

            if ( compGlobalID >= 0 )
            {
                int compLocalID = componentMap.LID( compGlobalID );

                int localID = globalMap.LID( compGlobalID+shift );
                //                         int globalID = globalMap.GID(localID);

                DVLOG(2) << "Copy entry component[" << compLocalID << "] to sol[" << localID << "]="
                               <<  sol[0][localID]
                               << "]\n";

                sol[0][localID] = comp[0][compLocalID] ;

                DVLOG(2) << comp[0][compLocalID] << "\n";
            }
        }
    }
示例#3
0
    static Epetra_MultiVector getComponent( spaceT const& Xh, Epetra_MultiVector const& sol )
    {
        Epetra_Map componentMap ( epetraMap( Xh->template functionSpace<index>()->map() ) );
        Epetra_Map globalMap ( epetraMap( Xh->map() ) );

        //DVLOG(2) << "Component map: " << componentMap << "\n";

        Epetra_MultiVector component( componentMap, 1 );

        int Length = component.MyLength();

        int shift = Xh->nDofStart( index );

        for ( int i=0; i < Length; i++ )
        {
            int compGlobalID = componentMap.GID( i );

            if ( compGlobalID >= 0 )
            {
                int compLocalID = componentMap.LID( compGlobalID );

                int localID = globalMap.LID( compGlobalID+shift );
                //                         int globalID = globalMap.GID(localID);

                DVLOG(2) << "[MyBackend] Copy entry sol[" << localID << "]=" <<  sol[0][localID]
                               << " to component[" << compLocalID << "]\n";

                component[0][compLocalID] = sol[0][localID];

                DVLOG(2) << component[0][compLocalID] << "\n";
            }
        }

        return component;
    }
Teuchos::RCP<Epetra_CrsMatrix> Epetra_Operator_to_Epetra_Matrix::constructInverseMatrix(const Epetra_Operator &op, const Epetra_Map &map)
{
  int numEntriesPerRow = 0;
  Teuchos::RCP<Epetra_FECrsMatrix> matrix = Teuchos::rcp(new Epetra_FECrsMatrix(::Copy, map, numEntriesPerRow));

  int numRows = map.NumGlobalElements();

  Epetra_Vector X(map);
  Epetra_Vector Y(map);

  double tol = 1e-15; // values below this will be considered 0

  for (int rowIndex=0; rowIndex<numRows; rowIndex++)
  {
    int lid = map.LID(rowIndex);
    if (lid != -1)
    {
      X[lid] = 1.0;
    }
    op.ApplyInverse(X, Y);
    if (lid != -1)
    {
      X[lid] = 0.0;
    }

    std::vector<double> values;
    std::vector<int> indices;
    for (int i=0; i<map.NumMyElements(); i++)
    {
      if (abs(Y[i]) > tol)
      {
        values.push_back(Y[i]);
        indices.push_back(map.GID(i));
      }
    }

    matrix->InsertGlobalValues(rowIndex, values.size(), &values[0], &indices[0]);
  }

  matrix->GlobalAssemble();
  return matrix;
}
int CopyRowMatrix(mxArray* matlabA, const Epetra_RowMatrix& A) {
  int valueCount = 0;
  //int* valueCount = &temp;

  Epetra_Map map = A.RowMatrixRowMap();
  const Epetra_Comm & comm = map.Comm();
  int numProc = comm.NumProc();

  if (numProc==1) 
    DoCopyRowMatrix(matlabA, valueCount, A);
  else {
    int numRows = map.NumMyElements();
    
    //cout << "creating allGidsMap\n";
    Epetra_Map allGidsMap(-1, numRows, 0,comm);
    //cout << "done creating allGidsMap\n";
    
    Epetra_IntVector allGids(allGidsMap);
    for (int i=0; i<numRows; i++) allGids[i] = map.GID(i);
    
    // Now construct a RowMatrix on PE 0 by strip-mining the rows of the input matrix A.
    int numChunks = numProc;
    int stripSize = allGids.GlobalLength()/numChunks;
    int remainder = allGids.GlobalLength()%numChunks;
    int curStart = 0;
    int curStripSize = 0;
    Epetra_IntSerialDenseVector importGidList;
    int numImportGids = 0;
    if (comm.MyPID()==0) 
      importGidList.Size(stripSize+1); // Set size of vector to max needed
    for (int i=0; i<numChunks; i++) {
      if (comm.MyPID()==0) { // Only PE 0 does this part
	curStripSize = stripSize;
	if (i<remainder) curStripSize++; // handle leftovers
	for (int j=0; j<curStripSize; j++) importGidList[j] = j + curStart;
	curStart += curStripSize;
      }
      // The following import map will be non-trivial only on PE 0.
      //cout << "creating importGidMap\n";
      Epetra_Map importGidMap(-1, curStripSize, importGidList.Values(), 0, comm);
      //cout << "done creating importGidMap\n";
      Epetra_Import gidImporter(importGidMap, allGidsMap);
      Epetra_IntVector importGids(importGidMap);
      if (importGids.Import(allGids, gidImporter, Insert)) return(-1); 

      // importGids now has a list of GIDs for the current strip of matrix rows.
      // Use these values to build another importer that will get rows of the matrix.

      // The following import map will be non-trivial only on PE 0.
      //cout << "creating importMap\n";
      //cout << "A.RowMatrixRowMap().MinAllGID: " << A.RowMatrixRowMap().MinAllGID() << "\n";
      Epetra_Map importMap(-1, importGids.MyLength(), importGids.Values(), A.RowMatrixRowMap().MinAllGID(), comm);
      //cout << "done creating importMap\n";
      Epetra_Import importer(importMap, map);
      Epetra_CrsMatrix importA(Copy, importMap, 0);
      if (importA.Import(A, importer, Insert)) return(-1); 
      if (importA.FillComplete()) return(-1);

      // Finally we are ready to write this strip of the matrix to ostream
      if (DoCopyRowMatrix(matlabA, valueCount, importA)) return(-1);
    }
  }

  if (A.RowMatrixRowMap().Comm().MyPID() == 0) {
	// set max cap
	int* matlabAcolumnIndicesPtr = mxGetJc(matlabA);
	matlabAcolumnIndicesPtr[A.NumGlobalRows()] = valueCount;
  }

  return(0);
}
int DoCopyRowMatrix(mxArray* matlabA, int& valueCount, const Epetra_RowMatrix& A) {
  //cout << "doing DoCopyRowMatrix\n";
  int ierr = 0;
  int numRows = A.NumGlobalRows();
  //cout << "numRows: " << numRows << "\n";
  Epetra_Map rowMap = A.RowMatrixRowMap();
  Epetra_Map colMap = A.RowMatrixColMap();
  int minAllGID = rowMap.MinAllGID();

  const Epetra_Comm & comm = rowMap.Comm();
  //cout << "did global setup\n";
  if (comm.MyPID()!=0) {
    if (A.NumMyRows()!=0) ierr = -1;
    if (A.NumMyCols()!=0) ierr = -1;
  }
  else {
	// declare and get initial values of all matlabA pointers
	double* matlabAvaluesPtr = mxGetPr(matlabA);
	int* matlabAcolumnIndicesPtr = mxGetJc(matlabA);
	int* matlabArowIndicesPtr = mxGetIr(matlabA);

	// set all matlabA pointers to the proper offset
	matlabAvaluesPtr += valueCount;
	matlabArowIndicesPtr += valueCount;

    if (numRows!=A.NumMyRows()) ierr = -1;
    Epetra_SerialDenseVector values(A.MaxNumEntries());
    Epetra_IntSerialDenseVector indices(A.MaxNumEntries());
    //cout << "did proc0 setup\n";
    for (int i=0; i<numRows; i++) {
	  //cout << "extracting a row\n";
	  int I = rowMap.GID(i);
      int numEntries = 0;
      if (A.ExtractMyRowCopy(i, values.Length(), numEntries, 
	  		     values.Values(), indices.Values())) return(-1);
	  matlabAcolumnIndicesPtr[I - minAllGID] = valueCount;  // set the starting index of column I
	  double* serialValuesPtr = values.Values();
      for (int j=0; j<numEntries; j++) {
		int J = colMap.GID(indices[j]);
		*matlabAvaluesPtr = *serialValuesPtr++;
		*matlabArowIndicesPtr = J;
		// increment matlabA pointers
		matlabAvaluesPtr++;
		matlabArowIndicesPtr++;
		valueCount++;
      }
    }
    //cout << "proc0 row extraction for this chunck is done\n";
  }

/*
  if (comm.MyPID() == 0) {
  cout << "printing matlabA pointers\n";
	double* matlabAvaluesPtr = mxGetPr(matlabA);
	int* matlabAcolumnIndicesPtr = mxGetJc(matlabA);
	int* matlabArowIndicesPtr = mxGetIr(matlabA);
  for(int i=0; i < numRows; i++) {
	for(int j=0; j < A.MaxNumEntries(); j++) {
	  cout << "*matlabAvaluesPtr: " << *matlabAvaluesPtr++ << " *matlabAcolumnIndicesPtr: " << *matlabAcolumnIndicesPtr++ << " *matlabArowIndicesPtr" << *matlabArowIndicesPtr++ << "\n";
	}
  }
  
  cout << "done printing matlabA pointers\n";
  }
  */
  
  int ierrGlobal;
  comm.MinAll(&ierr, &ierrGlobal, 1); // If any processor has -1, all return -1
  return(ierrGlobal);
}
示例#7
0
int checkmap(Epetra_Map & Map, int NumGlobalElements, int NumMyElements, 
	     int *MyGlobalElements, int IndexBase, Epetra_Comm& Comm,
	     bool DistributedGlobal)
{
  int i, ierr=0, forierr = 0;

  EPETRA_TEST_ERR(!Map.ConstantElementSize(),ierr);

  EPETRA_TEST_ERR(DistributedGlobal!=Map.DistributedGlobal(),ierr);


  EPETRA_TEST_ERR(Map.ElementSize()!=1,ierr);
  int *MyElementSizeList = new int[NumMyElements];

  EPETRA_TEST_ERR(Map.ElementSizeList(MyElementSizeList)!=0,ierr);

  forierr = 0;
  for (i=0; i<NumMyElements; i++) forierr += MyElementSizeList[i]!=1;
  EPETRA_TEST_ERR(forierr,ierr);

  delete [] MyElementSizeList;

  const Epetra_Comm & Comm1 = Map.Comm();

  EPETRA_TEST_ERR(Comm1.NumProc()!=Comm.NumProc(),ierr);

  EPETRA_TEST_ERR(Comm1.MyPID()!=Comm.MyPID(),ierr);

  EPETRA_TEST_ERR(Map.IndexBase()!=IndexBase,ierr);

  EPETRA_TEST_ERR(!Map.LinearMap() && MyGlobalElements==0,ierr);

  EPETRA_TEST_ERR(Map.LinearMap() && MyGlobalElements!=0,ierr);

  EPETRA_TEST_ERR(Map.MaxAllGID()!=NumGlobalElements-1+IndexBase,ierr);

  EPETRA_TEST_ERR(Map.MaxElementSize()!=1,ierr);

  int MaxLID = Map.MaxLID();
  EPETRA_TEST_ERR(MaxLID!=NumMyElements-1,ierr);

  int MaxMyGID = (Comm.MyPID()+1)*NumMyElements-1+IndexBase;
  if (Comm.MyPID()>2) MaxMyGID+=3;
  if (!DistributedGlobal) MaxMyGID = NumMyElements-1+IndexBase;
  EPETRA_TEST_ERR(Map.MaxMyGID()!=MaxMyGID,ierr);

  EPETRA_TEST_ERR(Map.MinAllGID()!=IndexBase,ierr);

  EPETRA_TEST_ERR(Map.MinElementSize()!=1,ierr);

  EPETRA_TEST_ERR(Map.MinLID()!=0,ierr);

  int MinMyGID = Comm.MyPID()*NumMyElements+IndexBase;
  if (Comm.MyPID()>2) MinMyGID+=3;
  if (!DistributedGlobal) MinMyGID = 0;
  EPETRA_TEST_ERR(Map.MinMyGID()!=MinMyGID,ierr);
  
  int * MyGlobalElements1 = new int[NumMyElements];
  EPETRA_TEST_ERR(Map.MyGlobalElements(MyGlobalElements1)!=0,ierr);

  forierr = 0;
  if (MyGlobalElements==0)
    {
      for (i=0; i<NumMyElements; i++) 
	forierr += MyGlobalElements1[i]!=MinMyGID+i;
      EPETRA_TEST_ERR(forierr,ierr);
    }
  else {
    for (i=0; i<NumMyElements; i++)
      forierr += MyGlobalElements[i]!=MyGlobalElements1[i];
    EPETRA_TEST_ERR(forierr,ierr);
  }
  EPETRA_TEST_ERR(Map.NumGlobalElements()!=NumGlobalElements,ierr);
  
  EPETRA_TEST_ERR(Map.NumGlobalPoints()!=NumGlobalElements,ierr);
  
  EPETRA_TEST_ERR(Map.NumMyElements()!=NumMyElements,ierr);  

  EPETRA_TEST_ERR(Map.NumMyPoints()!=NumMyElements,ierr);

  int MaxMyGID2 = Map.GID(Map.LID(MaxMyGID));
  EPETRA_TEST_ERR(MaxMyGID2 != MaxMyGID,ierr);
  int MaxLID2 = Map.LID(Map.GID(MaxLID));
  EPETRA_TEST_ERR(MaxLID2 != MaxLID,ierr);

  EPETRA_TEST_ERR(Map.GID(MaxLID+1) != IndexBase-1,ierr);// MaxLID+1 doesn't exist
  EPETRA_TEST_ERR(Map.LID(MaxMyGID+1) != -1,ierr);// MaxMyGID+1 doesn't exist or is on a different processor

  EPETRA_TEST_ERR(!Map.MyGID(MaxMyGID),ierr);
  EPETRA_TEST_ERR(Map.MyGID(MaxMyGID+1),ierr);

  EPETRA_TEST_ERR(!Map.MyLID(MaxLID),ierr);
  EPETRA_TEST_ERR(Map.MyLID(MaxLID+1),ierr);

  EPETRA_TEST_ERR(!Map.MyGID(Map.GID(MaxLID)),ierr);
  EPETRA_TEST_ERR(Map.MyGID(Map.GID(MaxLID+1)),ierr);

  EPETRA_TEST_ERR(!Map.MyLID(Map.LID(MaxMyGID)),ierr);
  EPETRA_TEST_ERR(Map.MyLID(Map.LID(MaxMyGID+1)),ierr);

  // Check RemoteIDList function
  // Get some GIDs off of each processor to test
  int TotalNumEle, NumElePerProc, NumProc = Comm.NumProc();
  int MinNumEleOnProc;
  int NumMyEle=Map.NumMyElements();
  Comm.MinAll(&NumMyEle,&MinNumEleOnProc,1);
  if (MinNumEleOnProc > 5) NumElePerProc = 6;
  else NumElePerProc = MinNumEleOnProc;
  if (NumElePerProc > 0) {
    TotalNumEle = NumElePerProc*NumProc;
    int * MyGIDlist = new int[NumElePerProc];
    int * GIDlist = new int[TotalNumEle];
    int * PIDlist = new int[TotalNumEle];
    int * LIDlist = new int[TotalNumEle];
    for (i=0; i<NumElePerProc; i++)
	  MyGIDlist[i] = MyGlobalElements1[i];
    Comm.GatherAll(MyGIDlist,GIDlist,NumElePerProc);// Get a few values from each proc
    Map.RemoteIDList(TotalNumEle, GIDlist, PIDlist, LIDlist);
    int MyPID= Comm.MyPID();

    forierr = 0;
    for (i=0; i<TotalNumEle; i++) {
      if (Map.MyGID(GIDlist[i])) {
	forierr += PIDlist[i] != MyPID;
	forierr += !Map.MyLID(Map.LID(GIDlist[i])) || Map.LID(GIDlist[i]) != LIDlist[i] || Map.GID(LIDlist[i]) != GIDlist[i];
      }
      else {
	forierr += PIDlist[i] == MyPID; // If MyGID comes back false, the PID listed should be that of another proc
      }
    }
    EPETRA_TEST_ERR(forierr,ierr);

    delete [] MyGIDlist;
    delete [] GIDlist;
    delete [] PIDlist;
    delete [] LIDlist;
  }

  delete [] MyGlobalElements1;

  // Check RemoteIDList function (assumes all maps are linear, even if not stored that way)

  if (Map.LinearMap()) {

    int * GIDList = new int[3];
    int * PIDList = new int[3];
    int * LIDList = new int[3];
    int MyPID = Map.Comm().MyPID();
  
    int NumIDs = 0;
    //GIDList[NumIDs++] = Map.MaxAllGID()+1; // Should return -1 for both PID and LID
    if (Map.MinMyGID()-1>=Map.MinAllGID()) GIDList[NumIDs++] = Map.MinMyGID()-1;
    if (Map.MaxMyGID()+1<=Map.MaxAllGID()) GIDList[NumIDs++] = Map.MaxMyGID()+1;

    Map.RemoteIDList(NumIDs, GIDList, PIDList, LIDList);

    NumIDs = 0;

    //EPETRA_TEST_ERR(!(PIDList[NumIDs]==-1),ierr);
    //EPETRA_TEST_ERR(!(LIDList[NumIDs++]==-1),ierr);

    if (Map.MinMyGID()-1>=Map.MinAllGID()) EPETRA_TEST_ERR(!(PIDList[NumIDs++]==MyPID-1),ierr);
    if (Map.MaxMyGID()+1<=Map.MaxAllGID()) EPETRA_TEST_ERR(!(PIDList[NumIDs]==MyPID+1),ierr);
    if (Map.MaxMyGID()+1<=Map.MaxAllGID()) EPETRA_TEST_ERR(!(LIDList[NumIDs++]==0),ierr);

    delete [] GIDList;
    delete [] PIDList;
    delete [] LIDList;

  }
  
  return (ierr);
}
示例#8
0
int main(int argc, char *argv[])
{
  int ierr = 0;
  double elapsed_time;
  double total_flops;
  double MFLOPs;
    

#ifdef EPETRA_MPI

  // Initialize MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm comm( MPI_COMM_WORLD );
#else
  Epetra_SerialComm comm;
#endif

  bool verbose = false;
  bool summary = false;

  // Check if we should print verbose results to standard out
  if (argc>6) if (argv[6][0]=='-' && argv[6][1]=='v') verbose = true;

  // Check if we should print verbose results to standard out
  if (argc>6) if (argv[6][0]=='-' && argv[6][1]=='s') summary = true;

  if(argc < 6) {
    cerr << "Usage: " << argv[0]
         << " NumNodesX NumNodesY NumProcX NumProcY NumPoints [-v|-s]" << endl
         << "where:" << endl
         << "NumNodesX         - Number of mesh nodes in X direction per processor" << endl
         << "NumNodesY         - Number of mesh nodes in Y direction per processor" << endl
         << "NumProcX          - Number of processors to use in X direction" << endl
         << "NumProcY          - Number of processors to use in Y direction" << endl
         << "NumPoints         - Number of points to use in stencil (5, 9 or 25 only)" << endl
         << "-v|-s             - (Optional) Run in verbose mode if -v present or summary mode if -s present" << endl
         << " NOTES: NumProcX*NumProcY must equal the number of processors used to run the problem." << endl << endl
	 << " Serial example:" << endl
         << argv[0] << " 16 12 1 1 25 -v" << endl
	 << " Run this program in verbose mode on 1 processor using a 16 X 12 grid with a 25 point stencil."<< endl <<endl
	 << " MPI example:" << endl
         << "mpirun -np 32 " << argv[0] << " 10 12 4 8 9 -v" << endl
	 << " Run this program in verbose mode on 32 processors putting a 10 X 12 subgrid on each processor using 4 processors "<< endl
	 << " in the X direction and 8 in the Y direction.  Total grid size is 40 points in X and 96 in Y with a 9 point stencil."<< endl
         << endl;
    return(1);

  }
    //char tmp;
    //if (comm.MyPID()==0) cout << "Press any key to continue..."<< endl;
    //if (comm.MyPID()==0) cin >> tmp;
    //comm.Barrier();

  comm.SetTracebackMode(0); // This should shut down any error traceback reporting
  if (verbose && comm.MyPID()==0)
    cout << Epetra_Version() << endl << endl;
  if (summary && comm.MyPID()==0) {
    if (comm.NumProc()==1)
      cout << Epetra_Version() << endl << endl;
    else
      cout << endl << endl; // Print two blank line to keep output columns lined up
  }

  if (verbose) cout << comm <<endl;


  // Redefine verbose to only print on PE 0

  if (verbose && comm.MyPID()!=0) verbose = false;
  if (summary && comm.MyPID()!=0) summary = false;

  int numNodesX = atoi(argv[1]);
  int numNodesY = atoi(argv[2]);
  int numProcsX = atoi(argv[3]);
  int numProcsY = atoi(argv[4]);
  int numPoints = atoi(argv[5]);

  if (verbose || (summary && comm.NumProc()==1)) {
    cout << " Number of local nodes in X direction  = " << numNodesX << endl
	 << " Number of local nodes in Y direction  = " << numNodesY << endl
	 << " Number of global nodes in X direction = " << numNodesX*numProcsX << endl
	 << " Number of global nodes in Y direction = " << numNodesY*numProcsY << endl
	 << " Number of local nonzero entries       = " << numNodesX*numNodesY*numPoints << endl
	 << " Number of global nonzero entries      = " << numNodesX*numNodesY*numPoints*numProcsX*numProcsY << endl
	 << " Number of Processors in X direction   = " << numProcsX << endl
	 << " Number of Processors in Y direction   = " << numProcsY << endl
	 << " Number of Points in stencil           = " << numPoints << endl << endl;
  }
  // Print blank line to keep output columns lined up
  if (summary && comm.NumProc()>1)
    cout << endl << endl << endl << endl << endl << endl << endl << endl<< endl << endl;

  if (numProcsX*numProcsY!=comm.NumProc()) {
    cerr << "Number of processors = " << comm.NumProc() << endl
	 << " is not the product of " << numProcsX << " and " << numProcsY << endl << endl;
    return(1);
  }

  if (numPoints!=5 && numPoints!=9 && numPoints!=25) {
    cerr << "Number of points specified = " << numPoints << endl
	 << " is not 5, 9, 25" << endl << endl;
    return(1);
  }

  if (numNodesX*numNodesY<=0) {
    cerr << "Product of number of nodes is <= zero" << endl << endl;
    return(1);
  }

  Epetra_IntSerialDenseVector Xoff, XLoff, XUoff;
  Epetra_IntSerialDenseVector Yoff, YLoff, YUoff;
  if (numPoints==5) {

     // Generate a 5-point 2D Finite Difference matrix
    Xoff.Size(5);
    Yoff.Size(5);
    Xoff[0] = -1; Xoff[1] = 1; Xoff[2] = 0; Xoff[3] = 0;  Xoff[4] = 0; 
    Yoff[0] = 0;  Yoff[1] = 0; Yoff[2] = 0; Yoff[3] = -1; Yoff[4] = 1; 

     // Generate a 2-point 2D Lower triangular Finite Difference matrix
    XLoff.Size(2);
    YLoff.Size(2);
    XLoff[0] = -1; XLoff[1] =  0; 
    YLoff[0] =  0; YLoff[1] = -1;

     // Generate a 3-point 2D upper triangular Finite Difference matrix
    XUoff.Size(3);
    YUoff.Size(3);
    XUoff[0] =  0; XUoff[1] =  1; XUoff[2] = 0; 
    YUoff[0] =  0; YUoff[1] =  0; YUoff[2] = 1;
  }
  else if (numPoints==9) {
    // Generate a 9-point 2D Finite Difference matrix
    Xoff.Size(9);
    Yoff.Size(9);
    Xoff[0] = -1;  Xoff[1] =  0; Xoff[2] =  1; 
    Yoff[0] = -1;  Yoff[1] = -1; Yoff[2] = -1; 
    Xoff[3] = -1;  Xoff[4] =  0; Xoff[5] =  1; 
    Yoff[3] =  0;  Yoff[4] =  0; Yoff[5] =  0; 
    Xoff[6] = -1;  Xoff[7] =  0; Xoff[8] =  1; 
    Yoff[6] =  1;  Yoff[7] =  1; Yoff[8] =  1; 

    // Generate a 5-point lower triangular 2D Finite Difference matrix
    XLoff.Size(5);
    YLoff.Size(5);
    XLoff[0] = -1;  XLoff[1] =  0; Xoff[2] =  1; 
    YLoff[0] = -1;  YLoff[1] = -1; Yoff[2] = -1; 
    XLoff[3] = -1;  XLoff[4] =  0; 
    YLoff[3] =  0;  YLoff[4] =  0;

    // Generate a 4-point upper triangular 2D Finite Difference matrix
    XUoff.Size(4);
    YUoff.Size(4);
    XUoff[0] =  1; 
    YUoff[0] =  0; 
    XUoff[1] = -1;  XUoff[2] =  0; XUoff[3] =  1; 
    YUoff[1] =  1;  YUoff[2] =  1; YUoff[3] =  1; 

  }
  else {
    // Generate a 25-point 2D Finite Difference matrix
    Xoff.Size(25);
    Yoff.Size(25);
    int xi = 0, yi = 0;
    int xo = -2, yo = -2;
    Xoff[xi++] = xo++;  Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++;
    Yoff[yi++] = yo  ;  Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; 
    xo = -2, yo++;
    Xoff[xi++] = xo++;  Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++;
    Yoff[yi++] = yo  ;  Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; 
    xo = -2, yo++;
    Xoff[xi++] = xo++;  Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++;
    Yoff[yi++] = yo  ;  Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; 
    xo = -2, yo++;
    Xoff[xi++] = xo++;  Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++;
    Yoff[yi++] = yo  ;  Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; 
    xo = -2, yo++;
    Xoff[xi++] = xo++;  Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++; Xoff[xi++] = xo++;
    Yoff[yi++] = yo  ;  Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; Yoff[yi++] = yo  ; 

    // Generate a 13-point lower triangular 2D Finite Difference matrix
    XLoff.Size(13);
    YLoff.Size(13);
    xi = 0, yi = 0;
    xo = -2, yo = -2;
    XLoff[xi++] = xo++;  XLoff[xi++] = xo++; XLoff[xi++] = xo++; XLoff[xi++] = xo++; XLoff[xi++] = xo++;
    YLoff[yi++] = yo  ;  YLoff[yi++] = yo  ; YLoff[yi++] = yo  ; YLoff[yi++] = yo  ; YLoff[yi++] = yo  ; 
    xo = -2, yo++;
    XLoff[xi++] = xo++;  XLoff[xi++] = xo++; XLoff[xi++] = xo++; XLoff[xi++] = xo++; XLoff[xi++] = xo++;
    YLoff[yi++] = yo  ;  YLoff[yi++] = yo  ; YLoff[yi++] = yo  ; YLoff[yi++] = yo  ; YLoff[yi++] = yo  ; 
    xo = -2, yo++;
    XLoff[xi++] = xo++;  XLoff[xi++] = xo++; XLoff[xi++] = xo++;
    YLoff[yi++] = yo  ;  YLoff[yi++] = yo  ; YLoff[yi++] = yo  ;

    // Generate a 13-point upper triangular 2D Finite Difference matrix
    XUoff.Size(13);
    YUoff.Size(13);
    xi = 0, yi = 0;
    xo = 0, yo = 0;
    XUoff[xi++] = xo++;  XUoff[xi++] = xo++; XUoff[xi++] = xo++;
    YUoff[yi++] = yo  ;  YUoff[yi++] = yo  ; YUoff[yi++] = yo  ; 
    xo = -2, yo++;
    XUoff[xi++] = xo++;  XUoff[xi++] = xo++; XUoff[xi++] = xo++; XUoff[xi++] = xo++; XUoff[xi++] = xo++;
    YUoff[yi++] = yo  ;  YUoff[yi++] = yo  ; YUoff[yi++] = yo  ; YUoff[yi++] = yo  ; YUoff[yi++] = yo  ; 
    xo = -2, yo++;
    XUoff[xi++] = xo++;  XUoff[xi++] = xo++; XUoff[xi++] = xo++; XUoff[xi++] = xo++; XUoff[xi++] = xo++;
    YUoff[yi++] = yo  ;  YUoff[yi++] = yo  ; YUoff[yi++] = yo  ; YUoff[yi++] = yo  ; YUoff[yi++] = yo  ; 

  }

  Epetra_Map * map;
  Epetra_Map * mapL;
  Epetra_Map * mapU;
  Epetra_CrsMatrix * A;
  Epetra_CrsMatrix * L;
  Epetra_CrsMatrix * U;
  Epetra_MultiVector * b;
  Epetra_MultiVector * bt;
  Epetra_MultiVector * xexact;
  Epetra_MultiVector * bL;
  Epetra_MultiVector * btL;
  Epetra_MultiVector * xexactL;
  Epetra_MultiVector * bU;
  Epetra_MultiVector * btU;
  Epetra_MultiVector * xexactU;
  Epetra_SerialDenseVector resvec(0);

  //Timings
  Epetra_Flops flopcounter;
  Epetra_Time timer(comm);

#ifdef EPETRA_VERY_SHORT_PERFTEST
  int jstop = 1;
#elif EPETRA_SHORT_PERFTEST
  int jstop = 1;
#else
  int jstop = 2;
#endif
  for (int j=0; j<jstop; j++) {
    for (int k=1; k<17; k++) {
#ifdef EPETRA_VERY_SHORT_PERFTEST
      if (k<3 || (k%4==0 && k<9)) {
#elif EPETRA_SHORT_PERFTEST
      if (k<6 || k%4==0) {
#else
      if (k<7 || k%2==0) {
#endif
      int nrhs=k;
      if (verbose) cout << "\n*************** Results for " << nrhs << " RHS with ";

      bool StaticProfile = (j!=0);
      if (verbose) 
	if (StaticProfile) cout << " static profile\n";
	else cout << " dynamic profile\n";
      
      GenerateCrsProblem(numNodesX, numNodesY, numProcsX, numProcsY, numPoints,
			 Xoff.Values(), Yoff.Values(), nrhs, comm, verbose, summary,
			 map, A, b, bt, xexact, StaticProfile, false);

      
#ifdef EPETRA_HAVE_JADMATRIX
      
      timer.ResetStartTime();
      Epetra_JadMatrix JA(*A);
      elapsed_time = timer.ElapsedTime();
      if (verbose) cout << "Time to create Jagged diagonal matrix = " << elapsed_time << endl;

      //cout << "A = " << *A << endl;
      //cout << "JA = " << JA << endl;

      runJadMatrixTests(&JA, b, bt, xexact, StaticProfile, verbose, summary);

#endif
      runMatrixTests(A, b, bt, xexact, StaticProfile, verbose, summary);

      delete A;
      delete b;
      delete bt; 
      delete xexact;

      GenerateCrsProblem(numNodesX, numNodesY, numProcsX, numProcsY, XLoff.Length(),
			 XLoff.Values(), YLoff.Values(), nrhs, comm, verbose, summary,
			 mapL, L, bL, btL, xexactL, StaticProfile, true);
      

      GenerateCrsProblem(numNodesX, numNodesY, numProcsX, numProcsY, XUoff.Length(),
			 XUoff.Values(), YUoff.Values(), nrhs, comm, verbose, summary,
			 mapU, U, bU, btU, xexactU, StaticProfile, true);
      

      runLUMatrixTests(L, bL, btL, xexactL, U, bU, btU, xexactU, StaticProfile, verbose, summary);

      delete L;
      delete bL;
      delete btL; 
      delete xexactL;
      delete mapL;

      delete U;
      delete bU;
      delete btU; 
      delete xexactU;
      delete mapU;

      Epetra_MultiVector q(*map, nrhs);
      Epetra_MultiVector z(q);
      Epetra_MultiVector r(q);
      
      delete map;
      q.SetFlopCounter(flopcounter);
      z.SetFlopCounter(q);
      r.SetFlopCounter(q);

      resvec.Resize(nrhs);
      
    
      flopcounter.ResetFlops();
      timer.ResetStartTime();

      //10 norms
      for( int i = 0; i < 10; ++i )
	q.Norm2( resvec.Values() );

      elapsed_time = timer.ElapsedTime();
      total_flops = q.Flops();
      MFLOPs = total_flops/elapsed_time/1000000.0;
      if (verbose) cout << "\nTotal MFLOPs for 10 Norm2's= " << MFLOPs << endl;
      
      if (summary) {
	if (comm.NumProc()==1) cout << "Norm2" << '\t';
	cout << MFLOPs << endl;
      }
      
      flopcounter.ResetFlops();
      timer.ResetStartTime();
      
      //10 dot's
      for( int i = 0; i < 10; ++i )
	q.Dot(z, resvec.Values());
      
      elapsed_time = timer.ElapsedTime();
      total_flops = q.Flops();
      MFLOPs = total_flops/elapsed_time/1000000.0;
      if (verbose) cout << "Total MFLOPs for 10 Dot's  = " << MFLOPs << endl;
      
      if (summary) {
	if (comm.NumProc()==1) cout << "DotProd" << '\t';
	cout << MFLOPs << endl;
      }
      
      flopcounter.ResetFlops();
      timer.ResetStartTime();
      
      //10 dot's
      for( int i = 0; i < 10; ++i )
	q.Update(1.0, z, 1.0, r, 0.0);
      
      elapsed_time = timer.ElapsedTime();
      total_flops = q.Flops();
      MFLOPs = total_flops/elapsed_time/1000000.0;
      if (verbose) cout << "Total MFLOPs for 10 Updates= " << MFLOPs << endl;
      
      if (summary) {
	if (comm.NumProc()==1) cout << "Update" << '\t';
	cout << MFLOPs << endl;
      }
    }
    }
  }
#ifdef EPETRA_MPI
  MPI_Finalize() ;
#endif

return ierr ;
}

// Constructs a 2D PDE finite difference matrix using the list of x and y offsets.
// 
// nx      (In) - number of grid points in x direction
// ny      (In) - number of grid points in y direction
//   The total number of equations will be nx*ny ordered such that the x direction changes
//   most rapidly: 
//      First equation is at point (0,0)
//      Second at                  (1,0)
//       ...
//      nx equation at             (nx-1,0)
//      nx+1st equation at         (0,1)

// numPoints (In) - number of points in finite difference stencil
// xoff    (In) - stencil offsets in x direction (of length numPoints)
// yoff    (In) - stencil offsets in y direction (of length numPoints)
//   A standard 5-point finite difference stencil would be described as:
//     numPoints = 5
//     xoff = [-1, 1, 0,  0, 0]
//     yoff = [ 0, 0, 0, -1, 1]

// nrhs - Number of rhs to generate. (First interface produces vectors, so nrhs is not needed

// comm    (In) - an Epetra_Comm object describing the parallel machine (numProcs and my proc ID)
// map    (Out) - Epetra_Map describing distribution of matrix and vectors/multivectors
// A      (Out) - Epetra_CrsMatrix constructed for nx by ny grid using prescribed stencil
//                Off-diagonal values are random between 0 and 1.  If diagonal is part of stencil,
//                diagonal will be slightly diag dominant.
// b      (Out) - Generated RHS.  Values satisfy b = A*xexact
// bt     (Out) - Generated RHS.  Values satisfy b = A'*xexact
// xexact (Out) - Generated exact solution to Ax = b and b' = A'xexact

// Note: Caller of this function is responsible for deleting all output objects.

void GenerateCrsProblem(int numNodesX, int numNodesY, int numProcsX, int numProcsY, int numPoints, 
			int * xoff, int * yoff,
			const Epetra_Comm  &comm, bool verbose, bool summary, 
			Epetra_Map *& map, 
			Epetra_CrsMatrix *& A, 
			Epetra_Vector *& b, 
			Epetra_Vector *& bt,
			Epetra_Vector *&xexact, bool StaticProfile, bool MakeLocalOnly) {

  Epetra_MultiVector * b1, * bt1, * xexact1;
	
  GenerateCrsProblem(numNodesX, numNodesY, numProcsX, numProcsY, numPoints, 
		     xoff, yoff, 1, comm, verbose, summary, 
		     map, A, b1, bt1, xexact1, StaticProfile, MakeLocalOnly);

  b = dynamic_cast<Epetra_Vector *>(b1);
  bt = dynamic_cast<Epetra_Vector *>(bt1);
  xexact = dynamic_cast<Epetra_Vector *>(xexact1);

  return;
}

void GenerateCrsProblem(int numNodesX, int numNodesY, int numProcsX, int numProcsY, int numPoints, 
			int * xoff, int * yoff, int nrhs,
			const Epetra_Comm  &comm, bool verbose, bool summary,
			Epetra_Map *& map, 
			Epetra_CrsMatrix *& A, 
			Epetra_MultiVector *& b, 
			Epetra_MultiVector *& bt,
			Epetra_MultiVector *&xexact, bool StaticProfile, bool MakeLocalOnly) {
  
  Epetra_Time timer(comm);
  // Determine my global IDs
  int * myGlobalElements;
  GenerateMyGlobalElements(numNodesX, numNodesY, numProcsX, numProcsY, comm.MyPID(), myGlobalElements);

  int numMyEquations = numNodesX*numNodesY;
  
  map = new Epetra_Map(-1, numMyEquations, myGlobalElements, 0, comm); // Create map with 2D block partitioning.
  delete [] myGlobalElements;

  int numGlobalEquations = map->NumGlobalElements();

  int profile = 0; if (StaticProfile) profile = numPoints;

#ifdef EPETRA_HAVE_STATICPROFILE

  if (MakeLocalOnly) 
    A = new Epetra_CrsMatrix(Copy, *map, *map, profile, StaticProfile); // Construct matrix with rowmap=colmap
  else
    A = new Epetra_CrsMatrix(Copy, *map, profile, StaticProfile); // Construct matrix

#else

  if (MakeLocalOnly) 
    A = new Epetra_CrsMatrix(Copy, *map, *map, profile); // Construct matrix with rowmap=colmap
  else
    A = new Epetra_CrsMatrix(Copy, *map, profile); // Construct matrix

#endif

  int * indices = new int[numPoints];
  double * values = new double[numPoints];

  double dnumPoints = (double) numPoints;
  int nx = numNodesX*numProcsX;

  for (int i=0; i<numMyEquations; i++) {

    int rowID = map->GID(i);
    int numIndices = 0;

    for (int j=0; j<numPoints; j++) {
      int colID = rowID + xoff[j] + nx*yoff[j]; // Compute column ID based on stencil offsets
      if (colID>-1 && colID<numGlobalEquations) {
	indices[numIndices] = colID;
	double value = - ((double) rand())/ ((double) RAND_MAX);
	if (colID==rowID)
	  values[numIndices++] = dnumPoints - value; // Make diagonal dominant
	else
	  values[numIndices++] = value;
      }
    }
    //cout << "Building row " << rowID << endl;
    A->InsertGlobalValues(rowID, numIndices, values, indices);
  }

  delete [] indices;
  delete [] values;
  double insertTime = timer.ElapsedTime();
  timer.ResetStartTime();
  A->FillComplete(false);
  double fillCompleteTime = timer.ElapsedTime();

  if (verbose)
    cout << "Time to insert matrix values = " << insertTime << endl
	 << "Time to complete fill        = " << fillCompleteTime << endl;
  if (summary) {
    if (comm.NumProc()==1) cout << "InsertTime" << '\t';
    cout << insertTime << endl;
    if (comm.NumProc()==1) cout << "FillCompleteTime" << '\t';
    cout << fillCompleteTime << endl;
  }

  if (nrhs<=1) {  
    b = new Epetra_Vector(*map);
    bt = new Epetra_Vector(*map);
    xexact = new Epetra_Vector(*map);
  }
  else {
    b = new Epetra_MultiVector(*map, nrhs);
    bt = new Epetra_MultiVector(*map, nrhs);
    xexact = new Epetra_MultiVector(*map, nrhs);
  }

  xexact->Random(); // Fill xexact with random values

  A->Multiply(false, *xexact, *b);
  A->Multiply(true, *xexact, *bt);

  return;
}