示例#1
0
文件: tptp.cpp 项目: dddejan/CVC4
Expr Tptp::convertRatToUnsorted(Expr expr) {
  ExprManager* em = getExprManager();

  // Create the conversion function If they doesn't exists
  if (d_rtu_op.isNull()) {
    Type t;
    // Conversion from rational to unsorted
    t = em->mkFunctionType(em->realType(), d_unsorted);
    d_rtu_op = em->mkVar("$$rtu", t);
    preemptCommand(new DeclareFunctionCommand("$$rtu", d_rtu_op, t));
    // Conversion from unsorted to rational
    t = em->mkFunctionType(d_unsorted, em->realType());
    d_utr_op = em->mkVar("$$utr", t);
    preemptCommand(new DeclareFunctionCommand("$$utr", d_utr_op, t));
  }
  // Add the inverse in order to show that over the elements that
  // appear in the problem there is a bijection between unsorted and
  // rational
  Expr ret = em->mkExpr(kind::APPLY_UF, d_rtu_op, expr);
  if (d_r_converted.find(expr) == d_r_converted.end()) {
    d_r_converted.insert(expr);
    Expr eq = em->mkExpr(kind::EQUAL, expr,
                         em->mkExpr(kind::APPLY_UF, d_utr_op, ret));
    preemptCommand(new AssertCommand(eq));
  }
  return ret;
}
示例#2
0
int main() {
  ExprManager em;
  SmtEngine smt(&em);
  smt.setOption("produce-models", true); // Produce Models
  smt.setOption("output-language", "cvc4"); // Set the output-language to CVC's
  smt.setOption("default-dag-thresh", 0); //Disable dagifying the output
  smt.setLogic(string("QF_UFLIRA"));

  // Sorts
  SortType u = em.mkSort("u");
  Type integer = em.integerType();
  Type boolean = em.booleanType();
  Type uToInt = em.mkFunctionType(u, integer);
  Type intPred = em.mkFunctionType(integer, boolean);

  // Variables
  Expr x = em.mkVar("x", u);
  Expr y = em.mkVar("y", u);

  // Functions
  Expr f = em.mkVar("f", uToInt);
  Expr p = em.mkVar("p", intPred);

  // Constants
  Expr zero = em.mkConst(Rational(0));
  Expr one = em.mkConst(Rational(1));

  // Terms
  Expr f_x = em.mkExpr(kind::APPLY_UF, f, x);
  Expr f_y = em.mkExpr(kind::APPLY_UF, f, y);
  Expr sum = em.mkExpr(kind::PLUS, f_x, f_y);
  Expr p_0 = em.mkExpr(kind::APPLY_UF, p, zero);
  Expr p_f_y = em.mkExpr(kind::APPLY_UF, p, f_y);

  // Construct the assumptions
  Expr assumptions =
    em.mkExpr(kind::AND,
              em.mkExpr(kind::LEQ, zero, f_x), // 0 <= f(x)
              em.mkExpr(kind::LEQ, zero, f_y), // 0 <= f(y)
              em.mkExpr(kind::LEQ, sum, one),  // f(x) + f(y) <= 1
              p_0.notExpr(),                   // not p(0)
              p_f_y);                          // p(f(y))
  smt.assertFormula(assumptions);

  cout << "Given the following assumptions:" << endl
       << assumptions << endl
       << "Prove x /= y is valid. "
       << "CVC4 says: " << smt.query(em.mkExpr(kind::DISTINCT, x, y))
       << "." << endl;

  cout << "Now we call checksat on a trivial query to show that" << endl
       << "the assumptions are satisfiable: "
       << smt.checkSat(em.mkConst(true)) << "."<< endl;

  cout << "Finally, after a SAT call, we recursively call smt.getValue(...) on"
       << "all of the assumptions to see what the satisfying model looks like."
       << endl;
  prefixPrintGetValue(smt, assumptions);

  return 0;
}
示例#3
0
  Expr add(SetType t, Expr e) {

    if(setTypes.find(t) == setTypes.end() ) {
      // mark as processed
      setTypes.insert(t);

      Type elementType = t.getElementType();
      ostringstream oss_type;
      oss_type << language::SetLanguage(language::output::LANG_SMTLIB_V2)
               << elementType;
      string elementTypeAsString = oss_type.str();
      elementTypeAsString.erase(
        remove_if(elementTypeAsString.begin(), elementTypeAsString.end(), nonsense),
        elementTypeAsString.end());

      // define-sort
      ostringstream oss_name;
      oss_name << language::SetLanguage(language::output::LANG_SMTLIB_V2)
               << "(Set " << elementType << ")";
      string name = oss_name.str();
      Type newt = em->mkArrayType(t.getElementType(), em->booleanType());
      mapTypes[t] = newt;

      // diffent types
      vector<Type> t_t;
      t_t.push_back(t);
      t_t.push_back(t);
      vector<Type> elet_t;
      elet_t.push_back(elementType);
      elet_t.push_back(t);

      if(!enableAxioms)
        sout << "(define-fun emptyset" << elementTypeAsString << "    "
             << " ()"
             << " " << name
             << " ( (as const " << name << ") false ) )" << endl;
      setoperators[ make_pair(t, kind::EMPTYSET) ] =
        em->mkVar( std::string("emptyset") + elementTypeAsString,
                   t);

      if(!enableAxioms)
        sout << "(define-fun singleton" << elementTypeAsString << "     "
             << " ( (x " << elementType << ") )"
             << " " << name << ""
             << " (store emptyset" << elementTypeAsString << " x true) )" << endl;
      setoperators[ make_pair(t, kind::SINGLETON) ] =
        em->mkVar( std::string("singleton") + elementTypeAsString,
                   em->mkFunctionType( elementType, t ) );

      if(!enableAxioms)
        sout << "(define-fun union" << elementTypeAsString << "       "
             << " ( (s1 " << name << ") (s2 " << name << ") )"
             << " " << name << ""
             << " ((_ map or) s1 s2))" << endl;
      setoperators[ make_pair(t, kind::UNION) ] =
        em->mkVar( std::string("union") + elementTypeAsString,
                   em->mkFunctionType( t_t, t ) );

      if(!enableAxioms)
        sout << "(define-fun intersection" << elementTypeAsString << ""
             << " ( (s1 " << name << ") (s2 " << name << ") )"
             << " " << name << ""
             << " ((_ map and) s1 s2))" << endl;
      setoperators[ make_pair(t, kind::INTERSECTION) ] =
        em->mkVar( std::string("intersection") + elementTypeAsString,
                   em->mkFunctionType( t_t, t ) );

      if(!enableAxioms)
        sout << "(define-fun setminus" << elementTypeAsString << "    "
             << " ( (s1 " << name << ") (s2 " << name << ") )"
             << " " << name << ""
             << " (intersection" << elementTypeAsString << " s1 ((_ map not) s2)))" << endl;
      setoperators[ make_pair(t, kind::SETMINUS) ] =
        em->mkVar( std::string("setminus") + elementTypeAsString,
                   em->mkFunctionType( t_t, t ) );

      if(!enableAxioms)
        sout << "(define-fun member" << elementTypeAsString << "          "
             << " ( (x " << elementType << ")" << " (s " << name << "))"
             << " Bool"
             << " (select s x) )" << endl;
      setoperators[ make_pair(t, kind::MEMBER) ] =
        em->mkVar( std::string("member") + elementTypeAsString,
                   em->mkPredicateType( elet_t ) );

      if(!enableAxioms)
        sout << "(define-fun subset" << elementTypeAsString << "    "
             << " ( (s1 " << name << ") (s2 " << name << ") )"
             << " Bool"
             <<" (= emptyset" << elementTypeAsString << " (setminus" << elementTypeAsString << " s1 s2)) )" << endl;
      setoperators[ make_pair(t, kind::SUBSET) ] =
        em->mkVar( std::string("subset") + elementTypeAsString,
                   em->mkPredicateType( t_t ) );

      if(enableAxioms) {
        int N = sizeof(setaxioms) / sizeof(setaxioms[0]);
        for(int i = 0; i < N; ++i) {
          string s = setaxioms[i];
          ostringstream oss;
          oss << language::SetLanguage(language::output::LANG_SMTLIB_V2) << elementType;
          boost::replace_all(s, "HOLDA", elementTypeAsString);
          boost::replace_all(s, "HOLDB", oss.str());
          if( s == "" ) continue;
          sout << s << endl;
        }
      }

    }
    Expr ret;
    if(e.getKind() == kind::EMPTYSET) {
      ret = setoperators[ make_pair(t, e.getKind()) ];
    } else {
      vector<Expr> children = e.getChildren();
      children.insert(children.begin(), setoperators[ make_pair(t, e.getKind()) ]);
      ret = em->mkExpr(kind::APPLY, children);
    }
    // cout << "returning " << ret  << endl;
    return ret;
  }