示例#1
0
static void HandleMSP430InterruptAttr(Decl *d,
                                      const AttributeList &Attr, Sema &S) {
  if (Attr.getNumArgs() != 1) {
    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
      << Attr.getName() << 1;
    return;
  }

  if (!Attr.isArgExpr(0)) {
    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
      << AANT_ArgumentIntegerConstant;
    return;
  }

  // FIXME: Check for decl - it should be void ()(void).
  Expr *NumParamsExpr = Attr.getArgAsExpr(0);
  llvm::APSInt NumParams(32);
  if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
    S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
      << Attr.getName() << AANT_ArgumentIntegerConstant
      << NumParamsExpr->getSourceRange();
    return;
  }

  unsigned Num = NumParams.getLimitedValue(255);
  if ((Num & 1) || Num > 30) {
    S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
      << "interrupt" << (int)NumParams.getSExtValue()
      << NumParamsExpr->getSourceRange();
    return;
  }

  d->addAttr(::new (S.Context) MSP430InterruptAttr(Attr.getLoc(), S.Context, Num));
  d->addAttr(::new (S.Context) UsedAttr(Attr.getLoc(), S.Context));
}
示例#2
0
// CWE-467: Use of sizeof() on a Pointer Type
void WalkAST::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E) {
    if (E->getKind() != UETT_SizeOf)
        return;

    // If an explicit type is used in the code, usually the coder knows what he is
    // doing.
    if (E->isArgumentType())
        return;

    QualType T = E->getTypeOfArgument();
    if (T->isPointerType()) {

        // Many false positives have the form 'sizeof *p'. This is reasonable
        // because people know what they are doing when they intentionally
        // dereference the pointer.
        Expr *ArgEx = E->getArgumentExpr();
        if (!isa<DeclRefExpr>(ArgEx->IgnoreParens()))
            return;

        PathDiagnosticLocation ELoc =
            PathDiagnosticLocation::createBegin(E, BR.getSourceManager(), AC);
        BR.EmitBasicReport(AC->getDecl(), Checker,
                           "Potential unintended use of sizeof() on pointer type",
                           categories::LogicError,
                           "The code calls sizeof() on a pointer type. "
                           "This can produce an unexpected result.",
                           ELoc, ArgEx->getSourceRange());
    }
}
示例#3
0
/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
/// specified type.  The attribute contains 1 argument, the id of the address
/// space for the type.
static void HandleAddressSpaceTypeAttribute(QualType &Type, 
                                            const AttributeList &Attr, Sema &S){
  // If this type is already address space qualified, reject it.
  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
  // for two or more different address spaces."
  if (Type.getAddressSpace()) {
    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
    return;
  }
  
  // Check the attribute arguments.
  if (Attr.getNumArgs() != 1) {
    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
    return;
  }
  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
  llvm::APSInt addrSpace(32);
  if (!ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
      << ASArgExpr->getSourceRange();
    return;
  }

  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue()); 
  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
}
void StringRefCheckerVisitor::VisitVarDecl(VarDecl *VD) {
  Expr *Init = VD->getInit();
  if (!Init)
    return;

  // Pattern match for:
  // llvm::StringRef x = call() (where call returns std::string)
  if (!IsLLVMStringRef(VD->getType()))
    return;
  CXXExprWithTemporaries *Ex1 = dyn_cast<CXXExprWithTemporaries>(Init);
  if (!Ex1)
    return;
  CXXConstructExpr *Ex2 = dyn_cast<CXXConstructExpr>(Ex1->getSubExpr());
  if (!Ex2 || Ex2->getNumArgs() != 1)
    return;
  ImplicitCastExpr *Ex3 = dyn_cast<ImplicitCastExpr>(Ex2->getArg(0));
  if (!Ex3)
    return;
  CXXConstructExpr *Ex4 = dyn_cast<CXXConstructExpr>(Ex3->getSubExpr());
  if (!Ex4 || Ex4->getNumArgs() != 1)
    return;
  ImplicitCastExpr *Ex5 = dyn_cast<ImplicitCastExpr>(Ex4->getArg(0));
  if (!Ex5)
    return;
  CXXBindTemporaryExpr *Ex6 = dyn_cast<CXXBindTemporaryExpr>(Ex5->getSubExpr());
  if (!Ex6 || !IsStdString(Ex6->getType()))
    return;

  // Okay, badness!  Report an error.
  const char *desc = "StringRef should not be bound to temporary "
                     "std::string that it outlives";

  BR.EmitBasicReport(desc, "LLVM Conventions", desc,
                     VD->getLocStart(), Init->getSourceRange());
}
示例#5
0
// CWE-467: Use of sizeof() on a Pointer Type
void WalkAST::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) {
  if (!E->isSizeOf())
    return;

  // If an explicit type is used in the code, usually the coder knows what he is
  // doing.
  if (E->isArgumentType())
    return;

  QualType T = E->getTypeOfArgument();
  if (T->isPointerType()) {

    // Many false positives have the form 'sizeof *p'. This is reasonable 
    // because people know what they are doing when they intentionally 
    // dereference the pointer.
    Expr *ArgEx = E->getArgumentExpr();
    if (!isa<DeclRefExpr>(ArgEx->IgnoreParens()))
      return;

    SourceRange R = ArgEx->getSourceRange();
    BR.EmitBasicReport("Potential unintended use of sizeof() on pointer type",
                       "Logic",
                       "The code calls sizeof() on a pointer type. "
                       "This can produce an unexpected result.",
                       E->getLocStart(), &R, 1);
  }
}
示例#6
0
void UndefBranchChecker::VisitBranchCondition(GRBranchNodeBuilder &Builder, 
                                              GRExprEngine &Eng,
                                              Stmt *Condition, void *tag) {
  const GRState *state = Builder.getState();
  SVal X = state->getSVal(Condition);
  if (X.isUndef()) {
    ExplodedNode *N = Builder.generateNode(state, true);
    if (N) {
      N->markAsSink();
      if (!BT)
        BT = new BuiltinBug("Branch condition evaluates to a garbage value");

      // What's going on here: we want to highlight the subexpression of the
      // condition that is the most likely source of the "uninitialized
      // branch condition."  We do a recursive walk of the condition's
      // subexpressions and roughly look for the most nested subexpression
      // that binds to Undefined.  We then highlight that expression's range.
      BlockEdge B = cast<BlockEdge>(N->getLocation());
      Expr* Ex = cast<Expr>(B.getSrc()->getTerminatorCondition());
      assert (Ex && "Block must have a terminator.");

      // Get the predecessor node and check if is a PostStmt with the Stmt
      // being the terminator condition.  We want to inspect the state
      // of that node instead because it will contain main information about
      // the subexpressions.
      assert (!N->pred_empty());

      // Note: any predecessor will do.  They should have identical state,
      // since all the BlockEdge did was act as an error sink since the value
      // had to already be undefined.
      ExplodedNode *PrevN = *N->pred_begin();
      ProgramPoint P = PrevN->getLocation();
      const GRState* St = N->getState();

      if (PostStmt* PS = dyn_cast<PostStmt>(&P))
        if (PS->getStmt() == Ex)
          St = PrevN->getState();

      FindUndefExpr FindIt(Eng.getStateManager(), St);
      Ex = FindIt.FindExpr(Ex);

      // Emit the bug report.
      EnhancedBugReport *R = new EnhancedBugReport(*BT, BT->getDescription(),N);
      R->addVisitorCreator(bugreporter::registerTrackNullOrUndefValue, Ex);
      R->addRange(Ex->getSourceRange());

      Eng.getBugReporter().EmitReport(R);
    }

    Builder.markInfeasible(true);
    Builder.markInfeasible(false);
  }
}
示例#7
0
/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
/// @code ::delete ptr; @endcode
/// or
/// @code delete [] ptr; @endcode
Action::OwningExprResult
Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
                     bool ArrayForm, ExprArg Operand)
{
  // C++ 5.3.5p1: "The operand shall have a pointer type, or a class type
  //   having a single conversion function to a pointer type. The result has
  //   type void."
  // DR599 amends "pointer type" to "pointer to object type" in both cases.

  Expr *Ex = (Expr *)Operand.get();
  if (!Ex->isTypeDependent()) {
    QualType Type = Ex->getType();

    if (Type->isRecordType()) {
      // FIXME: Find that one conversion function and amend the type.
    }

    if (!Type->isPointerType())
      return ExprError(Diag(StartLoc, diag::err_delete_operand)
        << Type << Ex->getSourceRange());

    QualType Pointee = Type->getAsPointerType()->getPointeeType();
    if (Pointee->isFunctionType() || Pointee->isVoidType())
      return ExprError(Diag(StartLoc, diag::err_delete_operand)
        << Type << Ex->getSourceRange());
    else if (!Pointee->isDependentType() &&
             RequireCompleteType(StartLoc, Pointee, 
                                 diag::warn_delete_incomplete,
                                 Ex->getSourceRange()))
      return ExprError();

    // FIXME: Look up the correct operator delete overload and pass a pointer
    // along.
    // FIXME: Check access and ambiguity of operator delete and destructor.
  }

  Operand.release();
  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
                                           0, Ex, StartLoc));
}
示例#8
0
bool ParseFunctionCall(FunctionEvent *Event, BinaryOperator *Bop,
                       vector<ValueDecl*>& References,
                       ASTContext& Ctx) {

  // TODO: better distinguishing between callee and/or caller
  Event->set_context(FunctionEvent::Callee);

  // Since we might care about the return value, we must instrument exiting
  // the function rather than entering it.
  Event->set_direction(FunctionEvent::Exit);

  Expr *LHS = Bop->getLHS();
  bool LHSisICE = LHS->isIntegerConstantExpr(Ctx);

  Expr *RHS = Bop->getRHS();

  if (!(LHSisICE ^ RHS->isIntegerConstantExpr(Ctx))) {
    Report("One of {LHS,RHS} must be ICE", Bop->getLocStart(), Ctx)
      << Bop->getSourceRange();
    return false;
  }

  Expr *RetVal = (LHSisICE ? LHS : RHS);
  Expr *FnCall = (LHSisICE ? RHS : LHS);
  if (!ParseArgument(Event->mutable_expectedreturnvalue(), RetVal, References,
                     Ctx))
    return false;

  auto FnCallExpr = dyn_cast<CallExpr>(FnCall);
  if (!FnCallExpr) {
    Report("Not a function call", FnCall->getLocStart(), Ctx)
      << FnCall->getSourceRange();
    return false;
  }

  auto Fn = FnCallExpr->getDirectCallee();
  if (!Fn) {
    Report("Not a direct function call", FnCallExpr->getLocStart(), Ctx)
      << FnCallExpr->getSourceRange();
    return false;
  }

  if (!ParseFunctionRef(Event->mutable_function(), Fn, Ctx)) return false;

  for (auto I = FnCallExpr->arg_begin(); I != FnCallExpr->arg_end(); ++I) {
    if (!ParseArgument(Event->add_argument(), I->IgnoreImplicit(), References,
                       Ctx))
      return false;
  }

  return true;
}
  void DanglingDelegateChecker::verifyIvarDynamicStateAgainstStaticFacts(const Expr &expr, const ObjCIvarDecl *ivarDecl,  CheckerContext &context) const {

    // first retrieve the dangerous 'static' facts we know about the ivar
    if (!ivarDecl) {
      return;
    }
    const ObjCImplFacts *facts = getCurrentFacts(getCurrentTopClassInterface(context));
    if (!facts || facts->_ivarFactsMap.find(ivarDecl) == facts->_ivarFactsMap.end()) {
      // not an interesting ivar (no entry)
      return;
    }
    const IvarFacts &ivarFacts = facts->_ivarFactsMap.at(ivarDecl);
    std::string ivarName = ivarDecl->getNameAsString();

    // second retrieve the current 'dynamic' state of the ivar
    ProgramStateRef state = context.getState();
    const IvarDynamicState emptyIds;
    const IvarDynamicState *ids = state->get<IvarMap>(ivarDecl);
    if (!ids) {
      ids = &emptyIds;
    }

    // Verify that all the dangerous properties have been cleared
    const StringSet &dangerousProperties = ivarFacts._mayStoreSelfInUnsafeProperty;
    const StringSet &clearedProperties = ids->_assignPropertyWasCleared;
    const std::function<void(StringRef)> emitBug([this, &context, &expr](StringRef str) {
       BugReport *report = new BugReport(*_bugType, str, context.getPredecessor());
       report->addRange(expr.getSourceRange());
       context.emitReport(report);
    });

    verifyAndReportDangerousProperties(dangerousProperties,
                                       clearedProperties,
                                       ivarName,
                                       ivarDecl->getType(),
                                       "",
                                       emitBug);

    // Verify that the object in the ivar is not 'observing' self (TODO)
//    if (ivarFacts._mayObserveSelf && !ids->_observerWasCleared) {
//    }

    // Verify that the object in the ivar is not 'targeting' self (TODO)
//    if (ivarFacts._mayTargetSelf && !ids->_targetWasCleared) {
//    }

  }
示例#10
0
ExprResult Sema::ActOnCXXFoldExpr(SourceLocation LParenLoc, Expr *LHS,
                                  tok::TokenKind Operator,
                                  SourceLocation EllipsisLoc, Expr *RHS,
                                  SourceLocation RParenLoc) {
  // LHS and RHS must be cast-expressions. We allow an arbitrary expression
  // in the parser and reduce down to just cast-expressions here.
  CheckFoldOperand(*this, LHS);
  CheckFoldOperand(*this, RHS);

  auto DiscardOperands = [&] {
    CorrectDelayedTyposInExpr(LHS);
    CorrectDelayedTyposInExpr(RHS);
  };

  // [expr.prim.fold]p3:
  //   In a binary fold, op1 and op2 shall be the same fold-operator, and
  //   either e1 shall contain an unexpanded parameter pack or e2 shall contain
  //   an unexpanded parameter pack, but not both.
  if (LHS && RHS &&
      LHS->containsUnexpandedParameterPack() ==
          RHS->containsUnexpandedParameterPack()) {
    DiscardOperands();
    return Diag(EllipsisLoc,
                LHS->containsUnexpandedParameterPack()
                    ? diag::err_fold_expression_packs_both_sides
                    : diag::err_pack_expansion_without_parameter_packs)
        << LHS->getSourceRange() << RHS->getSourceRange();
  }

  // [expr.prim.fold]p2:
  //   In a unary fold, the cast-expression shall contain an unexpanded
  //   parameter pack.
  if (!LHS || !RHS) {
    Expr *Pack = LHS ? LHS : RHS;
    assert(Pack && "fold expression with neither LHS nor RHS");
    DiscardOperands();
    if (!Pack->containsUnexpandedParameterPack())
      return Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
             << Pack->getSourceRange();
  }

  BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Operator);
  return BuildCXXFoldExpr(LParenLoc, LHS, Opc, EllipsisLoc, RHS, RParenLoc);
}
示例#11
0
static Attr *handleOpenCLUnrollHint(Sema &S, Stmt *St, const ParsedAttr &A,
                                    SourceRange Range) {
  // Although the feature was introduced only in OpenCL C v2.0 s6.11.5, it's
  // useful for OpenCL 1.x too and doesn't require HW support.
  // opencl_unroll_hint can have 0 arguments (compiler
  // determines unrolling factor) or 1 argument (the unroll factor provided
  // by the user).

  unsigned NumArgs = A.getNumArgs();

  if (NumArgs > 1) {
    S.Diag(A.getLoc(), diag::err_attribute_too_many_arguments) << A << 1;
    return nullptr;
  }

  unsigned UnrollFactor = 0;

  if (NumArgs == 1) {
    Expr *E = A.getArgAsExpr(0);
    llvm::APSInt ArgVal(32);

    if (!E->isIntegerConstantExpr(ArgVal, S.Context)) {
      S.Diag(A.getLoc(), diag::err_attribute_argument_type)
          << A << AANT_ArgumentIntegerConstant << E->getSourceRange();
      return nullptr;
    }

    int Val = ArgVal.getSExtValue();

    if (Val <= 0) {
      S.Diag(A.getRange().getBegin(),
             diag::err_attribute_requires_positive_integer)
          << A;
      return nullptr;
    }
    UnrollFactor = Val;
  }

  return OpenCLUnrollHintAttr::CreateImplicit(S.Context, UnrollFactor);
}
void StringRefCheckerVisitor::VisitVarDecl(VarDecl *VD) {
  Expr *Init = VD->getInit();
  if (!Init)
    return;

  // Pattern match for:
  // StringRef x = call() (where call returns std::string)
  if (!IsLLVMStringRef(VD->getType()))
    return;
  ExprWithCleanups *Ex1 = dyn_cast<ExprWithCleanups>(Init);
  if (!Ex1)
    return;
  CXXConstructExpr *Ex2 = dyn_cast<CXXConstructExpr>(Ex1->getSubExpr());
  if (!Ex2 || Ex2->getNumArgs() != 1)
    return;
  ImplicitCastExpr *Ex3 = dyn_cast<ImplicitCastExpr>(Ex2->getArg(0));
  if (!Ex3)
    return;
  CXXConstructExpr *Ex4 = dyn_cast<CXXConstructExpr>(Ex3->getSubExpr());
  if (!Ex4 || Ex4->getNumArgs() != 1)
    return;
  ImplicitCastExpr *Ex5 = dyn_cast<ImplicitCastExpr>(Ex4->getArg(0));
  if (!Ex5)
    return;
  CXXBindTemporaryExpr *Ex6 = dyn_cast<CXXBindTemporaryExpr>(Ex5->getSubExpr());
  if (!Ex6 || !IsStdString(Ex6->getType()))
    return;

  // Okay, badness!  Report an error.
  const char *desc = "StringRef should not be bound to temporary "
                     "std::string that it outlives";
  PathDiagnosticLocation VDLoc =
    PathDiagnosticLocation::createBegin(VD, BR.getSourceManager());
  BR.EmitBasicReport(DeclWithIssue, desc, "LLVM Conventions", desc,
                     VDLoc, Init->getSourceRange());
}
示例#13
0
/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
/// @code new (memory) int[size][4] @endcode
/// or
/// @code ::new Foo(23, "hello") @endcode
/// For the interpretation of this heap of arguments, consult the base version.
Action::OwningExprResult
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
                  SourceLocation PlacementRParen, bool ParenTypeId,
                  Declarator &D, SourceLocation ConstructorLParen,
                  MultiExprArg ConstructorArgs,
                  SourceLocation ConstructorRParen)
{
  Expr *ArraySize = 0;
  unsigned Skip = 0;
  // If the specified type is an array, unwrap it and save the expression.
  if (D.getNumTypeObjects() > 0 &&
      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
    DeclaratorChunk &Chunk = D.getTypeObject(0);
    if (Chunk.Arr.hasStatic)
      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
        << D.getSourceRange());
    if (!Chunk.Arr.NumElts)
      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
        << D.getSourceRange());
    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
    Skip = 1;
  }

  QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, Skip);
  if (D.getInvalidType())
    return ExprError();

  if (CheckAllocatedType(AllocType, D))
    return ExprError();

  QualType ResultType = AllocType->isDependentType()
                          ? Context.DependentTy
                          : Context.getPointerType(AllocType);

  // That every array dimension except the first is constant was already
  // checked by the type check above.

  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
  //   or enumeration type with a non-negative value."
  if (ArraySize && !ArraySize->isTypeDependent()) {
    QualType SizeType = ArraySize->getType();
    if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
      return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
                            diag::err_array_size_not_integral)
        << SizeType << ArraySize->getSourceRange());
    // Let's see if this is a constant < 0. If so, we reject it out of hand.
    // We don't care about special rules, so we tell the machinery it's not
    // evaluated - it gives us a result in more cases.
    if (!ArraySize->isValueDependent()) {
      llvm::APSInt Value;
      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
        if (Value < llvm::APSInt(
                        llvm::APInt::getNullValue(Value.getBitWidth()), false))
          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
                           diag::err_typecheck_negative_array_size)
            << ArraySize->getSourceRange());
      }
    }
  }

  FunctionDecl *OperatorNew = 0;
  FunctionDecl *OperatorDelete = 0;
  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
  unsigned NumPlaceArgs = PlacementArgs.size();
  if (!AllocType->isDependentType() &&
      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
      FindAllocationFunctions(StartLoc,
                              SourceRange(PlacementLParen, PlacementRParen),
                              UseGlobal, AllocType, ArraySize, PlaceArgs,
                              NumPlaceArgs, OperatorNew, OperatorDelete))
    return ExprError();

  bool Init = ConstructorLParen.isValid();
  // --- Choosing a constructor ---
  // C++ 5.3.4p15
  // 1) If T is a POD and there's no initializer (ConstructorLParen is invalid)
  //   the object is not initialized. If the object, or any part of it, is
  //   const-qualified, it's an error.
  // 2) If T is a POD and there's an empty initializer, the object is value-
  //   initialized.
  // 3) If T is a POD and there's one initializer argument, the object is copy-
  //   constructed.
  // 4) If T is a POD and there's more initializer arguments, it's an error.
  // 5) If T is not a POD, the initializer arguments are used as constructor
  //   arguments.
  //
  // Or by the C++0x formulation:
  // 1) If there's no initializer, the object is default-initialized according
  //    to C++0x rules.
  // 2) Otherwise, the object is direct-initialized.
  CXXConstructorDecl *Constructor = 0;
  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
  unsigned NumConsArgs = ConstructorArgs.size();
  if (AllocType->isDependentType()) {
    // Skip all the checks.
  }
  // FIXME: Should check for primitive/aggregate here, not record.
  else if (const RecordType *RT = AllocType->getAsRecordType()) {
    // FIXME: This is incorrect for when there is an empty initializer and
    // no user-defined constructor. Must zero-initialize, not default-construct.
    Constructor = PerformInitializationByConstructor(
                      AllocType, ConsArgs, NumConsArgs,
                      D.getSourceRange().getBegin(),
                      SourceRange(D.getSourceRange().getBegin(),
                                  ConstructorRParen),
                      RT->getDecl()->getDeclName(),
                      NumConsArgs != 0 ? IK_Direct : IK_Default);
    if (!Constructor)
      return ExprError();
  } else {
    if (!Init) {
      // FIXME: Check that no subpart is const.
      if (AllocType.isConstQualified())
        return ExprError(Diag(StartLoc, diag::err_new_uninitialized_const)
          << D.getSourceRange());
    } else if (NumConsArgs == 0) {
      // Object is value-initialized. Do nothing.
    } else if (NumConsArgs == 1) {
      // Object is direct-initialized.
      // FIXME: WHAT DeclarationName do we pass in here?
      if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc,
                                DeclarationName() /*AllocType.getAsString()*/,
                                /*DirectInit=*/true))
        return ExprError();
    } else {
      return ExprError(Diag(StartLoc,
                            diag::err_builtin_direct_init_more_than_one_arg)
        << SourceRange(ConstructorLParen, ConstructorRParen));
    }
  }

  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)

  PlacementArgs.release();
  ConstructorArgs.release();
  return Owned(new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs,
                        NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init,
                        ConsArgs, NumConsArgs, OperatorDelete, ResultType,
                        StartLoc, Init ? ConstructorRParen : SourceLocation()));
}
示例#14
0
StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
                                 bool IsVolatile, unsigned NumOutputs,
                                 unsigned NumInputs, IdentifierInfo **Names,
                                 MultiExprArg constraints, MultiExprArg Exprs,
                                 Expr *asmString, MultiExprArg clobbers,
                                 SourceLocation RParenLoc) {
  unsigned NumClobbers = clobbers.size();
  StringLiteral **Constraints =
    reinterpret_cast<StringLiteral**>(constraints.data());
  StringLiteral *AsmString = cast<StringLiteral>(asmString);
  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());

  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;

  // The parser verifies that there is a string literal here.
  assert(AsmString->isAscii());

  bool ValidateConstraints =
      DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl());

  for (unsigned i = 0; i != NumOutputs; i++) {
    StringLiteral *Literal = Constraints[i];
    assert(Literal->isAscii());

    StringRef OutputName;
    if (Names[i])
      OutputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
    if (ValidateConstraints &&
        !Context.getTargetInfo().validateOutputConstraint(Info))
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_output_constraint)
                       << Info.getConstraintStr());

    ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
    if (ER.isInvalid())
      return StmtError();
    Exprs[i] = ER.get();

    // Check that the output exprs are valid lvalues.
    Expr *OutputExpr = Exprs[i];

    // Referring to parameters is not allowed in naked functions.
    if (CheckNakedParmReference(OutputExpr, *this))
      return StmtError();

    // Bitfield can't be referenced with a pointer.
    if (Info.allowsMemory() && OutputExpr->refersToBitField())
      return StmtError(Diag(OutputExpr->getLocStart(),
                            diag::err_asm_bitfield_in_memory_constraint)
                       << 1
                       << Info.getConstraintStr()
                       << OutputExpr->getSourceRange());

    OutputConstraintInfos.push_back(Info);

    // If this is dependent, just continue.
    if (OutputExpr->isTypeDependent())
      continue;

    Expr::isModifiableLvalueResult IsLV =
        OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
    switch (IsLV) {
    case Expr::MLV_Valid:
      // Cool, this is an lvalue.
      break;
    case Expr::MLV_ArrayType:
      // This is OK too.
      break;
    case Expr::MLV_LValueCast: {
      const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
      if (!getLangOpts().HeinousExtensions) {
        Diag(LVal->getLocStart(), diag::err_invalid_asm_cast_lvalue)
            << OutputExpr->getSourceRange();
      } else {
        Diag(LVal->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
            << OutputExpr->getSourceRange();
      }
      // Accept, even if we emitted an error diagnostic.
      break;
    }
    case Expr::MLV_IncompleteType:
    case Expr::MLV_IncompleteVoidType:
      if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(),
                              diag::err_dereference_incomplete_type))
        return StmtError();
    default:
      return StmtError(Diag(OutputExpr->getLocStart(),
                            diag::err_asm_invalid_lvalue_in_output)
                       << OutputExpr->getSourceRange());
    }

    unsigned Size = Context.getTypeSize(OutputExpr->getType());
    if (!Context.getTargetInfo().validateOutputSize(Literal->getString(),
                                                    Size))
      return StmtError(Diag(OutputExpr->getLocStart(),
                            diag::err_asm_invalid_output_size)
                       << Info.getConstraintStr());
  }

  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;

  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
    StringLiteral *Literal = Constraints[i];
    assert(Literal->isAscii());

    StringRef InputName;
    if (Names[i])
      InputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
    if (ValidateConstraints &&
        !Context.getTargetInfo().validateInputConstraint(
            OutputConstraintInfos.data(), NumOutputs, Info)) {
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_input_constraint)
                       << Info.getConstraintStr());
    }

    ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
    if (ER.isInvalid())
      return StmtError();
    Exprs[i] = ER.get();

    Expr *InputExpr = Exprs[i];

    // Referring to parameters is not allowed in naked functions.
    if (CheckNakedParmReference(InputExpr, *this))
      return StmtError();

    // Bitfield can't be referenced with a pointer.
    if (Info.allowsMemory() && InputExpr->refersToBitField())
      return StmtError(Diag(InputExpr->getLocStart(),
                            diag::err_asm_bitfield_in_memory_constraint)
                       << 0
                       << Info.getConstraintStr()
                       << InputExpr->getSourceRange());

    // Only allow void types for memory constraints.
    if (Info.allowsMemory() && !Info.allowsRegister()) {
      if (CheckAsmLValue(InputExpr, *this))
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_lvalue_in_input)
                         << Info.getConstraintStr()
                         << InputExpr->getSourceRange());
    } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
      if (!InputExpr->isValueDependent()) {
        llvm::APSInt Result;
        if (!InputExpr->EvaluateAsInt(Result, Context))
           return StmtError(
               Diag(InputExpr->getLocStart(), diag::err_asm_immediate_expected)
                << Info.getConstraintStr() << InputExpr->getSourceRange());
         if (!Info.isValidAsmImmediate(Result))
           return StmtError(Diag(InputExpr->getLocStart(),
                                 diag::err_invalid_asm_value_for_constraint)
                            << Result.toString(10) << Info.getConstraintStr()
                            << InputExpr->getSourceRange());
      }

    } else {
      ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
      if (Result.isInvalid())
        return StmtError();

      Exprs[i] = Result.get();
    }

    if (Info.allowsRegister()) {
      if (InputExpr->getType()->isVoidType()) {
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_type_in_input)
          << InputExpr->getType() << Info.getConstraintStr()
          << InputExpr->getSourceRange());
      }
    }

    InputConstraintInfos.push_back(Info);

    const Type *Ty = Exprs[i]->getType().getTypePtr();
    if (Ty->isDependentType())
      continue;

    if (!Ty->isVoidType() || !Info.allowsMemory())
      if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(),
                              diag::err_dereference_incomplete_type))
        return StmtError();

    unsigned Size = Context.getTypeSize(Ty);
    if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
                                                   Size))
      return StmtError(Diag(InputExpr->getLocStart(),
                            diag::err_asm_invalid_input_size)
                       << Info.getConstraintStr());
  }

  // Check that the clobbers are valid.
  for (unsigned i = 0; i != NumClobbers; i++) {
    StringLiteral *Literal = Clobbers[i];
    assert(Literal->isAscii());

    StringRef Clobber = Literal->getString();

    if (!Context.getTargetInfo().isValidClobber(Clobber))
      return StmtError(Diag(Literal->getLocStart(),
                  diag::err_asm_unknown_register_name) << Clobber);
  }

  GCCAsmStmt *NS =
    new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
                             NumInputs, Names, Constraints, Exprs.data(),
                             AsmString, NumClobbers, Clobbers, RParenLoc);
  // Validate the asm string, ensuring it makes sense given the operands we
  // have.
  SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
  unsigned DiagOffs;
  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
           << AsmString->getSourceRange();
    return StmtError();
  }

  // Validate constraints and modifiers.
  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
    GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
    if (!Piece.isOperand()) continue;

    // Look for the correct constraint index.
    unsigned ConstraintIdx = Piece.getOperandNo();
    unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();

    // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
    // modifier '+'.
    if (ConstraintIdx >= NumOperands) {
      unsigned I = 0, E = NS->getNumOutputs();

      for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
        if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
          ConstraintIdx = I;
          break;
        }

      assert(I != E && "Invalid operand number should have been caught in "
                       " AnalyzeAsmString");
    }

    // Now that we have the right indexes go ahead and check.
    StringLiteral *Literal = Constraints[ConstraintIdx];
    const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
    if (Ty->isDependentType() || Ty->isIncompleteType())
      continue;

    unsigned Size = Context.getTypeSize(Ty);
    std::string SuggestedModifier;
    if (!Context.getTargetInfo().validateConstraintModifier(
            Literal->getString(), Piece.getModifier(), Size,
            SuggestedModifier)) {
      Diag(Exprs[ConstraintIdx]->getLocStart(),
           diag::warn_asm_mismatched_size_modifier);

      if (!SuggestedModifier.empty()) {
        auto B = Diag(Piece.getRange().getBegin(),
                      diag::note_asm_missing_constraint_modifier)
                 << SuggestedModifier;
        SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
        B.AddFixItHint(FixItHint::CreateReplacement(Piece.getRange(),
                                                    SuggestedModifier));
      }
    }
  }

  // Validate tied input operands for type mismatches.
  unsigned NumAlternatives = ~0U;
  for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
    StringRef ConstraintStr = Info.getConstraintStr();
    unsigned AltCount = ConstraintStr.count(',') + 1;
    if (NumAlternatives == ~0U)
      NumAlternatives = AltCount;
    else if (NumAlternatives != AltCount)
      return StmtError(Diag(NS->getOutputExpr(i)->getLocStart(),
                            diag::err_asm_unexpected_constraint_alternatives)
                       << NumAlternatives << AltCount);
  }
  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
    StringRef ConstraintStr = Info.getConstraintStr();
    unsigned AltCount = ConstraintStr.count(',') + 1;
    if (NumAlternatives == ~0U)
      NumAlternatives = AltCount;
    else if (NumAlternatives != AltCount)
      return StmtError(Diag(NS->getInputExpr(i)->getLocStart(),
                            diag::err_asm_unexpected_constraint_alternatives)
                       << NumAlternatives << AltCount);

    // If this is a tied constraint, verify that the output and input have
    // either exactly the same type, or that they are int/ptr operands with the
    // same size (int/long, int*/long, are ok etc).
    if (!Info.hasTiedOperand()) continue;

    unsigned TiedTo = Info.getTiedOperand();
    unsigned InputOpNo = i+NumOutputs;
    Expr *OutputExpr = Exprs[TiedTo];
    Expr *InputExpr = Exprs[InputOpNo];

    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
      continue;

    QualType InTy = InputExpr->getType();
    QualType OutTy = OutputExpr->getType();
    if (Context.hasSameType(InTy, OutTy))
      continue;  // All types can be tied to themselves.

    // Decide if the input and output are in the same domain (integer/ptr or
    // floating point.
    enum AsmDomain {
      AD_Int, AD_FP, AD_Other
    } InputDomain, OutputDomain;

    if (InTy->isIntegerType() || InTy->isPointerType())
      InputDomain = AD_Int;
    else if (InTy->isRealFloatingType())
      InputDomain = AD_FP;
    else
      InputDomain = AD_Other;

    if (OutTy->isIntegerType() || OutTy->isPointerType())
      OutputDomain = AD_Int;
    else if (OutTy->isRealFloatingType())
      OutputDomain = AD_FP;
    else
      OutputDomain = AD_Other;

    // They are ok if they are the same size and in the same domain.  This
    // allows tying things like:
    //   void* to int*
    //   void* to int            if they are the same size.
    //   double to long double   if they are the same size.
    //
    uint64_t OutSize = Context.getTypeSize(OutTy);
    uint64_t InSize = Context.getTypeSize(InTy);
    if (OutSize == InSize && InputDomain == OutputDomain &&
        InputDomain != AD_Other)
      continue;

    // If the smaller input/output operand is not mentioned in the asm string,
    // then we can promote the smaller one to a larger input and the asm string
    // won't notice.
    bool SmallerValueMentioned = false;

    // If this is a reference to the input and if the input was the smaller
    // one, then we have to reject this asm.
    if (isOperandMentioned(InputOpNo, Pieces)) {
      // This is a use in the asm string of the smaller operand.  Since we
      // codegen this by promoting to a wider value, the asm will get printed
      // "wrong".
      SmallerValueMentioned |= InSize < OutSize;
    }
    if (isOperandMentioned(TiedTo, Pieces)) {
      // If this is a reference to the output, and if the output is the larger
      // value, then it's ok because we'll promote the input to the larger type.
      SmallerValueMentioned |= OutSize < InSize;
    }

    // If the smaller value wasn't mentioned in the asm string, and if the
    // output was a register, just extend the shorter one to the size of the
    // larger one.
    if (!SmallerValueMentioned && InputDomain != AD_Other &&
        OutputConstraintInfos[TiedTo].allowsRegister())
      continue;

    // Either both of the operands were mentioned or the smaller one was
    // mentioned.  One more special case that we'll allow: if the tied input is
    // integer, unmentioned, and is a constant, then we'll allow truncating it
    // down to the size of the destination.
    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
        !isOperandMentioned(InputOpNo, Pieces) &&
        InputExpr->isEvaluatable(Context)) {
      CastKind castKind =
        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
      Exprs[InputOpNo] = InputExpr;
      NS->setInputExpr(i, InputExpr);
      continue;
    }

    Diag(InputExpr->getLocStart(),
         diag::err_asm_tying_incompatible_types)
      << InTy << OutTy << OutputExpr->getSourceRange()
      << InputExpr->getSourceRange();
    return StmtError();
  }

  return NS;
}
示例#15
0
/// \brief Build an Objective-C instance message expression.
///
/// This routine takes care of both normal instance messages and
/// instance messages to the superclass instance.
///
/// \param Receiver The expression that computes the object that will
/// receive this message. This may be empty, in which case we are
/// sending to the superclass instance and \p SuperLoc must be a valid
/// source location.
///
/// \param ReceiverType The (static) type of the object receiving the
/// message. When a \p Receiver expression is provided, this is the
/// same type as that expression. For a superclass instance send, this
/// is a pointer to the type of the superclass.
///
/// \param SuperLoc The location of the "super" keyword in a
/// superclass instance message.
///
/// \param Sel The selector to which the message is being sent.
///
/// \param Method The method that this instance message is invoking, if
/// already known.
///
/// \param LBracLoc The location of the opening square bracket ']'.
///
/// \param RBrac The location of the closing square bracket ']'.
///
/// \param Args The message arguments.
Sema::OwningExprResult Sema::BuildInstanceMessage(ExprArg ReceiverE,
                                                  QualType ReceiverType,
                                                  SourceLocation SuperLoc,
                                                  Selector Sel,
                                                  ObjCMethodDecl *Method,
                                                  SourceLocation LBracLoc, 
                                                  SourceLocation RBracLoc,
                                                  MultiExprArg ArgsIn) {
  // If we have a receiver expression, perform appropriate promotions
  // and determine receiver type.
  Expr *Receiver = ReceiverE.takeAs<Expr>();
  if (Receiver) {
    if (Receiver->isTypeDependent()) {
      // If the receiver is type-dependent, we can't type-check anything
      // at this point. Build a dependent expression.
      unsigned NumArgs = ArgsIn.size();
      Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
      assert(SuperLoc.isInvalid() && "Message to super with dependent type");
      return Owned(ObjCMessageExpr::Create(Context, Context.DependentTy,
                                           LBracLoc, Receiver, Sel, 
                                           /*Method=*/0, Args, NumArgs, 
                                           RBracLoc));
    }

    // If necessary, apply function/array conversion to the receiver.
    // C99 6.7.5.3p[7,8].
    DefaultFunctionArrayLvalueConversion(Receiver);
    ReceiverType = Receiver->getType();
  }

  // The location of the receiver.
  SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart();

  if (!Method) {
    // Handle messages to id.
    bool receiverIsId = ReceiverType->isObjCIdType();
    if (receiverIsId || ReceiverType->isBlockPointerType() ||
        (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) {
      Method = LookupInstanceMethodInGlobalPool(Sel, 
                                                SourceRange(LBracLoc, RBracLoc),
                                                receiverIsId);
      if (!Method)
        Method = LookupFactoryMethodInGlobalPool(Sel, 
                                                 SourceRange(LBracLoc, RBracLoc),
                                                 receiverIsId);
    } else if (ReceiverType->isObjCClassType() ||
               ReceiverType->isObjCQualifiedClassType()) {
      // Handle messages to Class.
      if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
        if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) {
          // First check the public methods in the class interface.
          Method = ClassDecl->lookupClassMethod(Sel);

          if (!Method)
            Method = LookupPrivateClassMethod(Sel, ClassDecl);

          // FIXME: if we still haven't found a method, we need to look in
          // protocols (if we have qualifiers).
        }
        if (Method && DiagnoseUseOfDecl(Method, Loc))
          return ExprError();
      }
      if (!Method) {
        // If not messaging 'self', look for any factory method named 'Sel'.
        if (!Receiver || !isSelfExpr(Receiver)) {
          Method = LookupFactoryMethodInGlobalPool(Sel, 
                                               SourceRange(LBracLoc, RBracLoc),
                                                   true);
          if (!Method) {
            // If no class (factory) method was found, check if an _instance_
            // method of the same name exists in the root class only.
            Method = LookupInstanceMethodInGlobalPool(Sel,
                                               SourceRange(LBracLoc, RBracLoc),
                                                      true);
            if (Method)
                if (const ObjCInterfaceDecl *ID =
                  dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) {
                if (ID->getSuperClass())
                  Diag(Loc, diag::warn_root_inst_method_not_found)
                    << Sel << SourceRange(LBracLoc, RBracLoc);
              }
          }
        }
      }
    } else {
      ObjCInterfaceDecl* ClassDecl = 0;

      // We allow sending a message to a qualified ID ("id<foo>"), which is ok as
      // long as one of the protocols implements the selector (if not, warn).
      if (const ObjCObjectPointerType *QIdTy 
                                   = ReceiverType->getAsObjCQualifiedIdType()) {
        // Search protocols for instance methods.
        for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
               E = QIdTy->qual_end(); I != E; ++I) {
          ObjCProtocolDecl *PDecl = *I;
          if (PDecl && (Method = PDecl->lookupInstanceMethod(Sel)))
            break;
          // Since we aren't supporting "Class<foo>", look for a class method.
          if (PDecl && (Method = PDecl->lookupClassMethod(Sel)))
            break;
        }
      } else if (const ObjCObjectPointerType *OCIType
                   = ReceiverType->getAsObjCInterfacePointerType()) {
        // We allow sending a message to a pointer to an interface (an object).
        ClassDecl = OCIType->getInterfaceDecl();
        // FIXME: consider using LookupInstanceMethodInGlobalPool, since it will be
        // faster than the following method (which can do *many* linear searches).
        // The idea is to add class info to MethodPool.
        Method = ClassDecl->lookupInstanceMethod(Sel);

        if (!Method) {
          // Search protocol qualifiers.
          for (ObjCObjectPointerType::qual_iterator QI = OCIType->qual_begin(),
                 E = OCIType->qual_end(); QI != E; ++QI) {
            if ((Method = (*QI)->lookupInstanceMethod(Sel)))
              break;
          }
        }
        if (!Method) {
          // If we have implementations in scope, check "private" methods.
          Method = LookupPrivateInstanceMethod(Sel, ClassDecl);

          if (!Method && (!Receiver || !isSelfExpr(Receiver))) {
            // If we still haven't found a method, look in the global pool. This
            // behavior isn't very desirable, however we need it for GCC
            // compatibility. FIXME: should we deviate??
            if (OCIType->qual_empty()) {
              Method = LookupInstanceMethodInGlobalPool(Sel,
                                                 SourceRange(LBracLoc, RBracLoc)); 
              if (Method && !OCIType->getInterfaceDecl()->isForwardDecl())
                Diag(Loc, diag::warn_maynot_respond)
                  << OCIType->getInterfaceDecl()->getIdentifier() << Sel;
            }
          }
        }
        if (Method && DiagnoseUseOfDecl(Method, Loc))
          return ExprError();
      } else if (!Context.getObjCIdType().isNull() &&
                 (ReceiverType->isPointerType() || 
                  ReceiverType->isIntegerType())) {
        // Implicitly convert integers and pointers to 'id' but emit a warning.
        Diag(Loc, diag::warn_bad_receiver_type)
          << ReceiverType 
          << Receiver->getSourceRange();
        if (ReceiverType->isPointerType())
          ImpCastExprToType(Receiver, Context.getObjCIdType(), 
                            CastExpr::CK_BitCast);
        else
          ImpCastExprToType(Receiver, Context.getObjCIdType(),
                            CastExpr::CK_IntegralToPointer);
        ReceiverType = Receiver->getType();
      } 
      else if (getLangOptions().CPlusPlus &&
               !PerformContextuallyConvertToObjCId(Receiver)) {
        if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Receiver)) {
          Receiver = ICE->getSubExpr();
          ReceiverType = Receiver->getType();
        }
        return BuildInstanceMessage(Owned(Receiver),
                                    ReceiverType,
                                    SuperLoc,
                                    Sel,
                                    Method,
                                    LBracLoc, 
                                    RBracLoc,
                                    move(ArgsIn));
      } else {
        // Reject other random receiver types (e.g. structs).
        Diag(Loc, diag::err_bad_receiver_type)
          << ReceiverType << Receiver->getSourceRange();
        return ExprError();
      }
    }
  }

  // Check the message arguments.
  unsigned NumArgs = ArgsIn.size();
  Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
  QualType ReturnType;
  if (CheckMessageArgumentTypes(Args, NumArgs, Sel, Method, false,
                                LBracLoc, RBracLoc, ReturnType))
    return ExprError();
  
  if (!ReturnType->isVoidType()) {
    if (RequireCompleteType(LBracLoc, ReturnType, 
                            diag::err_illegal_message_expr_incomplete_type))
      return ExprError();
  }

  // Construct the appropriate ObjCMessageExpr instance.
  Expr *Result;
  if (SuperLoc.isValid())
    Result = ObjCMessageExpr::Create(Context, ReturnType, LBracLoc,
                                     SuperLoc,  /*IsInstanceSuper=*/true,
                                     ReceiverType, Sel, Method, 
                                     Args, NumArgs, RBracLoc);
  else
    Result = ObjCMessageExpr::Create(Context, ReturnType, LBracLoc, Receiver, 
                                     Sel, Method, Args, NumArgs, RBracLoc);
  return MaybeBindToTemporary(Result);
}
示例#16
0
StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
                                 bool IsVolatile, unsigned NumOutputs,
                                 unsigned NumInputs, IdentifierInfo **Names,
                                 MultiExprArg constraints, MultiExprArg Exprs,
                                 Expr *asmString, MultiExprArg clobbers,
                                 SourceLocation RParenLoc) {
  unsigned NumClobbers = clobbers.size();
  StringLiteral **Constraints =
    reinterpret_cast<StringLiteral**>(constraints.data());
  StringLiteral *AsmString = cast<StringLiteral>(asmString);
  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());

  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;

  // The parser verifies that there is a string literal here.
  if (!AsmString->isAscii())
    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
      << AsmString->getSourceRange());

  for (unsigned i = 0; i != NumOutputs; i++) {
    StringLiteral *Literal = Constraints[i];
    if (!Literal->isAscii())
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
        << Literal->getSourceRange());

    StringRef OutputName;
    if (Names[i])
      OutputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
    if (!Context.getTargetInfo().validateOutputConstraint(Info))
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_output_constraint)
                       << Info.getConstraintStr());

    // Check that the output exprs are valid lvalues.
    Expr *OutputExpr = Exprs[i];
    if (CheckAsmLValue(OutputExpr, *this))
      return StmtError(Diag(OutputExpr->getLocStart(),
                            diag::err_asm_invalid_lvalue_in_output)
                       << OutputExpr->getSourceRange());

    if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(),
                            diag::err_dereference_incomplete_type))
      return StmtError();

    OutputConstraintInfos.push_back(Info);
  }

  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;

  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
    StringLiteral *Literal = Constraints[i];
    if (!Literal->isAscii())
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
        << Literal->getSourceRange());

    StringRef InputName;
    if (Names[i])
      InputName = Names[i]->getName();

    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
                                                NumOutputs, Info)) {
      return StmtError(Diag(Literal->getLocStart(),
                            diag::err_asm_invalid_input_constraint)
                       << Info.getConstraintStr());
    }

    Expr *InputExpr = Exprs[i];

    // Only allow void types for memory constraints.
    if (Info.allowsMemory() && !Info.allowsRegister()) {
      if (CheckAsmLValue(InputExpr, *this))
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_lvalue_in_input)
                         << Info.getConstraintStr()
                         << InputExpr->getSourceRange());
    } else {
      ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
      if (Result.isInvalid())
        return StmtError();

      Exprs[i] = Result.get();
    }

    if (Info.allowsRegister()) {
      if (InputExpr->getType()->isVoidType()) {
        return StmtError(Diag(InputExpr->getLocStart(),
                              diag::err_asm_invalid_type_in_input)
          << InputExpr->getType() << Info.getConstraintStr()
          << InputExpr->getSourceRange());
      }
    }

    InputConstraintInfos.push_back(Info);

    const Type *Ty = Exprs[i]->getType().getTypePtr();
    if (Ty->isDependentType())
      continue;

    if (!Ty->isVoidType() || !Info.allowsMemory())
      if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(),
                              diag::err_dereference_incomplete_type))
        return StmtError();

    unsigned Size = Context.getTypeSize(Ty);
    if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
                                                   Size))
      return StmtError(Diag(InputExpr->getLocStart(),
                            diag::err_asm_invalid_input_size)
                       << Info.getConstraintStr());
  }

  // Check that the clobbers are valid.
  for (unsigned i = 0; i != NumClobbers; i++) {
    StringLiteral *Literal = Clobbers[i];
    if (!Literal->isAscii())
      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
        << Literal->getSourceRange());

    StringRef Clobber = Literal->getString();

    if (!Context.getTargetInfo().isValidClobber(Clobber))
      return StmtError(Diag(Literal->getLocStart(),
                  diag::err_asm_unknown_register_name) << Clobber);
  }

  GCCAsmStmt *NS =
    new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
                             NumInputs, Names, Constraints, Exprs.data(),
                             AsmString, NumClobbers, Clobbers, RParenLoc);
  // Validate the asm string, ensuring it makes sense given the operands we
  // have.
  SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
  unsigned DiagOffs;
  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
           << AsmString->getSourceRange();
    return StmtError();
  }

  // Validate constraints and modifiers.
  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
    GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
    if (!Piece.isOperand()) continue;

    // Look for the correct constraint index.
    unsigned Idx = 0;
    unsigned ConstraintIdx = 0;
    for (unsigned i = 0, e = NS->getNumOutputs(); i != e; ++i, ++ConstraintIdx) {
      TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
      if (Idx == Piece.getOperandNo())
        break;
      ++Idx;

      if (Info.isReadWrite()) {
        if (Idx == Piece.getOperandNo())
          break;
        ++Idx;
      }
    }

    for (unsigned i = 0, e = NS->getNumInputs(); i != e; ++i, ++ConstraintIdx) {
      TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
      if (Idx == Piece.getOperandNo())
        break;
      ++Idx;

      if (Info.isReadWrite()) {
        if (Idx == Piece.getOperandNo())
          break;
        ++Idx;
      }
    }

    // Now that we have the right indexes go ahead and check.
    StringLiteral *Literal = Constraints[ConstraintIdx];
    const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
    if (Ty->isDependentType() || Ty->isIncompleteType())
      continue;

    unsigned Size = Context.getTypeSize(Ty);
    if (!Context.getTargetInfo()
          .validateConstraintModifier(Literal->getString(), Piece.getModifier(),
                                      Size))
      Diag(Exprs[ConstraintIdx]->getLocStart(),
           diag::warn_asm_mismatched_size_modifier);
  }

  // Validate tied input operands for type mismatches.
  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];

    // If this is a tied constraint, verify that the output and input have
    // either exactly the same type, or that they are int/ptr operands with the
    // same size (int/long, int*/long, are ok etc).
    if (!Info.hasTiedOperand()) continue;

    unsigned TiedTo = Info.getTiedOperand();
    unsigned InputOpNo = i+NumOutputs;
    Expr *OutputExpr = Exprs[TiedTo];
    Expr *InputExpr = Exprs[InputOpNo];

    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
      continue;

    QualType InTy = InputExpr->getType();
    QualType OutTy = OutputExpr->getType();
    if (Context.hasSameType(InTy, OutTy))
      continue;  // All types can be tied to themselves.

    // Decide if the input and output are in the same domain (integer/ptr or
    // floating point.
    enum AsmDomain {
      AD_Int, AD_FP, AD_Other
    } InputDomain, OutputDomain;

    if (InTy->isIntegerType() || InTy->isPointerType())
      InputDomain = AD_Int;
    else if (InTy->isRealFloatingType())
      InputDomain = AD_FP;
    else
      InputDomain = AD_Other;

    if (OutTy->isIntegerType() || OutTy->isPointerType())
      OutputDomain = AD_Int;
    else if (OutTy->isRealFloatingType())
      OutputDomain = AD_FP;
    else
      OutputDomain = AD_Other;

    // They are ok if they are the same size and in the same domain.  This
    // allows tying things like:
    //   void* to int*
    //   void* to int            if they are the same size.
    //   double to long double   if they are the same size.
    //
    uint64_t OutSize = Context.getTypeSize(OutTy);
    uint64_t InSize = Context.getTypeSize(InTy);
    if (OutSize == InSize && InputDomain == OutputDomain &&
        InputDomain != AD_Other)
      continue;

    // If the smaller input/output operand is not mentioned in the asm string,
    // then we can promote the smaller one to a larger input and the asm string
    // won't notice.
    bool SmallerValueMentioned = false;

    // If this is a reference to the input and if the input was the smaller
    // one, then we have to reject this asm.
    if (isOperandMentioned(InputOpNo, Pieces)) {
      // This is a use in the asm string of the smaller operand.  Since we
      // codegen this by promoting to a wider value, the asm will get printed
      // "wrong".
      SmallerValueMentioned |= InSize < OutSize;
    }
    if (isOperandMentioned(TiedTo, Pieces)) {
      // If this is a reference to the output, and if the output is the larger
      // value, then it's ok because we'll promote the input to the larger type.
      SmallerValueMentioned |= OutSize < InSize;
    }

    // If the smaller value wasn't mentioned in the asm string, and if the
    // output was a register, just extend the shorter one to the size of the
    // larger one.
    if (!SmallerValueMentioned && InputDomain != AD_Other &&
        OutputConstraintInfos[TiedTo].allowsRegister())
      continue;

    // Either both of the operands were mentioned or the smaller one was
    // mentioned.  One more special case that we'll allow: if the tied input is
    // integer, unmentioned, and is a constant, then we'll allow truncating it
    // down to the size of the destination.
    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
        !isOperandMentioned(InputOpNo, Pieces) &&
        InputExpr->isEvaluatable(Context)) {
      CastKind castKind =
        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
      Exprs[InputOpNo] = InputExpr;
      NS->setInputExpr(i, InputExpr);
      continue;
    }

    Diag(InputExpr->getLocStart(),
         diag::err_asm_tying_incompatible_types)
      << InTy << OutTy << OutputExpr->getSourceRange()
      << InputExpr->getSourceRange();
    return StmtError();
  }

  return NS;
}
 explicit Usage(const Expr *E)
     : E(E), IsArrow(false), Range(E->getSourceRange()) { }
示例#18
0
bool Sema::CheckMessageArgumentTypes(Expr **Args, unsigned NumArgs,
                                     Selector Sel, ObjCMethodDecl *Method,
                                     bool isClassMessage,
                                     SourceLocation lbrac, SourceLocation rbrac,
                                     QualType &ReturnType, ExprValueKind &VK) {
  if (!Method) {
    // Apply default argument promotion as for (C99 6.5.2.2p6).
    for (unsigned i = 0; i != NumArgs; i++) {
      if (Args[i]->isTypeDependent())
        continue;

      DefaultArgumentPromotion(Args[i]);
    }

    unsigned DiagID = isClassMessage ? diag::warn_class_method_not_found :
                                       diag::warn_inst_method_not_found;
    Diag(lbrac, DiagID)
      << Sel << isClassMessage << SourceRange(lbrac, rbrac);
    ReturnType = Context.getObjCIdType();
    VK = VK_RValue;
    return false;
  }

  ReturnType = Method->getSendResultType();
  VK = Expr::getValueKindForType(Method->getResultType());

  unsigned NumNamedArgs = Sel.getNumArgs();
  // Method might have more arguments than selector indicates. This is due
  // to addition of c-style arguments in method.
  if (Method->param_size() > Sel.getNumArgs())
    NumNamedArgs = Method->param_size();
  // FIXME. This need be cleaned up.
  if (NumArgs < NumNamedArgs) {
    Diag(lbrac, diag::err_typecheck_call_too_few_args)
      << 2 << NumNamedArgs << NumArgs;
    return false;
  }

  bool IsError = false;
  for (unsigned i = 0; i < NumNamedArgs; i++) {
    // We can't do any type-checking on a type-dependent argument.
    if (Args[i]->isTypeDependent())
      continue;

    Expr *argExpr = Args[i];

    ParmVarDecl *Param = Method->param_begin()[i];
    assert(argExpr && "CheckMessageArgumentTypes(): missing expression");

    if (RequireCompleteType(argExpr->getSourceRange().getBegin(),
                            Param->getType(),
                            PDiag(diag::err_call_incomplete_argument)
                              << argExpr->getSourceRange()))
      return true;

    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
                                                                      Param);
    ExprResult ArgE = PerformCopyInitialization(Entity, lbrac, Owned(argExpr));
    if (ArgE.isInvalid())
      IsError = true;
    else
      Args[i] = ArgE.takeAs<Expr>();
  }

  // Promote additional arguments to variadic methods.
  if (Method->isVariadic()) {
    for (unsigned i = NumNamedArgs; i < NumArgs; ++i) {
      if (Args[i]->isTypeDependent())
        continue;

      IsError |= DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
    }
  } else {
    // Check for extra arguments to non-variadic methods.
    if (NumArgs != NumNamedArgs) {
      Diag(Args[NumNamedArgs]->getLocStart(),
           diag::err_typecheck_call_too_many_args)
        << 2 /*method*/ << NumNamedArgs << NumArgs
        << Method->getSourceRange()
        << SourceRange(Args[NumNamedArgs]->getLocStart(),
                       Args[NumArgs-1]->getLocEnd());
    }
  }

  DiagnoseSentinelCalls(Method, lbrac, Args, NumArgs);
  return IsError;
}