bool BranchProbabilityInfo::calcFloatingPointHeuristics(BasicBlock *BB) { BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); if (!BI || !BI->isConditional()) return false; Value *Cond = BI->getCondition(); FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond); if (!FCmp) return false; bool isProb; if (FCmp->isEquality()) { // f1 == f2 -> Unlikely // f1 != f2 -> Likely isProb = !FCmp->isTrueWhenEqual(); } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) { // !isnan -> Likely isProb = true; } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) { // isnan -> Unlikely isProb = false; } else { return false; } unsigned TakenIdx = 0, NonTakenIdx = 1; if (!isProb) std::swap(TakenIdx, NonTakenIdx); setEdgeWeight(BB, TakenIdx, FPH_TAKEN_WEIGHT); setEdgeWeight(BB, NonTakenIdx, FPH_NONTAKEN_WEIGHT); return true; }
int BranchProbabilities::CheckFloatHeuristic() { // Heuristic fails if the last instruction is not a conditional branch BranchInst *BI = dyn_cast<BranchInst>(_TI); if ((!BI) || (BI->isUnconditional())) return -1; // All float comparisons are done with the fcmp instruction FCmpInst *fcmp = dyn_cast<FCmpInst>(BI->getCondition()); if (!fcmp) return -1; // Choose the prefered branch depending on if this is an eq or neq comp switch (fcmp->getPredicate()) { case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: return 1; case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: return 0; case FCmpInst::FCMP_FALSE: case FCmpInst::FCMP_TRUE: assert("true or false predicate should have been folded!"); default: return -1; } }
/// HandleFloatingPointIV - If the loop has floating induction variable /// then insert corresponding integer induction variable if possible. /// For example, /// for(double i = 0; i < 10000; ++i) /// bar(i) /// is converted into /// for(int i = 0; i < 10000; ++i) /// bar((double)i); /// void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); unsigned BackEdge = IncomingEdge^1; // Check incoming value. ConstantFP *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); int64_t InitValue; if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) return; // Check IV increment. Reject this PN if increment operation is not // an add or increment value can not be represented by an integer. BinaryOperator *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; // If this is not an add of the PHI with a constantfp, or if the constant fp // is not an integer, bail out. ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); int64_t IncValue; if (IncValueVal == 0 || Incr->getOperand(0) != PN || !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) return; // Check Incr uses. One user is PN and the other user is an exit condition // used by the conditional terminator. Value::use_iterator IncrUse = Incr->use_begin(); Instruction *U1 = cast<Instruction>(IncrUse++); if (IncrUse == Incr->use_end()) return; Instruction *U2 = cast<Instruction>(IncrUse++); if (IncrUse != Incr->use_end()) return; // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't // only used by a branch, we can't transform it. FCmpInst *Compare = dyn_cast<FCmpInst>(U1); if (!Compare) Compare = dyn_cast<FCmpInst>(U2); if (Compare == 0 || !Compare->hasOneUse() || !isa<BranchInst>(Compare->use_back())) return; BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); // We need to verify that the branch actually controls the iteration count // of the loop. If not, the new IV can overflow and no one will notice. // The branch block must be in the loop and one of the successors must be out // of the loop. assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); if (!L->contains(TheBr->getParent()) || (L->contains(TheBr->getSuccessor(0)) && L->contains(TheBr->getSuccessor(1)))) return; // If it isn't a comparison with an integer-as-fp (the exit value), we can't // transform it. ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); int64_t ExitValue; if (ExitValueVal == 0 || !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) return; // Find new predicate for integer comparison. CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; switch (Compare->getPredicate()) { default: return; // Unknown comparison. case CmpInst::FCMP_OEQ: case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; case CmpInst::FCMP_ONE: case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; case CmpInst::FCMP_OGT: case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; case CmpInst::FCMP_OGE: case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; case CmpInst::FCMP_OLT: case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; case CmpInst::FCMP_OLE: case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; } // We convert the floating point induction variable to a signed i32 value if // we can. This is only safe if the comparison will not overflow in a way // that won't be trapped by the integer equivalent operations. Check for this // now. // TODO: We could use i64 if it is native and the range requires it. // The start/stride/exit values must all fit in signed i32. if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) return; // If not actually striding (add x, 0.0), avoid touching the code. if (IncValue == 0) return; // Positive and negative strides have different safety conditions. if (IncValue > 0) { // If we have a positive stride, we require the init to be less than the // exit value and an equality or less than comparison. if (InitValue >= ExitValue || NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE) return; uint32_t Range = uint32_t(ExitValue-InitValue); if (NewPred == CmpInst::ICMP_SLE) { // Normalize SLE -> SLT, check for infinite loop. if (++Range == 0) return; // Range overflows. } unsigned Leftover = Range % uint32_t(IncValue); // If this is an equality comparison, we require that the strided value // exactly land on the exit value, otherwise the IV condition will wrap // around and do things the fp IV wouldn't. if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && Leftover != 0) return; // If the stride would wrap around the i32 before exiting, we can't // transform the IV. if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) return; } else { // If we have a negative stride, we require the init to be greater than the // exit value and an equality or greater than comparison. if (InitValue >= ExitValue || NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE) return; uint32_t Range = uint32_t(InitValue-ExitValue); if (NewPred == CmpInst::ICMP_SGE) { // Normalize SGE -> SGT, check for infinite loop. if (++Range == 0) return; // Range overflows. } unsigned Leftover = Range % uint32_t(-IncValue); // If this is an equality comparison, we require that the strided value // exactly land on the exit value, otherwise the IV condition will wrap // around and do things the fp IV wouldn't. if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && Leftover != 0) return; // If the stride would wrap around the i32 before exiting, we can't // transform the IV. if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) return; } const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); // Insert new integer induction variable. PHINode *NewPHI = PHINode::Create(Int32Ty, PN->getName()+".int", PN); NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), PN->getIncomingBlock(IncomingEdge)); Value *NewAdd = BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), Incr->getName()+".int", Incr); NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, ConstantInt::get(Int32Ty, ExitValue), Compare->getName()); // In the following deletions, PN may become dead and may be deleted. // Use a WeakVH to observe whether this happens. WeakVH WeakPH = PN; // Delete the old floating point exit comparison. The branch starts using the // new comparison. NewCompare->takeName(Compare); Compare->replaceAllUsesWith(NewCompare); RecursivelyDeleteTriviallyDeadInstructions(Compare); // Delete the old floating point increment. Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); RecursivelyDeleteTriviallyDeadInstructions(Incr); // If the FP induction variable still has uses, this is because something else // in the loop uses its value. In order to canonicalize the induction // variable, we chose to eliminate the IV and rewrite it in terms of an // int->fp cast. // // We give preference to sitofp over uitofp because it is faster on most // platforms. if (WeakPH) { Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", PN->getParent()->getFirstNonPHI()); PN->replaceAllUsesWith(Conv); RecursivelyDeleteTriviallyDeadInstructions(PN); } // Add a new IVUsers entry for the newly-created integer PHI. IU->AddUsersIfInteresting(NewPHI); }
/// HandleFloatingPointIV - If the loop has floating induction variable /// then insert corresponding integer induction variable if possible. /// For example, /// for(double i = 0; i < 10000; ++i) /// bar(i) /// is converted into /// for(int i = 0; i < 10000; ++i) /// bar((double)i); /// void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) { unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0)); unsigned BackEdge = IncomingEdge^1; // Check incoming value. ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge)); if (!InitValue) return; uint64_t newInitValue = Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits(); if (!convertToInt(InitValue->getValueAPF(), &newInitValue)) return; // Check IV increment. Reject this PH if increment operation is not // an add or increment value can not be represented by an integer. BinaryOperator *Incr = dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge)); if (!Incr) return; if (Incr->getOpcode() != Instruction::FAdd) return; ConstantFP *IncrValue = NULL; unsigned IncrVIndex = 1; if (Incr->getOperand(1) == PH) IncrVIndex = 0; IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex)); if (!IncrValue) return; uint64_t newIncrValue = Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits(); if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue)) return; // Check Incr uses. One user is PH and the other users is exit condition used // by the conditional terminator. Value::use_iterator IncrUse = Incr->use_begin(); Instruction *U1 = cast<Instruction>(IncrUse++); if (IncrUse == Incr->use_end()) return; Instruction *U2 = cast<Instruction>(IncrUse++); if (IncrUse != Incr->use_end()) return; // Find exit condition. FCmpInst *EC = dyn_cast<FCmpInst>(U1); if (!EC) EC = dyn_cast<FCmpInst>(U2); if (!EC) return; if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) { if (!BI->isConditional()) return; if (BI->getCondition() != EC) return; } // Find exit value. If exit value can not be represented as an integer then // do not handle this floating point PH. ConstantFP *EV = NULL; unsigned EVIndex = 1; if (EC->getOperand(1) == Incr) EVIndex = 0; EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex)); if (!EV) return; uint64_t intEV = Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits(); if (!convertToInt(EV->getValueAPF(), &intEV)) return; // Find new predicate for integer comparison. CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; switch (EC->getPredicate()) { case CmpInst::FCMP_OEQ: case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; case CmpInst::FCMP_OGT: case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_UGT; break; case CmpInst::FCMP_OGE: case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_UGE; break; case CmpInst::FCMP_OLT: case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_ULT; break; case CmpInst::FCMP_OLE: case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_ULE; break; default: break; } if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return; // Insert new integer induction variable. PHINode *NewPHI = PHINode::Create(Type::getInt32Ty(PH->getContext()), PH->getName()+".int", PH); NewPHI->addIncoming(ConstantInt::get(Type::getInt32Ty(PH->getContext()), newInitValue), PH->getIncomingBlock(IncomingEdge)); Value *NewAdd = BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Type::getInt32Ty(PH->getContext()), newIncrValue), Incr->getName()+".int", Incr); NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge)); // The back edge is edge 1 of newPHI, whatever it may have been in the // original PHI. ConstantInt *NewEV = ConstantInt::get(Type::getInt32Ty(PH->getContext()), intEV); Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV); Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1)); ICmpInst *NewEC = new ICmpInst(EC->getParent()->getTerminator(), NewPred, LHS, RHS, EC->getName()); // In the following deletions, PH may become dead and may be deleted. // Use a WeakVH to observe whether this happens. WeakVH WeakPH = PH; // Delete old, floating point, exit comparison instruction. NewEC->takeName(EC); EC->replaceAllUsesWith(NewEC); RecursivelyDeleteTriviallyDeadInstructions(EC); // Delete old, floating point, increment instruction. Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); RecursivelyDeleteTriviallyDeadInstructions(Incr); // Replace floating induction variable, if it isn't already deleted. // Give SIToFPInst preference over UIToFPInst because it is faster on // platforms that are widely used. if (WeakPH && !PH->use_empty()) { if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) { SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv", PH->getParent()->getFirstNonPHI()); PH->replaceAllUsesWith(Conv); } else { UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv", PH->getParent()->getFirstNonPHI()); PH->replaceAllUsesWith(Conv); } RecursivelyDeleteTriviallyDeadInstructions(PH); } // Add a new IVUsers entry for the newly-created integer PHI. IU->AddUsersIfInteresting(NewPHI); }