//=============================================================================
// decay particle
//=============================================================================
void EvtBToDDalitzCPK::decay( EvtParticle * p ) 
{
  if ( _flag == 1 ) {
    // PHSP
    p -> initializePhaseSpace( getNDaug() , getDaugs() ) ;
    vertex ( 0. ) ;
  }
  else if ( _flag == 2 ) {
    // SVS
    p->initializePhaseSpace(getNDaug(),getDaugs());
    
    EvtParticle *v;
    v = p->getDaug(0);
    double massv = v->mass();
    EvtVector4R momv = v->getP4();
    EvtVector4R moms = p->getDaug(1)->getP4();
    double m_parent = p->mass();
    EvtVector4R p4_parent = momv+moms;
    
    double norm=massv/(momv.d3mag()*m_parent);
    p4_parent = norm*p4_parent;
    vertex(0,p4_parent*(v->epsParent(0)));
    vertex(1,p4_parent*(v->epsParent(1)));
    vertex(2,p4_parent*(v->epsParent(2)));
  }
}
void EvtSSD_DirectCP::decay( EvtParticle *p) {

    bool flip = false ;
    EvtId daugs[2];

    // decide it is B or Bbar:
    if ( EvtRandom::Flat(0.,1.) < ( ( 1. - _acp ) / 2. ) ) {
        // it is a B
        if ( EvtPDL::getStdHep( getParentId() ) < 0 ) flip = true ;
    } else {
        // it is a Bbar
        if ( EvtPDL::getStdHep( getParentId() ) > 0 ) flip = true ;
    }

    if ( flip ) {
        if ( ( isB0Mixed( p ) ) || ( isBsMixed( p ) ) ) {
            p->getParent()
            ->setId( EvtPDL::chargeConj( p->getParent()->getId() ) ) ;
            p->setId( EvtPDL::chargeConj( p->getId() ) ) ;
        }
        else {
            p->setId( EvtPDL::chargeConj( p->getId() ) ) ;
        }
    }

    if (!flip) {
        daugs[0]=getDaug(0);
        daugs[1]=getDaug(1);
    }
    else {
        daugs[0]=EvtPDL::chargeConj(getDaug(0));
        daugs[1]=EvtPDL::chargeConj(getDaug(1));
    }

    EvtParticle *d;
    p->initializePhaseSpace(2, daugs);

    EvtVector4R p4_parent=p->getP4Restframe();
    double m_parent=p4_parent.mass();

    EvtSpinType::spintype d2type=EvtPDL::getSpinType(getDaug(1));

    EvtVector4R momv;
    EvtVector4R moms;

    if (d2type==EvtSpinType::SCALAR) {
        d2type=EvtPDL::getSpinType(getDaug(0));
        d= p->getDaug(0);
        momv = d->getP4();
        moms = p->getDaug(1)->getP4();
    }
    else {
        d= p->getDaug(1);
        momv = d->getP4();
        moms = p->getDaug(0)->getP4();
    }

    if (d2type==EvtSpinType::SCALAR) {
        vertex(1.);
    }

    if (d2type==EvtSpinType::VECTOR) {

        double norm=momv.mass()/(momv.d3mag()*p->mass());

        vertex(0,norm*p4_parent*(d->epsParent(0)));
        vertex(1,norm*p4_parent*(d->epsParent(1)));
        vertex(2,norm*p4_parent*(d->epsParent(2)));

    }

    if (d2type==EvtSpinType::TENSOR) {

        double norm=
            d->mass()*d->mass()/(m_parent*d->getP4().d3mag()*d->getP4().d3mag());


        vertex(0,norm*d->epsTensorParent(0).cont1(p4_parent)*p4_parent);
        vertex(1,norm*d->epsTensorParent(1).cont1(p4_parent)*p4_parent);
        vertex(2,norm*d->epsTensorParent(2).cont1(p4_parent)*p4_parent);
        vertex(3,norm*d->epsTensorParent(3).cont1(p4_parent)*p4_parent);
        vertex(4,norm*d->epsTensorParent(4).cont1(p4_parent)*p4_parent);
    }
}
void EvtSVSNONCPEIGEN::decay( EvtParticle *p){

  //added by Lange Jan4,2000
  static EvtId B0=EvtPDL::getId("B0");
  static EvtId B0B=EvtPDL::getId("anti-B0");

  double t;
  EvtId other_b;
  EvtId daugs[2];

  // MB: flip selects the final of the decay
  int flip = ((p->getId() == B0) ? 0 : 1);
  daugs[0]=getDaug(0);
  daugs[1]=getDaug(1);
  p->initializePhaseSpace(2, daugs);

  EvtCPUtil::getInstance()->OtherB(p,t,other_b,0.5);

  EvtComplex amp;
  double dmt2 = (_dm * t) / (2 * EvtConst::c);
  EvtComplex ePlusIPhi(cos(_phickm), sin(_phickm));
  EvtComplex eMinusIPhi(cos(-_phickm), -sin(_phickm));

  // flip == 0 : D-rho+
  // flip == 1 : D+rho-

   if (!flip) {
     if (other_b==B0B){
       // At t=0 we have a B0
       amp = cos(dmt2)*_A_f + eMinusIPhi*EvtComplex(0.0,sin(dmt2))*_Abar_f;
     }
     if (other_b==B0){
       // At t=0 we have a B0bar
       amp = ePlusIPhi*EvtComplex(0.0,sin(dmt2))*_A_f + cos(dmt2)*_Abar_f;
     }
   }
   else{
     if (other_b==B0B){
       // At t=0 we have a B0
       amp = cos(dmt2)*_A_fbar + eMinusIPhi*EvtComplex(0.0,sin(dmt2))*_Abar_fbar;
     }
     if (other_b==B0){
       // At t=0 we have a B0bar
       amp = ePlusIPhi*EvtComplex(0.0,sin(dmt2))*_A_fbar + cos(dmt2)*_Abar_fbar;
     }
   }


  EvtParticle *v;
  v= p->getDaug(0);

  EvtVector4R momv = p->getDaug(0)->getP4();
  EvtVector4R moms = p->getDaug(1)->getP4();
  EvtVector4R p4_parent=momv+moms;

  double norm=momv.mass()/(momv.d3mag()*p->mass());

  vertex(0,amp*norm*p4_parent*(v->epsParent(0)));
  vertex(1,amp*norm*p4_parent*(v->epsParent(1)));
  vertex(2,amp*norm*p4_parent*(v->epsParent(2)));

  return ;
}
示例#4
0
void EvtVectorIsr::decay( EvtParticle *p ){

  //the elctron mass
  double electMass=EvtPDL::getMeanMass(EvtPDL::getId("e-"));

  static EvtId gammaId=EvtPDL::getId("gamma");

  EvtParticle *phi;
  EvtParticle *gamma;

  //4-mom of the two colinear photons to the decay of the vphoton
  EvtVector4R p4softg1(0.,0.,0.,0.);
  EvtVector4R p4softg2(0.,0.,0.,0.);


  //get pointers to the daughters set
  //get masses/initial phase space - will overwrite the
  //p4s below to get the kinematic distributions correct
  p->initializePhaseSpace(getNDaug(),getDaugs());
  phi=p->getDaug(0);
  gamma=p->getDaug(1);

  //Generate soft colinear photons and the electron and positron energies after emission.
  //based on method of AfkQed and notes of Vladimir Druzhinin.
  //
  //function ckhrad(eb,q2m,r1,r2,e01,e02,f_col)
  //eb:      energy of incoming electrons in CM frame
  //q2m:     minimum invariant mass of the virtual photon after soft colinear photon emission
  //returned arguments
  //e01,e02: energies of e+ and e- after soft colinear photon emission
  //fcol:    weighting factor for Born cross section for use in an accept/reject test.


  double wcm=p->mass();
  double eb=0.5*wcm;

  //TO guarantee the collinear photons are softer than the ISR photon, require q2m > m*wcm
  double q2m=phi->mass()*wcm;
  double f_col(0.);
  double e01(0.);
  double e02(0.);
  double ebeam=eb;
  double wcm_new = wcm;
  double s_new = wcm*wcm;

  double fran = 1.;
  double f = 0;
  int m = 0;
  double largest_f=0;//only used when determining max weight for this vector particle mass
    
  if (!firstorder){
    while (fran > f){
      m++;    
    
      int n=0;
      while (f_col == 0.){
	n++;
	ckhrad(eb,q2m,e01,e02,f_col);
	if (n > 10000){
	  report(Severity::Info,"EvtGen") << "EvtVectorIsr is having problems. Called ckhrad 10000 times.\n";
	  assert(0);
	}
      }
    
      //Effective beam energy after soft photon emission (neglecting electron mass)
      ebeam = sqrt(e01*e02);
      wcm_new = 2*ebeam;
      s_new = wcm_new*wcm_new;
    
      //The Vector mass should never be greater than wcm_new
      if (phi->mass() > wcm_new){
	report(Severity::Info,"EvtGen") << "EvtVectorIsr finds Vector mass="<<phi->mass()<<" > Weff=" << wcm_new<<".  Should not happen\n";
	assert(0);
      }
 
      //Determine Born cross section @ wcm_new for e+e- -> gamma V.  We aren't interested in the absolute normalization
      //Just the functional dependence. Assuming a narrow resonance when determining cs_Born
      double cs_Born = 1.;
      if (EvtPDL::getMaxRange(phi->getId()) > 0.) {
	double x0 = 1 - EvtPDL::getMeanMass(phi->getId())*EvtPDL::getMeanMass(phi->getId())/s_new;
      
	//L = log(s/(electMass*electMass)  
	double L = 2.*log(wcm_new/electMass);
      
	// W(x0) is actually 2*alpha/pi times the following
	double W = (L-1.)*(1. - x0 +0.5*x0*x0);
      
	//Born cross section is actually 12*pi*pi*Gammaee/EvtPDL::getMeanMass(phi->getId()) times the following
	//(we'd need the full W(x0) as well)
	cs_Born = W/s_new;
      }
    
      f = cs_Born*f_col;

      //if fmax was set properly, f should NEVER be larger than fmax
      if (f > fmax && fmax > 0.){
	  report(Severity::Info,"EvtGen") << "EvtVectorIsr finds a problem with fmax, the maximum weight setting\n"
	     << "fmax is the third decay argument in the .dec file. VectorIsr attempts to set it reasonably if it wasn't provided\n"
	     << "To determine a more appropriate value, build GeneratorQAApp, and set the third argument for this decay <0.\n"
	     << "If you haven't been providing the first 2 arguments, set them to be 1. 1.). The program will report\n"
	     << "the largest weight it finds.  You should set fmax to be slightly larger.\n"
	     << "Alternatively try the following values for various vector particles: "
	     << "phi->1.15   J/psi-psi(4415)->0.105\n"
	     << "The current value of f and fmax for " << EvtPDL::name(phi->getId()) << " are " << f << "  " << fmax << "\n"
	     << "Will now assert\n";
	assert(0);
      }
 

      if (fmax > 0.) {
	fran = fmax*EvtRandom::Flat(0.0,1.0);
      }
    
      else {
	//determine max weight for this vector particle mass
	if (f>largest_f) {
	  largest_f = f;
	  report(Severity::Info,"EvtGen")  << m << " " <<  EvtPDL::name(phi->getId()) << " "
	       << "vector_mass " 
	       << " " << EvtPDL::getMeanMass(phi->getId()) << "  fmax should be at least " << largest_f 
	       << ".        f_col cs_B = " << f_col << " " << cs_Born 
	       << std::endl;
	}
	if (m%10000 == 0) {  
	  report(Severity::Info,"EvtGen") << m << " " <<  EvtPDL::name(phi->getId()) << " "
	       << "vector_mass " 
	       << " " << EvtPDL::getMeanMass(phi->getId()) << "  fmax should be at least " << largest_f 
	       << ".        f_col cs_B = " << f_col << " " << cs_Born 
	       << std::endl;
	}
      
	f_col = 0.;
	f = 0.;
	//determine max weight for this vector particle mass
      }
    
      if (m > 100000){
      
	if (fmax > 0.) report(Severity::Info,"EvtGen") << "EvtVectorIsr is having problems. Check the fmax value - the 3rd argument in the .dec file\n"
					     << "Recommended values for various vector particles: "
					     << "phi->1.15   J/psi-psi(4415)->0.105   "
					     << "Upsilon(1S,2S,3S)->0.14\n";
	assert(0);
      }
    }//while (fran > f)
  
  }//if (firstorder)
  
  //Compute parameters for boost to/from the system after colinear radiation

  double bet_l;
  double gam_l;
  double betgam_l;
  
  double csfrmn_new;
  double csbkmn_new;

  if (firstorder){
    bet_l = 0.;
    gam_l = 1.;
    betgam_l = 0.;
    csfrmn_new = csfrmn;
    csbkmn_new = csbkmn;
  } else {  
    double xx       = e02/e01;
    double sq_xx    = sqrt(xx);
    bet_l    = (1.-xx)/(1.+xx);
    gam_l    = (1.+xx)/(2.*sq_xx);
    betgam_l = (1.-xx)/(2.*sq_xx);
  
    //Boost photon cos_theta limits in lab to limits in the system after colinear rad
    csfrmn_new=(csfrmn - bet_l)/(1. - bet_l*csfrmn);
    csbkmn_new=(csbkmn - bet_l)/(1. - bet_l*csbkmn);
  }
 
//    //generate kinematics according to Bonneau-Martin article
//    //Nucl. Phys. B27 (1971) 381-397

  // For backward compatibility with .dec files before SP5, the backward cos limit for
  //the ISR photon is actually given as *minus* the actual limit. Sorry, this wouldn't be
  //my choice.  -Joe

   //gamma momentum in the vpho restframe *after* soft colinear radiation
  double pg = (s_new - phi->mass()*phi->mass())/(2.*wcm_new);


  //calculate the beta of incoming electrons after  colinear rad in the frame where e= and e- have equal momentum
  double beta=electMass/ebeam; //electMass/Ebeam = 1/gamma
  beta=sqrt(1. - beta*beta);   //sqrt (1 - (1/gamma)**2)

  double ymax=log((1.+beta*csfrmn_new)/(1.-beta*csfrmn_new));
  double ymin=log((1.-beta*csbkmn_new)/(1.+beta*csbkmn_new));

  // photon theta distributed as  2*beta/(1-beta**2*cos(theta)**2)
  double y=(ymax-ymin)*EvtRandom::Flat(0.0,1.0) + ymin;
  double cs=exp(y);
  cs=(cs - 1.)/(cs + 1.)/beta;
  double sn=sqrt(1-cs*cs);

  double fi=EvtRandom::Flat(EvtConst::twoPi);

  //four-vector for the phi
  double phi_p0 = sqrt(phi->mass()*phi->mass()+pg*pg);
  double phi_p3 = -pg*cs;


  //boost back to frame before colinear radiation.
  EvtVector4R p4phi(gam_l*phi_p0 + betgam_l*phi_p3,
		    -pg*sn*cos(fi),
		    -pg*sn*sin(fi),
		    betgam_l*phi_p0 + gam_l*phi_p3);

  double isr_p0 = pg;
  double isr_p3 = -phi_p3;
  EvtVector4R p4gamma(gam_l*isr_p0 + betgam_l*isr_p3,
		      -p4phi.get(1),
		      -p4phi.get(2),
		      betgam_l*isr_p0 + gam_l*isr_p3);

  
  //four-vectors of the collinear photons
  if (!firstorder) {
    p4softg1.set(0, eb-e02);    p4softg1.set(3, e02-eb);
    p4softg2.set(0, eb-e01);    p4softg2.set(3, eb-e01);
  }
  
  //save momenta for particles
  phi->init( getDaug(0),p4phi);
  gamma->init( getDaug(1),p4gamma);


  //add the two colinear photons as vphoton daughters
  EvtPhotonParticle *softg1=new EvtPhotonParticle;;
  EvtPhotonParticle *softg2=new EvtPhotonParticle;;
  softg1->init(gammaId,p4softg1);
  softg2->init(gammaId,p4softg2);
  softg1->addDaug(p);
  softg2->addDaug(p);

  //try setting the spin density matrix of the phi
  //get polarization vector for phi in its parents restframe.
  EvtVector4C phi0=phi->epsParent(0);
  EvtVector4C phi1=phi->epsParent(1);
  EvtVector4C phi2=phi->epsParent(2);

  //get polarization vector for a photon in its parents restframe.
  EvtVector4C gamma0=gamma->epsParentPhoton(0);
  EvtVector4C gamma1=gamma->epsParentPhoton(1);

  EvtComplex r1p=phi0*gamma0;
  EvtComplex r2p=phi1*gamma0;
  EvtComplex r3p=phi2*gamma0;


  EvtComplex r1m=phi0*gamma1;
  EvtComplex r2m=phi1*gamma1;
  EvtComplex r3m=phi2*gamma1;

  EvtComplex rho33=r3p*conj(r3p)+r3m*conj(r3m);
  EvtComplex rho22=r2p*conj(r2p)+r2m*conj(r2m);
  EvtComplex rho11=r1p*conj(r1p)+r1m*conj(r1m);

  EvtComplex rho13=r3p*conj(r1p)+r3m*conj(r1m);
  EvtComplex rho12=r2p*conj(r1p)+r2m*conj(r1m);
  EvtComplex rho23=r3p*conj(r2p)+r3m*conj(r2m);

  EvtComplex rho31=conj(rho13);
  EvtComplex rho32=conj(rho23);
  EvtComplex rho21=conj(rho12);


  EvtSpinDensity rho;
  rho.setDim(3);

  rho.set(0,0,rho11);
  rho.set(0,1,rho12);
  rho.set(0,2,rho13);
  rho.set(1,0,rho21);
  rho.set(1,1,rho22);
  rho.set(1,2,rho23);
  rho.set(2,0,rho31);
  rho.set(2,1,rho32);
  rho.set(2,2,rho33);

  setDaughterSpinDensity(0);
  phi->setSpinDensityForward(rho);

  return ;
}