示例#1
0
//==============================================================================
int Ifpack_ML::
ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
{

  if (IsComputed() == false)
    IFPACK_CHK_ERR(-1);

  int numVectors = X.NumVectors();
  if (numVectors != Y.NumVectors())
    IFPACK_CHK_ERR(-1); // wrong input

  
  Time_->ResetStartTime();

  // AztecOO gives X and Y pointing to the same memory location,
  // need to create an auxiliary vector, Xcopy
  Teuchos::RefCountPtr<const Epetra_MultiVector> Xcopy;
  if (X.Pointers()[0] == Y.Pointers()[0])
    Xcopy = Teuchos::rcp( new Epetra_MultiVector(X) );
  else
    Xcopy = Teuchos::rcp( &X, false );

  for (int i=0; i<numVectors; i++) {
    
  IFPACK_CHK_ERR(MLPrec_->ApplyInverse(*Xcopy,Y));
  }

  ++NumApplyInverse_;
  ApplyInverseTime_ += Time_->ElapsedTime();

  return(0);
}
//=======================================================
int EpetraExt_HypreIJMatrix::Multiply(bool TransA,
                               const Epetra_MultiVector& X,
                               Epetra_MultiVector& Y) const
{
  
  //printf("Proc[%d], Row start: %d, Row End: %d\n", Comm().MyPID(), MyRowStart_, MyRowEnd_);
  bool SameVectors = false; 
  int NumVectors = X.NumVectors();
  if (NumVectors != Y.NumVectors()) return -1;  // X and Y must have same number of vectors
  if(X.Pointers() == Y.Pointers()){
    SameVectors = true;
  }
  for(int VecNum = 0; VecNum < NumVectors; VecNum++) {
    //Get values for current vector in multivector.
    double * x_values;
    double * y_values;
    EPETRA_CHK_ERR((*X(VecNum)).ExtractView(&x_values));
    double *x_temp = x_local->data; 
    double *y_temp = y_local->data;
    if(!SameVectors){
      EPETRA_CHK_ERR((*Y(VecNum)).ExtractView(&y_values));
    } else {
      y_values = new double[X.MyLength()];
    }
    y_local->data = y_values;
    EPETRA_CHK_ERR(HYPRE_ParVectorSetConstantValues(par_y,0.0));
    // Temporarily make a pointer to data in Hypre for end
    // Replace data in Hypre vectors with epetra values
    x_local->data = x_values;
    // Do actual computation.
    if(TransA) {
      // Use transpose of A in multiply
      EPETRA_CHK_ERR(HYPRE_ParCSRMatrixMatvecT(1.0, ParMatrix_, par_x, 1.0, par_y));
    } else {
      EPETRA_CHK_ERR(HYPRE_ParCSRMatrixMatvec(1.0, ParMatrix_, par_x, 1.0, par_y));
    }
    if(SameVectors){
      int NumEntries = Y.MyLength();
      std::vector<double> new_values; new_values.resize(NumEntries);
      std::vector<int> new_indices; new_indices.resize(NumEntries);
      for(int i = 0; i < NumEntries; i++){
        new_values[i] = y_values[i];
        new_indices[i] = i;
      }
      EPETRA_CHK_ERR((*Y(VecNum)).ReplaceMyValues(NumEntries, &new_values[0], &new_indices[0]));
      delete[] y_values;
    }
    x_local->data = x_temp;
    y_local->data = y_temp;
  }
  double flops = (double) NumVectors * (double) NumGlobalNonzeros();
  UpdateFlops(flops);
  return 0;
} //Multiply() 
示例#3
0
//==============================================================================
int Ifpack_Hypre::Multiply(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const{
  if(IsInitialized() == false){
    IFPACK_CHK_ERR(-1);
  }
  bool SameVectors = false;
  int NumVectors = X.NumVectors();
  if (NumVectors != Y.NumVectors()) IFPACK_CHK_ERR(-1);  // X and Y must have same number of vectors
  if(X.Pointers() == Y.Pointers()){
    SameVectors = true;
  }
  for(int VecNum = 0; VecNum < NumVectors; VecNum++) {
    //Get values for current vector in multivector.
    double * XValues;
    double * YValues;
    IFPACK_CHK_ERR((*X(VecNum)).ExtractView(&XValues));
    double *XTemp = XLocal_->data;
    double *YTemp = YLocal_->data;
    if(!SameVectors){
      IFPACK_CHK_ERR((*Y(VecNum)).ExtractView(&YValues));
    } else {
      YValues = new double[X.MyLength()];
    }
    YLocal_->data = YValues;
    IFPACK_CHK_ERR(HYPRE_ParVectorSetConstantValues(ParY_,0.0));
    // Temporarily make a pointer to data in Hypre for end
    // Replace data in Hypre vectors with epetra values
    XLocal_->data = XValues;
    // Do actual computation.
    if(TransA) {
      // Use transpose of A in multiply
      IFPACK_CHK_ERR(HYPRE_ParCSRMatrixMatvecT(1.0, ParMatrix_, ParX_, 1.0, ParY_));
    } else {
      IFPACK_CHK_ERR(HYPRE_ParCSRMatrixMatvec(1.0, ParMatrix_, ParX_, 1.0, ParY_));
    }
    if(SameVectors){
      int NumEntries = Y.MyLength();
      std::vector<double> new_values; new_values.resize(NumEntries);
      std::vector<int> new_indices; new_indices.resize(NumEntries);
      for(int i = 0; i < NumEntries; i++){
        new_values[i] = YValues[i];
        new_indices[i] = i;
      }
      IFPACK_CHK_ERR((*Y(VecNum)).ReplaceMyValues(NumEntries, &new_values[0], &new_indices[0]));
      delete[] YValues;
    }
    XLocal_->data = XTemp;
    YLocal_->data = YTemp;
  }
  return 0;
} //Multiply()
示例#4
0
int Ifpack_IHSS::ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const{  
  if(!IsComputed_) return -1;
  Time_.ResetStartTime();
  bool initial_guess_is_zero=false;  

  // AztecOO gives X and Y pointing to the same memory location,
  // need to create an auxiliary vector, Xcopy
  Teuchos::RefCountPtr<const Epetra_MultiVector> Xcopy;
  Epetra_MultiVector Temp(X);
  if (X.Pointers()[0] == Y.Pointers()[0]){
    Xcopy = Teuchos::rcp( new Epetra_MultiVector(X) );
    // Since the user didn't give us anything better, our initial guess is zero.
    Y.Scale(0.0);
    initial_guess_is_zero=true;
  }
  else
    Xcopy = Teuchos::rcp( &X, false );

  Epetra_MultiVector T1(Y),T2(*Xcopy);

  // Note: Since Aherm and Askew are actually (aI+H) and (aI+S) accordingly (to save memory), 
  // the application thereof needs to be a little different.
  // The published algorithm is:
  // temp = (aI+H)^{-1} [ (aI-S) y + x ]
  // y = (aI+S)^{-1} [ (aI-H) temp + x ]
  //
  // But we're doing:
  // temp = (aI+H)^{-1} [ 2a y - Shat y + x ]
  // y = (aI+S)^{-1} [ 2 a temp - Hhat temp + x ]

  for(int i=0;i<NumSweeps_;i++){
    // temp = (aI+H)^{-1} [ 2a y - Shat y + x ]
    if(!initial_guess_is_zero || i >0 ){
      Askew_->Apply(Y,T1);
      T2.Update(2*Alpha_,Y,-1,T1,1);
    }
    Pherm_->ApplyInverse(T2,Y);
    
    // y = (aI+S)^{-1} [ 2 a temp - Hhat temp + x ]
    Aherm_->Apply(Y,T1);
    T2.Scale(1.0,*Xcopy);
    T2.Update(2*Alpha_,Y,-1,T1,1.0);
    Pskew_->ApplyInverse(T2,Y);  
  }

  // Counter update
  NumApplyInverse_++;
  ApplyInverseTime_ += Time_.ElapsedTime();
  return 0;
}
//==============================================================================
// Note that Ifpack_PointRelaxation and Jacobi is much faster than
// Ifpack_AdditiveSchwarz<Ifpack_PointRelaxation> (because of the
// way the matrix-vector produce is performed).
//
// Another ML-related observation is that the starting solution (in Y)
// is NOT supposed to be zero. This may slow down the application of just
// one sweep of Jacobi.
//
int Ifpack_PointRelaxation::
ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
{
  if (!IsComputed())
    IFPACK_CHK_ERR(-3);

  if (X.NumVectors() != Y.NumVectors())
    IFPACK_CHK_ERR(-2);

  Time_->ResetStartTime();

  // AztecOO gives X and Y pointing to the same memory location,
  // need to create an auxiliary vector, Xcopy
  Teuchos::RefCountPtr< const Epetra_MultiVector > Xcopy;
  if (X.Pointers()[0] == Y.Pointers()[0])
    Xcopy = Teuchos::rcp( new Epetra_MultiVector(X) );
  else
    Xcopy = Teuchos::rcp( &X, false );
    
  if (ZeroStartingSolution_)
    Y.PutScalar(0.0);

  // Flops are updated in each of the following. 
  switch (PrecType_) {
  case IFPACK_JACOBI:
    IFPACK_CHK_ERR(ApplyInverseJacobi(*Xcopy,Y));
    break;
  case IFPACK_GS:
    IFPACK_CHK_ERR(ApplyInverseGS(*Xcopy,Y));
    break;
  case IFPACK_SGS:
    IFPACK_CHK_ERR(ApplyInverseSGS(*Xcopy,Y));
    break;
  default:
    IFPACK_CHK_ERR(-1); // something wrong
  }

  ++NumApplyInverse_;
  ApplyInverseTime_ += Time_->ElapsedTime();
  return(0);
}
示例#6
0
//=============================================================================
// This function finds Y such that LDU Y = X or U(trans) D L(trans) Y = X for multiple RHS
int Ifpack_IC::ApplyInverse(const Epetra_MultiVector& X, 
			    Epetra_MultiVector& Y) const
{
  
  if (!IsComputed())
    IFPACK_CHK_ERR(-3); // compute preconditioner first
  
  if (X.NumVectors() != Y.NumVectors()) 
    IFPACK_CHK_ERR(-2); // Return error: X and Y not the same size
 
  Time_.ResetStartTime(); 

  bool Upper = true;
  bool UnitDiagonal = true;
  
  // AztecOO gives X and Y pointing to the same memory location,
  // need to create an auxiliary vector, Xcopy
  RefCountPtr< const Epetra_MultiVector > Xcopy;
  if (X.Pointers()[0] == Y.Pointers()[0])
    Xcopy = rcp( new Epetra_MultiVector(X) );
  else
    Xcopy = rcp( &X, false );
  
  U_->Solve(Upper, true, UnitDiagonal, *Xcopy, Y);
  Y.Multiply(1.0, *D_, Y, 0.0); // y = D*y (D_ has inverse of diagonal)
  U_->Solve(Upper, false, UnitDiagonal, Y, Y); // Solve Uy = y
  
#ifdef IFPACK_FLOPCOUNTERS
  ApplyInverseFlops_ += 4.0 * U_->NumGlobalNonzeros();
  ApplyInverseFlops_ += D_->GlobalLength();
#endif

  ++NumApplyInverse_;
  ApplyInverseTime_ += Time_.ElapsedTime();

  return(0);

}
示例#7
0
//=============================================================================
int Ifpack_ICT::ApplyInverse(const Epetra_MultiVector& X, 
			     Epetra_MultiVector& Y) const
{

  if (!IsComputed())
    IFPACK_CHK_ERR(-3); // compute preconditioner first

  if (X.NumVectors() != Y.NumVectors()) 
    IFPACK_CHK_ERR(-2); // Return error: X and Y not the same size

  Time_.ResetStartTime();

  // AztecOO gives X and Y pointing to the same memory location,
  // need to create an auxiliary vector, Xcopy
  Teuchos::RefCountPtr<const Epetra_MultiVector> Xcopy;
  if (X.Pointers()[0] == Y.Pointers()[0])
    Xcopy = Teuchos::rcp( new Epetra_MultiVector(X) );
  else
    Xcopy = Teuchos::rcp( &X, false );

  // NOTE: H_ is based on SerialMap_, while Xcopy is based
  // on A.Map()... which are in general different. However, Solve()
  // does not seem to care... which is fine with me.
  //
  EPETRA_CHK_ERR(H_->Solve(false,false,false,*Xcopy,Y));
  EPETRA_CHK_ERR(H_->Solve(false,true,false,Y,Y));

#ifdef IFPACK_FLOPCOUNTERS
  // these are global flop count
  ApplyInverseFlops_ += 4.0 * GlobalNonzeros_;
#endif

  ++NumApplyInverse_;
  ApplyInverseTime_ += Time_.ElapsedTime();

  return(0);
}
示例#8
0
//==============================================================================
int Ifpack_Hypre::ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const{
  if(IsComputed() == false){
    IFPACK_CHK_ERR(-1);
  }
  // These are hypre requirements
  // hypre needs A, X, and Y to have the same contiguous distribution
  // NOTE: Maps are only considered to be contiguous if they were generated using a
  // particular constructor.  Otherwise, LinearMap() will not detect whether they are
  // actually contiguous.
  if(!X.Map().LinearMap() || !Y.Map().LinearMap()) {
    std::cerr << "ERROR: X and Y must have contiguous maps.\n";
    IFPACK_CHK_ERR(-1);
  }
  if(!X.Map().PointSameAs(*MySimpleMap_) ||
     !Y.Map().PointSameAs(*MySimpleMap_)) {
    std::cerr << "ERROR: X, Y, and A must have the same distribution.\n";
    IFPACK_CHK_ERR(-1);
  }

  Time_.ResetStartTime();
  bool SameVectors = false;
  int NumVectors = X.NumVectors();
  if (NumVectors != Y.NumVectors()) IFPACK_CHK_ERR(-1);  // X and Y must have same number of vectors
  if(X.Pointers() == Y.Pointers()){
    SameVectors = true;
  }
  for(int VecNum = 0; VecNum < NumVectors; VecNum++) {
    //Get values for current vector in multivector.
    // FIXME amk Nov 23, 2015: This will not work for funky data layouts
    double * XValues;
    IFPACK_CHK_ERR((*X(VecNum)).ExtractView(&XValues));
    double * YValues;
    if(!SameVectors){
      IFPACK_CHK_ERR((*Y(VecNum)).ExtractView(&YValues));
    } else {
      YValues = new double[X.MyLength()];
    }
    // Temporarily make a pointer to data in Hypre for end
    double *XTemp = XLocal_->data;
    // Replace data in Hypre vectors with epetra values
    XLocal_->data = XValues;
    double *YTemp = YLocal_->data;
    YLocal_->data = YValues;

    IFPACK_CHK_ERR(HYPRE_ParVectorSetConstantValues(ParY_, 0.0));
    if(SolveOrPrec_ == Solver){
      // Use the solver methods
      IFPACK_CHK_ERR(SolverSolvePtr_(Solver_, ParMatrix_, ParX_, ParY_));
    } else {
      // Apply the preconditioner
      IFPACK_CHK_ERR(PrecondSolvePtr_(Preconditioner_, ParMatrix_, ParX_, ParY_));
    }
    if(SameVectors){
      int NumEntries = Y.MyLength();
      std::vector<double> new_values; new_values.resize(NumEntries);
      std::vector<int> new_indices; new_indices.resize(NumEntries);
      for(int i = 0; i < NumEntries; i++){
        new_values[i] = YValues[i];
        new_indices[i] = i;
      }
      IFPACK_CHK_ERR((*Y(VecNum)).ReplaceMyValues(NumEntries, &new_values[0], &new_indices[0]));
      delete[] YValues;
    }
    XLocal_->data = XTemp;
    YLocal_->data = YTemp;
  }
  NumApplyInverse_ = NumApplyInverse_ + 1;
  ApplyInverseTime_ = ApplyInverseTime_ + Time_.ElapsedTime();
  return 0;
} //ApplyInverse()
int Ifpack_SORa::ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const{
  if(!IsComputed_) return -1;
  Time_.ResetStartTime();
  bool initial_guess_is_zero=false;
  const int lclNumRows = W_->NumMyRows();
  const int NumVectors = X.NumVectors();
  Epetra_MultiVector Temp(A_->RowMatrixRowMap(),NumVectors);

  double omega=GetOmega();

  // need to create an auxiliary vector, Xcopy
  Teuchos::RCP<const Epetra_MultiVector> Xcopy;
  if (X.Pointers()[0] == Y.Pointers()[0]){
    Xcopy = Teuchos::rcp( new Epetra_MultiVector(X) );
    // Since the user didn't give us anything better, our initial guess is zero.
    Y.Scale(0.0);
    initial_guess_is_zero=true;
  }
  else
    Xcopy = Teuchos::rcp( &X, false );

  Teuchos::RCP< Epetra_MultiVector > T2;
  // Note: Assuming that the matrix has an importer.  Ifpack_PointRelaxation doesn't do this, but given that
  // I have a CrsMatrix, I'm probably OK.
  // Note: This is the lazy man's version sacrificing a few extra flops for avoiding if statements to determine
  // if things are on or off processor.
  // Note: T2 must be zero'd out
  if (IsParallel_ && W_->Importer())  T2 = Teuchos::rcp( new Epetra_MultiVector(W_->Importer()->TargetMap(),NumVectors,true));
  else T2 = Teuchos::rcp( new Epetra_MultiVector(A_->RowMatrixRowMap(),NumVectors,true));

  // Pointer grabs
  int* rowptr,*colind;
  double *values;
  double **t_ptr,** y_ptr, ** t2_ptr, **x_ptr,*d_ptr;
  T2->ExtractView(&t2_ptr);
  Y.ExtractView(&y_ptr);
  Temp.ExtractView(&t_ptr);
  Xcopy->ExtractView(&x_ptr);
  Wdiag_->ExtractView(&d_ptr);
  IFPACK_CHK_ERR(W_->ExtractCrsDataPointers(rowptr,colind,values));


  for(int i=0; i<NumSweeps_; i++){
    // Calculate b-Ax
    if(!initial_guess_is_zero  || i > 0) {
      A_->Apply(Y,Temp);
      Temp.Update(1.0,*Xcopy,-1.0);
    }
    else
      Temp.Update(1.0,*Xcopy,0.0);

    // Note: The off-processor entries of T2 never get touched (they're always zero) and the other entries are updated
    // in this sweep before they are used, so we don't need to reset T2 to zero here.

    // Do backsolve & update
    // x = x  + W^{-1} (b - A x)
    for(int j=0; j<lclNumRows; j++){
      double diag=d_ptr[j];
      for (int m=0 ; m<NumVectors; m++) {
        double dtmp=0.0;
        // Note: Since the diagonal is in the matrix, we need to zero that entry of T2 here to make sure it doesn't contribute.
        t2_ptr[m][j]=0.0;
        for(int k=rowptr[j];k<rowptr[j+1];k++){
          dtmp+= values[k]*t2_ptr[m][colind[k]];
        }
        // Yes, we need to update both of these.
        t2_ptr[m][j] = (t_ptr[m][j]- dtmp)/diag;
        y_ptr[m][j] += omega*t2_ptr[m][j];
      }
    }
  }

  // Counter update
  NumApplyInverse_++;
  ApplyInverseTime_ += Time_.ElapsedTime();
  return 0;
}
// ================================================ ====== ==== ==== == =
//! Apply the preconditioner to an Epetra_MultiVector X, puts the result in Y
int ML_Epetra::FaceMatrixFreePreconditioner::ApplyInverse(const Epetra_MultiVector& B_, Epetra_MultiVector& X) const{
  const Epetra_MultiVector *B;
  Epetra_MultiVector *Bcopy=0;

  /* Sanity Checks */
  int NumVectors=B_.NumVectors();
  if (!B_.Map().SameAs(*FaceDomainMap_)) ML_CHK_ERR(-1);
  if (NumVectors != X.NumVectors()) ML_CHK_ERR(-1);

  Epetra_MultiVector r_edge(*FaceDomainMap_,NumVectors,false);
  Epetra_MultiVector e_edge(*FaceDomainMap_,NumVectors,false);
  Epetra_MultiVector e_node(*CoarseMap_,NumVectors,false);
  Epetra_MultiVector r_node(*CoarseMap_,NumVectors,false);

  /* Deal with the B==X case */
  if (B_.Pointers()[0] == X.Pointers()[0]){
    Bcopy=new Epetra_MultiVector(B_);
    B=Bcopy;
    X.PutScalar(0.0);
  }
  else B=&B_;


  for(int i=0;i<num_cycles;i++){
    /* Pre-smoothing */
#ifdef HAVE_ML_IFPACK
    if(Smoother_) ML_CHK_ERR(Smoother_->ApplyInverse(*B,X));
#endif

    if(MaxLevels > 0){
      if(i != 0
#ifdef HAVE_ML_IFPACK
         || Smoother_
#endif
         ){
        /* Calculate Residual (r_e = b - (S+M+Addon) * x) */
        ML_CHK_ERR(Operator_->Apply(X,r_edge));
        ML_CHK_ERR(r_edge.Update(1.0,*B,-1.0));

        /* Xfer to coarse grid (r_n = P' * r_e) */
        ML_CHK_ERR(Prolongator_->Multiply(true,r_edge,r_node));
      }
      else{
        /* Xfer to coarse grid (r_n = P' * r_e) */
        ML_CHK_ERR(Prolongator_->Multiply(true,*B,r_node));
      }

      /* AMG on coarse grid  (e_n = (CoarseMatrix)^{-1} r_n) */
      ML_CHK_ERR(CoarsePC->ApplyInverse(r_node,e_node));

      /* Xfer back to fine grid (e_e = P * e_n) */
      ML_CHK_ERR(Prolongator_->Multiply(false,e_node,e_edge));

      /* Add in correction (x = x + e_e)        */
      ML_CHK_ERR(X.Update(1.0,e_edge,1.0));
    }/*end if*/

    /* Post-Smoothing */
#ifdef HAVE_ML_IFPACK
    if(Smoother_) ML_CHK_ERR(Smoother_->ApplyInverse(*B,X));
#endif

  }/*end for*/

  /* Cleanup */
  if(Bcopy) delete Bcopy;

  return 0;
}/*end ApplyInverse*/
//=============================================================================
int Epetra_FastCrsMatrix::Solve(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const {
  //
  // This function find Y such that LY = X or UY = X or the transpose cases.
  //
  if (X.NumVectors()==1 && Y.NumVectors()==1) {
    double * xp = (double *) X[0];
    double * yp = (double *) Y[0];
    Epetra_Vector x(View, X.Map(), xp);
    Epetra_Vector y(View, Y.Map(), yp);
    return(Solve(Upper, Trans, UnitDiagonal, x, y));
  }
  if (!Filled()) EPETRA_CHK_ERR(-1); // Matrix must be filled.

  if ((Upper) && (!UpperTriangular())) EPETRA_CHK_ERR(-2);
  if ((!Upper) && (!LowerTriangular())) EPETRA_CHK_ERR(-3);
  if ((!UnitDiagonal) && (NoDiagonal())) EPETRA_CHK_ERR(-4); // If matrix has no diagonal, we must use UnitDiagonal
  if ((!UnitDiagonal) && (NumMyDiagonals()<NumMyRows_)) EPETRA_CHK_ERR(-5); // Need each row to have a diagonal

  int i, j, j0, k;
  int * NumEntriesPerRow = NumEntriesPerRow_;
  int ** Indices = Indices_;
  double ** Values = Values_;
  double diag;

  // If upper, point to last row
  if ((Upper && !Trans) || (!Upper && Trans)) {
    NumEntriesPerRow += NumMyRows_-1;
    Indices += NumMyRows_-1;
    Values += NumMyRows_-1;
  }

  double **Xp = (double**)X.Pointers();
  double **Yp = (double**)Y.Pointers();

  int NumVectors = X.NumVectors();

  if (!Trans) {
    

    if (Upper) {
      
      j0 = 1;
      if (NoDiagonal()) j0--; // Include first term if no diagonal
      for (i=NumMyRows_-1; i >=0; i--) {
	int      NumEntries = *NumEntriesPerRow--;
	int *    RowIndices = *Indices--;
	double * RowValues  = *Values--;
	if (!UnitDiagonal) diag = 1.0/RowValues[0]; // Take inverse of diagonal once for later use
	for (k=0; k<NumVectors; k++) {
	  double sum = 0.0;
	  for (j=j0; j < NumEntries; j++) sum += RowValues[j] * Yp[k][RowIndices[j]];
	  
	  if (UnitDiagonal) Yp[k][i] = Xp[k][i] - sum;
	  else Yp[k][i] = (Xp[k][i] - sum)*diag;
	}
      }
    }
    else {
      j0 = 1;
      if (NoDiagonal()) j0--; // Include first term if no diagonal
      for (i=0; i < NumMyRows_; i++) {
	int      NumEntries = *NumEntriesPerRow++ - j0;
	int *    RowIndices = *Indices++;
	double * RowValues  = *Values++;
	if (!UnitDiagonal) diag = 1.0/RowValues[NumEntries]; // Take inverse of diagonal once for later use
	for (k=0; k<NumVectors; k++) {
	  double sum = 0.0;
	  for (j=0; j < NumEntries; j++) sum += RowValues[j] * Yp[k][RowIndices[j]];
	  
	  if (UnitDiagonal) Yp[k][i] = Xp[k][i] - sum;
	  else Yp[k][i] = (Xp[k][i] - sum)*diag;
	}
      }
    }
  }
  // ***********  Transpose case *******************************

  else {

    for (k=0; k<NumVectors; k++) 
      if (Yp[k]!=Xp[k]) for (i=0; i < NumMyRows_; i++) Yp[k][i] = Xp[k][i]; // Initialize y for transpose multiply
    
    if (Upper) {
      
      j0 = 1;
      if (NoDiagonal()) j0--; // Include first term if no diagonal
      
      for (i=0; i < NumMyRows_; i++) {
	int      NumEntries = *NumEntriesPerRow++;
	int *    RowIndices = *Indices++;
	double * RowValues  = *Values++;
	if (!UnitDiagonal) diag = 1.0/RowValues[j0]; // Take inverse of diagonal once for later use
	for (k=0; k<NumVectors; k++) {
	  if (!UnitDiagonal) Yp[k][i] = Yp[k][i]*diag;
	  for (j=j0; j < NumEntries; j++) Yp[k][RowIndices[j]] -= RowValues[j] * Yp[k][i];
	}
      }
    }
    else {
      
      j0 = 1;
      if (NoDiagonal()) j0--; // Include first term if no diagonal
      
      for (i=NumMyRows_-1; i>=0; i--) {
	int      NumEntries = *NumEntriesPerRow-- - j0;
	int *    RowIndices = *Indices--;
	double * RowValues  = *Values--;
	for (k=0; k<NumVectors; k++) {
	  if (!UnitDiagonal)  Yp[k][i] = Yp[k][i]/Xp[k][i];
	  for (j=0; j < NumEntries; j++) Yp[k][RowIndices[j]] -= RowValues[j] * Yp[k][i];
        }
      }
    }
  }
  
  UpdateFlops(2*NumVectors*NumGlobalNonzeros64());
  return(0);
}
//=============================================================================
int Epetra_FastCrsMatrix::Multiply(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const {
  //
  // This function forms the product Y = A * Y or Y = A' * X
  //
  if (X.NumVectors()==1 && Y.NumVectors()==1) {
    double * xp = (double *) X[0];
    double * yp = (double *) Y[0];
    Epetra_Vector x(View, X.Map(), xp);
    Epetra_Vector y(View, Y.Map(), yp);
    return(Multiply(TransA, x, y));
  }
  if (!Filled()) EPETRA_CHK_ERR(-1); // Matrix must be filled.

  int i, j, k;
  int * NumEntriesPerRow = NumEntriesPerRow_;
  int ** Indices = Indices_;
  double ** Values = Values_;

  double **Xp = (double**)X.Pointers();
  double **Yp = (double**)Y.Pointers();

  int NumVectors = X.NumVectors();
  int NumMyCols_ = NumMyCols();


  // Need to better manage the Import and Export vectors:
  // - Need accessor functions
  // - Need to make the NumVector match (use a View to do this)
  // - Need to look at RightScale and ColSum routines too.

  if (!TransA) {

    // If we have a non-trivial importer, we must import elements that are permuted or are on other processors
    if (Importer()!=0) {
      if (ImportVector_!=0) {
	if (ImportVector_->NumVectors()!=NumVectors) { delete ImportVector_; ImportVector_= 0;}
      }
      if (ImportVector_==0) ImportVector_ = new Epetra_MultiVector(ColMap(),NumVectors); // Create import vector if needed
      ImportVector_->Import(X, *Importer(), Insert);
      Xp = (double**)ImportVector_->Pointers();
    }

    // If we have a non-trivial exporter, we must export elements that are permuted or belong to other processors
    if (Exporter()!=0) {
      if (ExportVector_!=0) {
	if (ExportVector_->NumVectors()!=NumVectors) { delete ExportVector_; ExportVector_= 0;}
      }
      if (ExportVector_==0) ExportVector_ = new Epetra_MultiVector(RowMap(),NumVectors); // Create Export vector if needed
      Yp = (double**)ExportVector_->Pointers();
    }

    // Do actual computation

    for (i=0; i < NumMyRows_; i++) {
      int      NumEntries = *NumEntriesPerRow++;
      int *    RowIndices = *Indices++;
      double * RowValues  = *Values++;
      for (k=0; k<NumVectors; k++) {
	double sum = 0.0;
	for (j=0; j < NumEntries; j++) sum += RowValues[j] * Xp[k][RowIndices[j]];
	Yp[k][i] = sum;
      }
    }
    if (Exporter()!=0) Y.Export(*ExportVector_, *Exporter(), Add); // Fill Y with Values from export vector
  }
  else { // Transpose operation


    // If we have a non-trivial exporter, we must import elements that are permuted or are on other processors

    if (Exporter()!=0) {
      if (ExportVector_!=0) {
	if (ExportVector_->NumVectors()!=NumVectors) { delete ExportVector_; ExportVector_= 0;}
      }
      if (ExportVector_==0) ExportVector_ = new Epetra_MultiVector(RowMap(),NumVectors); // Create Export vector if needed
      ExportVector_->Import(X, *Exporter(), Insert);
      Xp = (double**)ExportVector_->Pointers();
    }

    // If we have a non-trivial importer, we must export elements that are permuted or belong to other processors
    if (Importer()!=0) {
      if (ImportVector_!=0) {
	if (ImportVector_->NumVectors()!=NumVectors) { delete ImportVector_; ImportVector_= 0;}
      }
      if (ImportVector_==0) ImportVector_ = new Epetra_MultiVector(ColMap(),NumVectors); // Create import vector if needed
      Yp = (double**)ImportVector_->Pointers();
    }

    // Do actual computation



    for (k=0; k<NumVectors; k++) 
      for (i=0; i < NumMyCols_; i++) Yp[k][i] = 0.0; // Initialize y for transpose multiply
    
    for (i=0; i < NumMyRows_; i++) {
      int      NumEntries = *NumEntriesPerRow++;
      int *    RowIndices = *Indices++;
      double * RowValues  = *Values++;
      for (k=0; k<NumVectors; k++) {
	for (j=0; j < NumEntries; j++) Yp[k][RowIndices[j]] += RowValues[j] * Xp[k][i];
      }
    }
    if (Importer()!=0) Y.Export(*ImportVector_, *Importer(), Add); // Fill Y with Values from export vector
  }

  UpdateFlops(2*NumVectors*NumGlobalNonzeros64());
  return(0);
}
示例#13
0
//==============================================================================
int Ifpack_Chebyshev::
ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
{
  
  if (!IsComputed())
    IFPACK_CHK_ERR(-3);

  if (PolyDegree_ == 0)
    return 0;

  int nVec = X.NumVectors();
  int len = X.MyLength();
  if (nVec != Y.NumVectors())
    IFPACK_CHK_ERR(-2);

  Time_->ResetStartTime();

  // AztecOO gives X and Y pointing to the same memory location,
  // need to create an auxiliary vector, Xcopy
  Teuchos::RefCountPtr<const Epetra_MultiVector> Xcopy;
  if (X.Pointers()[0] == Y.Pointers()[0])
    Xcopy = Teuchos::rcp( new Epetra_MultiVector(X) );
  else
    Xcopy = Teuchos::rcp( &X, false );

  double **xPtr = 0, **yPtr = 0;
  Xcopy->ExtractView(&xPtr);
  Y.ExtractView(&yPtr);

#ifdef HAVE_IFPACK_EPETRAEXT
  EpetraExt_PointToBlockDiagPermute* IBD=0;
  if (UseBlockMode_) IBD=&*InvBlockDiagonal_;
#endif
  

  //--- Do a quick solve when the matrix is identity
  double *invDiag=0;
  if(!UseBlockMode_) invDiag=InvDiagonal_->Values();
  if ((LambdaMin_ == 1.0) && (LambdaMax_ == LambdaMin_)) {
#ifdef HAVE_IFPACK_EPETRAEXT
    if(UseBlockMode_) IBD->ApplyInverse(*Xcopy,Y);
    else
#endif
    if (nVec == 1) {
      double *yPointer = yPtr[0], *xPointer = xPtr[0];
      for (int i = 0; i < len; ++i)
        yPointer[i] = xPointer[i]*invDiag[i];
    }
    else {
      int i, k;
      for (i = 0; i < len; ++i) {
        double coeff = invDiag[i];
        for (k = 0; k < nVec; ++k)
          yPtr[k][i] = xPtr[k][i] * coeff;
      }
    } // if (nVec == 1)
    return 0;
  } // if ((LambdaMin_ == 1.0) && (LambdaMax_ == LambdaMin_))

  //--- Initialize coefficients
  // Note that delta stores the inverse of ML_Cheby::delta
  double alpha = LambdaMax_ / EigRatio_;
  double beta = 1.1 * LambdaMax_;
  double delta = 2.0 / (beta - alpha);
  double theta = 0.5 * (beta + alpha);
  double s1 = theta * delta;

  //--- Define vectors
  // In ML_Cheby, V corresponds to pAux and W to dk
  Epetra_MultiVector V(X);
  Epetra_MultiVector W(X);
#ifdef HAVE_IFPACK_EPETRAEXT
  Epetra_MultiVector Temp(X);
#endif
  
  double *vPointer = V.Values(), *wPointer = W.Values();

  double oneOverTheta = 1.0/theta;
  int i, j, k;


  //--- If solving normal equations, multiply RHS by A^T
  if(SolveNormalEquations_){
    Apply_Transpose(Operator_,Y,V);
    Y=V;
  }

  // Do the smoothing when block scaling is turned OFF
  // --- Treat the initial guess
  if (ZeroStartingSolution_ == false) {
    Operator_->Apply(Y, V);
    // Compute W = invDiag * ( X - V )/ Theta
#ifdef HAVE_IFPACK_EPETRAEXT    
    if(UseBlockMode_) {
      Temp.Update(oneOverTheta,X,-oneOverTheta,V,0.0);
      IBD->ApplyInverse(Temp,W);

      // Perform additional matvecs for normal equations
      // CMS: Testing this only in block mode FOR NOW
      if(SolveNormalEquations_){
	IBD->ApplyInverse(W,Temp);
	Apply_Transpose(Operator_,Temp,W);
      }
    }
    else
#endif
    if (nVec == 1) {
      double *xPointer = xPtr[0];
      for (i = 0; i < len; ++i)
        wPointer[i] = invDiag[i] * (xPointer[i] - vPointer[i]) * oneOverTheta;
    }
    else {
      for (i = 0; i < len; ++i) {
        double coeff = invDiag[i]*oneOverTheta;
        double *wi = wPointer + i, *vi = vPointer + i;
        for (k = 0; k < nVec; ++k) {
          *wi = (xPtr[k][i] - (*vi)) * coeff;
          wi = wi + len; vi = vi + len;
        }
      }
    } // if (nVec == 1)
    // Update the vector Y
    Y.Update(1.0, W, 1.0);
  }
  else {
    // Compute W = invDiag * X / Theta
#ifdef HAVE_IFPACK_EPETRAEXT    
    if(UseBlockMode_) {
      IBD->ApplyInverse(X,W);

      // Perform additional matvecs for normal equations
      // CMS: Testing this only in block mode FOR NOW
      if(SolveNormalEquations_){
	IBD->ApplyInverse(W,Temp);
	Apply_Transpose(Operator_,Temp,W);
      }

      W.Scale(oneOverTheta);
      Y.Update(1.0, W, 0.0);      
    }
    else
#endif
    if (nVec == 1) {
      double *xPointer = xPtr[0];
      for (i = 0; i < len; ++i){
        wPointer[i] = invDiag[i] * xPointer[i] * oneOverTheta;
      }
      memcpy(yPtr[0], wPointer, len*sizeof(double));
    }
    else {
      for (i = 0; i < len; ++i) {
        double coeff = invDiag[i]*oneOverTheta;
        double *wi = wPointer + i;
        for (k = 0; k < nVec; ++k) {
          *wi = xPtr[k][i] * coeff;
          wi = wi + len;
        }
      }
      for (k = 0; k < nVec; ++k)
        memcpy(yPtr[k], wPointer + k*len, len*sizeof(double));
    } // if (nVec == 1)
  } // if (ZeroStartingSolution_ == false)
  
  //--- Apply the polynomial
  double rhok = 1.0/s1, rhokp1;
  double dtemp1, dtemp2;
  int degreeMinusOne = PolyDegree_ - 1;
  if (nVec == 1) {
    double *xPointer = xPtr[0];
    for (k = 0; k < degreeMinusOne; ++k) {
      Operator_->Apply(Y, V);
      rhokp1 = 1.0 / (2.0*s1 - rhok);
      dtemp1 = rhokp1 * rhok;
      dtemp2 = 2.0 * rhokp1 * delta;
      rhok = rhokp1;
      // Compute W = dtemp1 * W
      W.Scale(dtemp1);
      // Compute W = W + dtemp2 * invDiag * ( X - V )
#ifdef HAVE_IFPACK_EPETRAEXT    
    if(UseBlockMode_) {
      //NTS: We can clobber V since it will be reset in the Apply
      V.Update(dtemp2,X,-dtemp2);
      IBD->ApplyInverse(V,Temp);

      // Perform additional matvecs for normal equations
      // CMS: Testing this only in block mode FOR NOW
      if(SolveNormalEquations_){
	IBD->ApplyInverse(V,Temp);
	Apply_Transpose(Operator_,Temp,V);
      }

      W.Update(1.0,Temp,1.0);
    }
    else{
#endif
      for (i = 0; i < len; ++i)
        wPointer[i] += dtemp2* invDiag[i] * (xPointer[i] - vPointer[i]);
#ifdef HAVE_IFPACK_EPETRAEXT
    }
#endif

      // Update the vector Y
      Y.Update(1.0, W, 1.0);
    } // for (k = 0; k < degreeMinusOne; ++k)
  }
  else {
    for (k = 0; k < degreeMinusOne; ++k) {
      Operator_->Apply(Y, V);
      rhokp1 = 1.0 / (2.0*s1 - rhok);
      dtemp1 = rhokp1 * rhok;
      dtemp2 = 2.0 * rhokp1 * delta;
      rhok = rhokp1;
      // Compute W = dtemp1 * W
      W.Scale(dtemp1);
      // Compute W = W + dtemp2 * invDiag * ( X - V )
#ifdef HAVE_IFPACK_EPETRAEXT    
    if(UseBlockMode_) {
      //We can clobber V since it will be reset in the Apply
      V.Update(dtemp2,X,-dtemp2);
      IBD->ApplyInverse(V,Temp);

      // Perform additional matvecs for normal equations
      // CMS: Testing this only in block mode FOR NOW
      if(SolveNormalEquations_){
	IBD->ApplyInverse(V,Temp);
	Apply_Transpose(Operator_,Temp,V);
      }


      W.Update(1.0,Temp,1.0);
    }
    else{
#endif
      for (i = 0; i < len; ++i) {
        double coeff = invDiag[i]*dtemp2;
        double *wi = wPointer + i, *vi = vPointer + i;
        for (j = 0; j < nVec; ++j) {
          *wi += (xPtr[j][i] - (*vi)) * coeff;
          wi = wi + len; vi = vi + len;
        }
      }
#ifdef HAVE_IFPACK_EPETRAEXT
    }
#endif      
      // Update the vector Y
      Y.Update(1.0, W, 1.0);
    } // for (k = 0; k < degreeMinusOne; ++k)
  } // if (nVec == 1)

  
  // Flops are updated in each of the following. 
  ++NumApplyInverse_;
  ApplyInverseTime_ += Time_->ElapsedTime();
  return(0);
}
//=======================================================
int EpetraExt_HypreIJMatrix::Solve(bool Upper, bool transpose, bool UnitDiagonal, const Epetra_MultiVector & X, Epetra_MultiVector & Y) const {
  bool SameVectors = false;
  int NumVectors = X.NumVectors();
  if (NumVectors != Y.NumVectors()) return -1;  // X and Y must have same number of vectors
  if(X.Pointers() == Y.Pointers()){
    SameVectors = true;
  }
  if(SolveOrPrec_ == Solver){
    if(IsSolverSetup_[0] == false){
      SetupSolver();
    }
  } else {
    if(IsPrecondSetup_[0] == false){
      SetupPrecond();
    }
  }
  for(int VecNum = 0; VecNum < NumVectors; VecNum++) {
    //Get values for current vector in multivector.
    double * x_values;
    EPETRA_CHK_ERR((*X(VecNum)).ExtractView(&x_values));
    double * y_values;
    if(!SameVectors){
      EPETRA_CHK_ERR((*Y(VecNum)).ExtractView(&y_values));
    } else {
      y_values = new double[X.MyLength()];
    }
    // Temporarily make a pointer to data in Hypre for end
    double *x_temp = x_local->data; 
    // Replace data in Hypre vectors with epetra values
    x_local->data = x_values;
    double *y_temp = y_local->data;
    y_local->data = y_values;
    
    EPETRA_CHK_ERR(HYPRE_ParVectorSetConstantValues(par_y, 0.0));
    if(transpose && !TransposeSolve_){
      // User requested a transpose solve, but the solver selected doesn't provide one
      EPETRA_CHK_ERR(-1);
    }
    if(SolveOrPrec_ == Solver){
      // Use the solver methods
      EPETRA_CHK_ERR(SolverSolvePtr_(Solver_, ParMatrix_, par_x, par_y));
    } else {
      // Apply the preconditioner
      EPETRA_CHK_ERR(PrecondSolvePtr_(Preconditioner_, ParMatrix_, par_x, par_y));
    }
    if(SameVectors){
      int NumEntries = Y.MyLength();
      std::vector<double> new_values; new_values.resize(NumEntries);
      std::vector<int> new_indices; new_indices.resize(NumEntries);
      for(int i = 0; i < NumEntries; i++){
        new_values[i] = y_values[i];
        new_indices[i] = i;
      }
      EPETRA_CHK_ERR((*Y(VecNum)).ReplaceMyValues(NumEntries, &new_values[0], &new_indices[0]));
      delete[] y_values;
    }
    x_local->data = x_temp;
    y_local->data = y_temp;
  }
  double flops = (double) NumVectors * (double) NumGlobalNonzeros();
  UpdateFlops(flops);
  return 0;
} //Solve()
int CopyMultiVector(double** matlabApr, const Epetra_MultiVector& A) {

  Epetra_BlockMap bmap = A.Map();
  const Epetra_Comm & comm = bmap.Comm();
  int numProc = comm.NumProc();

  if (numProc==1)
    DoCopyMultiVector(matlabApr, A);
  else {

    // In the case of more than one column in the multivector, and writing to MatrixMarket
    // format, we call this function recursively, passing each vector of the multivector
    // individually so that we can get all of it written to file before going on to the next 
    // multivector
    if (A.NumVectors() > 1) {
      for (int i=0; i < A.NumVectors(); i++)
	if (CopyMultiVector(matlabApr, *(A(i)))) return(-1);
      return(0);
    }

    Epetra_Map map(-1, bmap.NumMyPoints(), 0, comm);
    // Create a veiw of this multivector using a map (instead of block map)
    Epetra_MultiVector A1(View, map, A.Pointers(), A.NumVectors());
    int numRows = map.NumMyElements();
    
    Epetra_Map allGidsMap(-1, numRows, 0,comm);
    
    Epetra_IntVector allGids(allGidsMap);
    for (int i=0; i<numRows; i++) allGids[i] = map.GID(i);
    
    // Now construct a MultiVector on PE 0 by strip-mining the rows of the input matrix A.
    int numChunks = numProc;
    int stripSize = allGids.GlobalLength()/numChunks;
    int remainder = allGids.GlobalLength()%numChunks;
    int curStart = 0;
    int curStripSize = 0;
    Epetra_IntSerialDenseVector importGidList;
    int numImportGids = 0;
    if (comm.MyPID()==0) 
      importGidList.Size(stripSize+1); // Set size of vector to max needed
    for (int i=0; i<numChunks; i++) {
      if (comm.MyPID()==0) { // Only PE 0 does this part
	curStripSize = stripSize;
	if (i<remainder) curStripSize++; // handle leftovers
	for (int j=0; j<curStripSize; j++) importGidList[j] = j + curStart;
	curStart += curStripSize;
      }
      // The following import map will be non-trivial only on PE 0.
      Epetra_Map importGidMap(-1, curStripSize, importGidList.Values(), 0, comm);
      Epetra_Import gidImporter(importGidMap, allGidsMap);
      Epetra_IntVector importGids(importGidMap);
      if (importGids.Import(allGids, gidImporter, Insert)) return(-1); 

      // importGids now has a list of GIDs for the current strip of matrix rows.
      // Use these values to build another importer that will get rows of the matrix.

      // The following import map will be non-trivial only on PE 0.
      Epetra_Map importMap(-1, importGids.MyLength(), importGids.Values(), 0, comm);
      Epetra_Import importer(importMap, map);
      Epetra_MultiVector importA(importMap, A1.NumVectors());
      if (importA.Import(A1, importer, Insert)) return(-1); 

      // Finally we are ready to write this strip of the matrix to ostream
      if (DoCopyMultiVector(matlabApr, importA)) return(-1);
    }
  }
  return(0);
}