示例#1
0
/********************************************************************************
 *    Copyright (C) 2014 GSI Helmholtzzentrum fuer Schwerionenforschung GmbH    *
 *                                                                              *
 *              This software is distributed under the terms of the             * 
 *         GNU Lesser General Public Licence version 3 (LGPL) version 3,        *  
 *                  copied verbatim in the file "LICENSE"                       *
 ********************************************************************************/
Int_t  sql_params_read()
{
  // Create a Runtime Database singleton.
  FairRuntimeDb* db = FairRuntimeDb::instance();

  // Set the SQL IO as first input
  FairParTSQLIo* inp = new FairParTSQLIo();
  
 
  // Verbosity level
  inp->SetVerbosity(1);

  inp->open();
  db->setFirstInput(inp);

  // Create the container via the factory if not already created
  FairDbTutPar* p1 = (FairDbTutPar*)(db->getContainer("TUTParDefault"));
  FairDbTutPar* p2 = (FairDbTutPar*)(db->getContainer("TUTParAlternative"));


  // Create a dummy runID using date in UTC from which
  // corresponding  parameters will be initialised

  ValTimeStamp tStamp(2015,02,20,10,10,10);
  UInt_t runId = tStamp.GetSec();
  cout << "-I- looking for parameters at runID# " << runId << endl;
  cout << "-I- corresponding  time in runID (UTC) " << tStamp.Format("iso") << endl;

  // Use the generated RunID to initialised the parameter
  // using the SQL-based IO input
  db->initContainers(runId);


  // Get the container after initialisation
  // from the RuntimeDB
  FairDbTutPar* pp1 = (FairDbTutPar*)(db->getContainer("TUTParDefault"));
  FairDbTutPar* pp2 = (FairDbTutPar*)(db->getContainer("TUTParAlternative"));


  cout << endl;
  cout << "-I- Reading Parameter data from SQL Database: \n" << endl;
  cout << endl;

  pp1->Print();
  pp2->Print();

  cout << endl;
 


  if (db) delete db;
  return 0;
}
示例#2
0
Int_t  calgeo_read()
{
  // Create a Runtime Database singleton.
  FairRuntimeDb* db = FairRuntimeDb::instance();

  // Set the SQL IO as first input
  FairParTSQLIo* inp = new FairParTSQLIo();
  
  // Verbosity level
  //inp->SetVerbosity(1);

  inp->open();
  db->setFirstInput(inp);

   // Create in memory the relevant container
  R3BCaloGeometryPar* par = (R3BCaloGeometryPar*)(db->getContainer("CaloGeometryPar"));

  // Create a dummy runID using date in UTC from which
  // corresponding  parameters will be initialised

  ValTimeStamp tStamp(2014,03,21,18,00,00);
  UInt_t runId = tStamp.GetSec();
  cout << "-I- looking for parameters at runID# " << runId << endl;
  cout << "-I- corresponding  time in runID (UTC) " << tStamp.Format("iso") << endl;

  // Use the generated RunID to initialised the parameter
  // using the SQL-based IO input
  db->initContainers(runId);


  // Get the container after initialisation
  // from the RuntimeDB
  R3BCaloGeometryPar* par = (R3BCaloGeometryPar*)(db->getContainer("CaloGeometryPar"));


  cout << endl;
  cout << "-I- Reading Parameter data from SQL Database: \n" << endl;
  cout << endl;

  par->Print();

  cout << endl;
 


  if (db) delete db;
  return 0;
}
示例#3
0
Int_t  califa_test()
{
  // Create a Runtime Database singleton.
  FairRuntimeDb* db = FairRuntimeDb::instance();

   // Create in memory the relevant container
  R3BCaloCalPar* par = (R3BCaloCalPar*)(db->getContainer("CaloCalPar"));  

  // Set the SQL IO as first input
  FairParAsciiFileIo* inp = new FairParAsciiFileIo();

  TString filename ="ducals.par";
  inp->open(filename.Data(),"in");

  db->setFirstInput(inp);

// Generate a unique RunID
  FairRunIdGenerator runID;
  UInt_t runId =  runID.generateId();
  db->initContainers(runId);


  // Get the container after initialisation
  // from the RuntimeDB
  R3BCaloCalPar* par = (R3BCaloCalPar*)(db->getContainer("CaloCalPar"));

  // Dump the Parameters
  cout << endl;
  cout << "-I- Reading Parameter data from Ascii File: \n" << filename.Data() << endl;
  cout << endl;

  par->Print();
  cout << endl;

  // Convert in ROOT format 
  par->setChanged();
  Bool_t kParameterMerged = kTRUE;
  FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
  parOut->open("califa_cal_par.root");
  db->setOutput(parOut);
  db->saveOutput();
  db->print();
  // ------------------------------------------------------------------------

  if (db) delete db;
  return 0;
}
示例#4
0
void run_sim(Int_t gen=1, Int_t nEvents = 1, Int_t fileNum = 100)
{
    TString rootVersion = "feb16";
    const char* setup = "sis100_electron"; 
    TString sfileNum = "";
    sfileNum += fileNum;
// ========================================================================
  //          Adjust this part according to your requirements

  // ----- Paths and file names  --------------------------------------------
    
  TString inDir = "/hera/cbm/users/klochkov/cbm/data/input/au10au/shield/test_10k/";
  TString inFile = inDir + "au10au_" + sfileNum + ".root";  
    
  TString outDir = "/hera/cbm/users/klochkov/cbm/data/au10au_10k_test_1/";
 
  TString outFile = outDir + "sim/mc_" + sfileNum +  ".root";
  TString parFile = outDir + "sim/params_" + sfileNum +  ".root";
  TString geoFileNamePsd = outDir + "geo/psd_geo_xy_" + sfileNum + ".txt";
  TString geoFileName = outDir + "geo/geofile_" + sfileNum +  ".root"; 
  
  TString SourceDir = gSystem->Getenv("VMCWORKDIR");
  TString setupFile =  SourceDir + "/geometry/setup/sis100_electron_setup.C";   //TODO
  TString setupFunct = setup;
  setupFunct += "_setup()";
  
  gROOT->LoadMacro(setupFile);
  gInterpreter->ProcessLine(setupFunct);


  // Function needed for CTest runtime dependency
//   TString depFile = Remove_CTest_Dependency_File(outDir, "run_sim" , setup);

  // --- Logger settings ----------------------------------------------------
  TString logLevel = "INFO";   // "DEBUG";
  TString logVerbosity = "LOW";
  // ------------------------------------------------------------------------


  // --- Define the target geometry -----------------------------------------
  //
  // The target is not part of the setup, since one and the same setup can
  // and will be used with different targets.
  // The target is constructed as a tube in z direction with the specified
  // diameter (in x and y) and thickness (in z). It will be placed at the
  // specified position as daughter volume of the volume present there. It is
  // in the responsibility of the user that no overlaps or extrusions are
  // created by the placement of the target.
  //
  TString  targetElement   = "Gold";
  Double_t targetThickness = 0.025;  // full thickness in cm
  Double_t targetDiameter  = 2.5;    // diameter in cm
  Double_t targetPosX      = 0.;     // target x position in global c.s. [cm]
  Double_t targetPosY      = 0.;     // target y position in global c.s. [cm]
  Double_t targetPosZ      = 0.;     // target z position in global c.s. [cm]
  Double_t targetRotY      = 0.;     // target rotation angle around the y axis [deg]
  // ------------------------------------------------------------------------


  // --- Define the creation of the primary vertex   ------------------------
  //
  // By default, the primary vertex point is sampled from a Gaussian
  // distribution in both x and y with the specified beam profile width,
  // and from a flat distribution in z over the extension of the target.
  // By setting the respective flags to kFALSE, the primary vertex will always
  // at the (0., 0.) in x and y and in the z centre of the target, respectively.
  //
  Bool_t smearVertexXY = kTRUE;
  Bool_t smearVertexZ  = kTRUE;
  Double_t beamWidthX   = 1.;  // Gaussian sigma of the beam profile in x [cm]
  Double_t beamWidthY   = 1.;  // Gaussian sigma of the beam profile in y [cm]
  // ------------------------------------------------------------------------
  

  // In general, the following parts need not be touched
  // ========================================================================

  cout << "[INFO   ] Setup: " << setup << endl;

  // ----    Debug option   -------------------------------------------------
  gDebug = 0;
  // ------------------------------------------------------------------------


  // -----   Timer   --------------------------------------------------------
  TStopwatch timer;
  timer.Start();
  // ------------------------------------------------------------------------

  
  // -----   Create simulation run   ----------------------------------------
  FairRunSim* run = new FairRunSim();
  run->SetName("TGeant4");              // Transport engine
  run->SetOutputFile(outFile);          // Output file
  run->SetGenerateRunInfo(kTRUE);       // Create FairRunInfo file
  FairRuntimeDb* rtdb = run->GetRuntimeDb();
  // ------------------------------------------------------------------------


  // -----   Logger settings   ----------------------------------------------
  gLogger->SetLogScreenLevel(logLevel.Data());
  gLogger->SetLogVerbosityLevel(logVerbosity.Data());
  // ------------------------------------------------------------------------


  // -----   Create media   -------------------------------------------------
  run->SetMaterials("media.geo");       // Materials
  // ------------------------------------------------------------------------


  // -----   Create detectors and passive volumes   -------------------------
  if ( caveGeom != "" ) {
    FairModule* cave = new CbmCave("CAVE");
    cave->SetGeometryFileName(caveGeom);
    run->AddModule(cave);
  }

  if ( pipeGeom != "" ) {
    FairModule* pipe = new CbmPipe("PIPE");
    pipe->SetGeometryFileName(pipeGeom);
    run->AddModule(pipe);
  }
  
  // --- Target
  CbmTarget* target = new CbmTarget(targetElement.Data(),
  		                              targetThickness,
  		                              targetDiameter);
  target->SetPosition(targetPosX, targetPosY, targetPosZ);
  target->SetRotation(targetRotY);
  run->AddModule(target);

  if ( magnetGeom != "" ) {
    FairModule* magnet = new CbmMagnet("MAGNET");
    magnet->SetGeometryFileName(magnetGeom);
    run->AddModule(magnet);
  }
  
  if ( platformGeom != "" ) {
    FairModule* platform = new CbmPlatform("PLATFORM");
    platform->SetGeometryFileName(platformGeom);
    run->AddModule(platform);
  }

  if ( mvdGeom != "" ) {
    FairDetector* mvd = new CbmMvd("MVD", kTRUE);
    mvd->SetGeometryFileName(mvdGeom);
    mvd->SetMotherVolume("pipevac1");
    run->AddModule(mvd);
  }

  if ( stsGeom != "" ) {
    FairDetector* sts = new CbmStsMC(kTRUE);
    sts->SetGeometryFileName(stsGeom);
    run->AddModule(sts);
  }

  if ( richGeom != "" ) {
    FairDetector* rich = new CbmRich("RICH", kTRUE);
    rich->SetGeometryFileName(richGeom);
    run->AddModule(rich);
  }
  
  if ( muchGeom != "" ) {
    FairDetector* much = new CbmMuch("MUCH", kTRUE);
    much->SetGeometryFileName(muchGeom);
    run->AddModule(much);
  }
  
  if ( shieldGeom != "" ) {
  	FairModule* shield = new CbmShield("SHIELD");
  	shield->SetGeometryFileName(shieldGeom);
  	run->AddModule(shield);
  }

  if ( trdGeom != "" ) {
    FairDetector* trd = new CbmTrd("TRD",kTRUE );
    trd->SetGeometryFileName(trdGeom);
    run->AddModule(trd);
  }

  if ( tofGeom != "" ) {
    FairDetector* tof = new CbmTof("TOF", kTRUE);
    tof->SetGeometryFileName(tofGeom);
    run->AddModule(tof);
  }
  
  if ( ecalGeom != "" ) {
    FairDetector* ecal = new CbmEcal("ECAL", kTRUE, ecalGeom.Data()); 
    run->AddModule(ecal);
  }

  
//   if ( psdGeom != "" ) {
    TString geoFileNamePsd = outDir + "geo/psd_geo_xy_" + sfileNum + ".txt";
    cout << "Constructing PSD" << endl;
//   	CbmPsdv1* psd= new CbmPsdv1("PSD", kTRUE);  
    CbmPsdTest* psd= new CbmPsdTest("PSD", kTRUE);
    psd->SetZposition(psdZpos); // in cm
    psd->SetXshift(psdXpos);  // in cm    
    psd->SetGeoFile(geoFileNamePsd);  
    psd->SetHoleSize(6);
    run->AddModule(psd);
//   }
  
  // ------------------------------------------------------------------------

  // -----   Create magnetic field   ----------------------------------------
  CbmFieldMap* magField = NULL;
  if ( 2 == fieldSymType ) {
    magField = new CbmFieldMapSym2(fieldMap);
  }  else if ( 3 == fieldSymType ) {
    magField = new CbmFieldMapSym3(fieldMap);
  } 
  magField->SetPosition(0., 0., fieldZ);
  magField->SetScale(fieldScale);
  run->SetField(magField);
  // ------------------------------------------------------------------------


  // -----   Create PrimaryGenerator   --------------------------------------
  FairPrimaryGenerator* primGen = new FairPrimaryGenerator();
  // --- Uniform distribution of event plane angle
//   primGen->SetEventPlane(0., 2. * TMath::Pi());        //TODO (ask Vitaly) check event plane
  // --- Get target parameters
  Double_t tX = 0.;
  Double_t tY = 0.;
  Double_t tZ = 0.;
  Double_t tDz = 0.;
  if ( target ) {
  	target->GetPosition(tX, tY, tZ);
  	tDz = target->GetThickness();
  }
  primGen->SetTarget(tZ, tDz);
  primGen->SetBeam(0., 0., beamWidthX, beamWidthY);
  primGen->SmearGausVertexXY(smearVertexXY);
  primGen->SmearVertexZ(smearVertexZ);
  //
  // TODO: Currently, there is no guaranteed consistency of the beam profile
  // and the transversal target dimension, i.e., that the sampled primary
  // vertex falls into the target volume. This would require changes
  // in the FairPrimaryGenerator class.
  // ------------------------------------------------------------------------

  // Use the CbmUnigenGenrator for the input
  
    if (gen == 0) {
        CbmUnigenGenerator*  urqmdGen = new CbmUnigenGenerator(inFile);
        urqmdGen->SetEventPlane(-TMath::Pi(), TMath::Pi());
        primGen->AddGenerator(urqmdGen);
    }

    if (gen == 1) {
        CbmShieldGeneratorNew*  shieldGen = new CbmShieldGeneratorNew (inFile);
        primGen->AddGenerator(shieldGen);
    }  
  
  
  run->SetGenerator(primGen);
  // ------------------------------------------------------------------------

 
  // Visualisation of trajectories (TGeoManager Only)
  // Switch this on if you want to visualise tracks in the event display.
  // This is normally switch off, because of the huge files created
  // when it is switched on. 
  run->SetStoreTraj(kFALSE);

  // -----   Run initialisation   -------------------------------------------
  run->Init();
  // ------------------------------------------------------------------------
  
  // Set cuts for storing the trajectories.
  // Switch this on only if trajectories are stored.
  // Choose this cuts according to your needs, but be aware
  // that the file size of the output file depends on these cuts

   FairTrajFilter* trajFilter = FairTrajFilter::Instance();
   if ( trajFilter ) {
  	 trajFilter->SetStepSizeCut(0.01); // 1 cm
  	 trajFilter->SetVertexCut(-2000., -2000., 4., 2000., 2000., 100.);
  	 trajFilter->SetMomentumCutP(10e-3); // p_lab > 10 MeV
  	 trajFilter->SetEnergyCut(0., 1.02); // 0 < Etot < 1.04 GeV
  	 trajFilter->SetStorePrimaries(kTRUE);
  	 trajFilter->SetStoreSecondaries(kTRUE);
   }

  // -----   Runtime database   ---------------------------------------------
  CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar");
  fieldPar->SetParameters(magField);
  fieldPar->setChanged();
  fieldPar->setInputVersion(run->GetRunId(),1);
  Bool_t kParameterMerged = kTRUE;
  FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
  parOut->open(parFile.Data());
  rtdb->setOutput(parOut);
  rtdb->saveOutput();
  rtdb->print();
  // ------------------------------------------------------------------------

 
  // -----   Start run   ----------------------------------------------------
  run->Run(nEvents);
  // ------------------------------------------------------------------------
  run->CreateGeometryFile(geoFileName);

  // -----   Finish   -------------------------------------------------------
  timer.Stop();
  Double_t rtime = timer.RealTime();
  Double_t ctime = timer.CpuTime();
  std::cout << std::endl << std::endl;
  std::cout << "Macro finished successfully." << std::endl;
  std::cout << "Output file is "    << outFile << std::endl;
  std::cout << "Parameter file is " << parFile << std::endl;
  std::cout << "Real time " << rtime << " s, CPU time " << ctime
       << "s" << std::endl << std::endl;
  // ------------------------------------------------------------------------

  std::cout << " Test passed" << std::endl;
  std::cout << " All ok " << std::endl;

  // Function needed for CTest runtime dependency
//   Generate_CTest_Dependency_File(depFile);

}
void run_CbmIonGenerator(Int_t nEvents = 1)
{
  // ========================================================================
  //          Adjust this part according to your requirements

  // Input file
  //TString inPath = "/d/cbm03/urqmd/auau/25gev/centr/";
  //TString inFile = inPath + "urqmd.auau.25gev.centr.0000.ftn14";
  
  // Output file
  TString outFile = Form("sts.mc.root",nEvents);
  
  // Parameter file
  TString parFile = Form("params.root",nEvents);

  // Cave geometry
  TString caveGeom = "cave.geo";
  
  // Target geometry
  TString targetGeom = "target_au_250mu.geo";

  // Beam pipe geometry
  TString pipeGeom = "pipe_standard.geo";

  // Magnet geometry and field map
  TString magnetGeom = "passive/magnet_v09e.geo";
  TString fieldMap    = "field_v10e";
  Double_t fieldZ     = 50.;     // z position of field centre
  Double_t fieldScale = 1.;      // field scaling factor

  // MVD geometry
  TString mvdGeom    = "mvd/mvd_v07a.geo";

  // STS geometry
  TString stsGeom    = "sts/sts_v11a.geo";
  
  //STS geometry for the same z position of all sensors
  //TString stsGeom = "sts_same_z.geo";
  
  targetGeom = "";
  magnetGeom = "";
  stsGeom  = "";
  mvdGeom  = "";
  
  // In general, the following parts need not be touched
  // ========================================================================

  
  

  // ----    Debug option   -------------------------------------------------
  gDebug = 0;
  // ------------------------------------------------------------------------

  
  
  // -----   Timer   --------------------------------------------------------
  TStopwatch timer;
  timer.Start();
  // ------------------------------------------------------------------------

  
  
  // ----  Load libraries   -------------------------------------------------
  gROOT->LoadMacro("$VMCWORKDIR/gconfig/basiclibs.C");
  basiclibs();
  gSystem->Load("libGeoBase");
  gSystem->Load("libParBase");
  gSystem->Load("libBase");
  gSystem->Load("libCbmBase");
  gSystem->Load("libCbmData");
  gSystem->Load("libField");
  gSystem->Load("libGen");
  gSystem->Load("libPassive");
  gSystem->Load("libMvd");
  gSystem->Load("libSts");
  gSystem->Load("libCbmGenerators"); // for CbmIonGenerator
  // ------------------------------------------------------------------------

   
 
  // -----   Create simulation run   ----------------------------------------
  FairRunSim* run = new FairRunSim();
  run->SetName("TGeant3");              // Transport engine
  run->SetOutputFile(outFile);          // Output file
  FairRuntimeDb* rtdb = run->GetRuntimeDb();
  // ------------------------------------------------------------------------
  
  

  // -----   Create media   -------------------------------------------------
  run->SetMaterials("media.geo");       // Materials
  // ------------------------------------------------------------------------

    
  
  // -----   Create geometry   ----------------------------------------------
  FairModule* cave= new CbmCave("CAVE");
  cave->SetGeometryFileName(caveGeom);
  run->AddModule(cave);

  FairModule* pipe= new CbmPipe("PIPE");
  pipe->SetGeometryFileName(pipeGeom);
  run->AddModule(pipe);
  
  if( targetGeom != "") {
    FairModule* target= new CbmTarget("Target");
    target->SetGeometryFileName(targetGeom);
    run->AddModule(target);
  }
  if( magnetGeom != "") {
    FairModule* magnet= new CbmMagnet("MAGNET");
    magnet->SetGeometryFileName(magnetGeom);
    run->AddModule(magnet);
  }
  if( mvdGeom != ""){
    FairDetector* mvd= new CbmMvd("MVD", kTRUE);
    mvd->SetGeometryFileName(mvdGeom); 
    run->AddModule(mvd);
  }
  if( stsGeom != "") {
    FairDetector* sts= new CbmSts("STS", kTRUE);
    sts->SetGeometryFileName(stsGeom); 
    run->AddModule(sts);
  }
  // ------------------------------------------------------------------------

  
  
  // -----   Create magnetic field   ----------------------------------------
  if(magnetGeom!="") {
    CbmFieldMap* magField = new CbmFieldMapSym2(fieldMap);
    magField->SetPosition(0., 0., fieldZ);
    magField->SetScale(fieldScale);
    run->SetField(magField);
  }
  // ------------------------------------------------------------------------

  
  
  // -----   Create PrimaryGenerator   --------------------------------------
  FairPrimaryGenerator* primGen = new FairPrimaryGenerator();
  //FairUrqmdGenerator*  urqmdGen = new FairUrqmdGenerator(inFile);
  //primGen->AddGenerator(urqmdGen);
  
  // CbmIonGenerator - check in Load libraries: gSystem->Load("libCbmGenerators");
  Int_t nions=10; // number of ions/event
  cout<<"@@@@@> CbmIonGenerator is ON with "<<nions<<" ion(s)/event !!!"<<endl;
  Int_t z=79, a=197, q=79; // Au-ion
  Double_t p=8.; // in AGeV/c
  Double_t vz=-0.0126; // in cm - z-pos. of vertex
  Double_t meanX=0.3;  // in cm - spatial distr. (XOY)
  Double_t meanY=-0.2; // in cm
  Double_t sigmaX = 0.078; // in cm - spatial distr. (XOY)
  Double_t sigmaY = 0.032; // in cm
  Double_t sigmatX = 0.00117885; // in rad (Px/P) - angular distr. (mean=0)
  Double_t sigmatY = 0.00094955; // in rad (Py/P)
  // Parameters of the trapezoid are set with respect to mean of Gaussian, NOT necesseraly in absolute coordinates.
  // x1 < x2 < 0 < x3 < x4
  Double_t x1=-0.10452, x2=-0.06942, x3=0.06942, x4=0.10452; // in cm - trapezoid distr.
  Double_t y1=-0.04448, y2=-0.02688, y3=0.02688, y4=0.04448; // in cm
  Double_t tX1=-0.00157966, tX2=-0.001049177, tX3=0.001049177, tX4=0.00157966; // in rad
  Double_t tY1=-0.00131987, tY2=-0.000797622, tY3=0.000797622, tY4=0.00131987; // in rad

//  CbmIonGenerator *IonGen = new CbmIonGenerator(z, a, q, nions, p, sigmaX, sigmaY, sigmatX, sigmatY);
  
//  CbmIonGenerator *IonGen = new CbmIonGenerator(z, a, q, nions, p, sigmaX, sigmaY, sigmatX, sigmatY, meanX, meanY, vz);
  
  CbmIonGenerator *IonGen = new CbmIonGenerator(z, a, q, nions, p, sigmaX, sigmaY, sigmatX, sigmatY, meanX, meanY, vz,
                                                x1, x2, x3, x4, y1, y2, y3, y4, tX1, tX2, tX3, tX4, tY1, tY2, tY3, tY4);
  
  primGen->AddGenerator(IonGen);
  
  run->SetGenerator(primGen);
  // ------------------------------------------------------------------------

//   run->SetStoreTraj(kTRUE);
  
  // -----   Initialize simulation run   ------------------------------------
  run->Init();
  // ------------------------------------------------------------------------

  
  
  // -----   Runtime database   ---------------------------------------------
  if(magnetGeom!="") {
    CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar");
    fieldPar->SetParameters(magField);
    fieldPar->setChanged();
    fieldPar->setInputVersion(run->GetRunId(),1);
  }
  Bool_t kParameterMerged = kTRUE;
  FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
  parOut->open(parFile.Data());
  rtdb->setOutput(parOut);
  rtdb->saveOutput();
  rtdb->print();
  // ------------------------------------------------------------------------

  
   
  // -----   Start run   ----------------------------------------------------
  run->Run(nEvents);
  // ------------------------------------------------------------------------
  //run->CreateGeometryFile("data/geofile_full.root");
  
  
  // -----   Finish   -------------------------------------------------------
  timer.Stop();
  Double_t rtime = timer.RealTime();
  Double_t ctime = timer.CpuTime();
  cout << endl << endl;
  cout << "Macro finished succesfully." << endl;
  cout << "Output file is "    << outFile << endl;
  cout << "Parameter file is " << parFile << endl;
  cout << "Real time " << rtime << " s, CPU time " << ctime 
       << "s" << endl << endl;
  // ------------------------------------------------------------------------
  cout << " Test passed" << endl;
  cout << " All ok " << endl;

  exit(0);
}
示例#6
0
void run_sample_data()
{
    TStopwatch timer;
    timer.Start();

    const Int_t nev = -1;                                // number of events to read, -1 - untill CTRL+C
    const Int_t trigger = -1;                            // 1 - onspill, 2 - offspill. -1 - all

    TString filename = "sample_data_2.lmd";
    TString outputFileName = "output_raw_land.root";     // name of output file
    const Int_t refresh = 100000;                        // refresh rate for saving control histograms
    TString parFileName = "params_raw_land.root";        // name of parameter file

    const Int_t updateRate = 150000;
    const Int_t minStats = 10000;                           // minimum number of entries for TCAL calibration
    const Int_t nModules = 800;                             // number of photomultipliers (for TCAL calibration)

    // Create source with unpackers ----------------------------------------------
    TString ntuple_options = "UNPACK:EVENTNO,UNPACK:TRIGGER,RAW";
    TString ucesb_dir = getenv("UCESB_DIR");
    TString ucesb_path = ucesb_dir + "/../upexps/s438b/s438b";
    
    EXT_STR_h101 ucesb_struct;
    R3BUcesbSource* source = new R3BUcesbSource(filename, ntuple_options, ucesb_path, &ucesb_struct, sizeof(ucesb_struct));
    source->SetMaxEvents(nev);
    source->AddReader(new R3BUnpackReader((EXT_STR_h101_unpack*)&ucesb_struct.unpack, offsetof(EXT_STR_h101, unpack)));
    source->AddReader(new R3BNeulandTacquilaReader((EXT_STR_h101_raw_nnp*)&ucesb_struct.nnp, offsetof(EXT_STR_h101, nnp)));
    source->AddReader(new R3BLosReader((EXT_STR_h101_LOS*)&ucesb_struct.los, offsetof(EXT_STR_h101, los)));
    // ---------------------------------------------------------------------------

    // Create online run ---------------------------------------------------------
    FairRunOnline* run = new FairRunOnline(source);
    run->SetOutputFile(outputFileName.Data());
    run->SetRunId(1111);
    // ---------------------------------------------------------------------------

    // Create ALADIN field map ---------------------------------------------------
    R3BAladinFieldMap* magField = new R3BAladinFieldMap("AladinMaps");
    Double_t fMeasCurrent = 2500.; // I_current [A]
    magField->SetCurrent(fMeasCurrent);
    magField->SetScale(1.);
    run->SetField(magField);
    // ---------------------------------------------------------------------------

    // TCAL ----------------------------------------------------------------------
    R3BNeulandMapped2CalPar* tcalFill = new R3BNeulandMapped2CalPar("TcalFill");
    tcalFill->SetUpdateRate(updateRate);
    tcalFill->SetMinStats(minStats);
    tcalFill->SetTrigger(trigger);
    tcalFill->SetNofModules(nModules);
    run->AddTask(tcalFill);

    R3BLosMapped2CalPar* losTcalFill = new R3BLosMapped2CalPar("LosTcalFill");
    losTcalFill->SetUpdateRate(updateRate);
    losTcalFill->SetMinStats(minStats);
    losTcalFill->SetNofModules(1, 4);
    run->AddTask(losTcalFill);
    // ---------------------------------------------------------------------------

    // Add analysis task ---------------------------------------------------------
    R3BNeulandMappedHist* ana = new R3BNeulandMappedHist("LandRawAna", 1);
    run->AddTask(ana);
    // ---------------------------------------------------------------------------

    // Initialize ----------------------------------------------------------------
    run->Init();
    FairLogger::GetLogger()->SetLogScreenLevel("INFO");
    // ---------------------------------------------------------------------------

    // Runtime data base ---------------------------------------------------------
    FairRuntimeDb* rtdb = run->GetRuntimeDb();
    R3BFieldPar* fieldPar = (R3BFieldPar*)rtdb->getContainer("R3BFieldPar");
    fieldPar->SetParameters(magField);
    fieldPar->setChanged();
    Bool_t kParameterMerged = kTRUE;
    FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
    parOut->open(parFileName);
    rtdb->setOutput(parOut);
    rtdb->print();
    // ---------------------------------------------------------------------------

    // Run -----------------------------------------------------------------------
    if(nev < 0)
    {
        run->Run(nev, 0);
    }
    else
    {
        run->Run(0, nev);
    }
    rtdb->saveOutput();
    // ---------------------------------------------------------------------------

    timer.Stop();
    Double_t rtime = timer.RealTime();
    Double_t ctime = timer.CpuTime();
    cout << endl << endl;
    cout << "Macro finished succesfully." << endl;
    cout << "Output file is " << outputFileName << endl;
    cout << "Parameter file is " << parFileName << endl;
    cout << "Real time " << rtime << " s, CPU time " << ctime << "s" << endl << endl;

	if(ana->GetNItemsTotal() > 3800)
	{
		cout << " Test passed" << endl;
		cout << " All ok " << endl;
	}

    delete run;
}
示例#7
0
void r3ball(Int_t nEvents = 1,
            TMap* fDetList = NULL,
            TString Target = "LeadTarget",
            Bool_t fVis = kFALSE,
            TString fMC = "TGeant3",
            TString fGenerator = "box",
            Bool_t fUserPList = kFALSE,
            Bool_t fR3BMagnet = kTRUE,
            Double_t fMeasCurrent = 2000.,
            TString OutFile = "r3bsim.root",
            TString ParFile = "r3bpar.root",
            TString InFile = "evt_gen.dat")
{
  TString dir = getenv("VMCWORKDIR");
  TString r3bdir = dir + "/macros";
  
  TString r3b_geomdir = dir + "/geometry";
  gSystem->Setenv("GEOMPATH",r3b_geomdir.Data());
  
  TString r3b_confdir = dir + "gconfig";
  gSystem->Setenv("CONFIG_DIR",r3b_confdir.Data());
  
  // In general, the following parts need not be touched
  // ========================================================================
  
  // ----    Debug option   -------------------------------------------------
  gDebug = 0;
  // ------------------------------------------------------------------------
  
  // -----   Timer   --------------------------------------------------------
  TStopwatch timer;
  timer.Start();
  // ------------------------------------------------------------------------
  
  
  // -----   Create simulation run   ----------------------------------------
  FairRunSim* run = new FairRunSim();
  run->SetName(fMC.Data());              // Transport engine
  run->SetOutputFile(OutFile.Data());          // Output file
  FairRuntimeDb* rtdb = run->GetRuntimeDb();
  
  //  R3B Special Physics List in G4 case
  if ( (fUserPList  == kTRUE ) &&
      (fMC.CompareTo("TGeant4")   == 0)) {
    run->SetUserConfig("g4R3bConfig.C");
    run->SetUserCuts("SetR3BCuts.C");
  }
  
  
  // -----   Create media   -------------------------------------------------
  run->SetMaterials("media_r3b.geo");       // Materials
  
  
  // Magnetic field map type
  Int_t fFieldMap = 0;
  
  
  // Global Transformations
  //- Two ways for a Volume Rotation are supported
  //-- 1) Global Rotation (Euler Angles definition)
  //-- This represent the composition of : first a rotation about Z axis with
  //-- angle phi, then a rotation with theta about the rotated X axis, and
  //-- finally a rotation with psi about the new Z axis.
  Double_t phi,theta,psi;
  
  //-- 2) Rotation in Ref. Frame of the Volume
  //-- Rotation is Using Local Ref. Frame axis angles
  Double_t thetaX,thetaY,thetaZ;
  
  //- Global Translation  Lab. frame.
  Double_t tx,ty,tz;
  
  
  // -----   Create R3B geometry --------------------------------------------
  //R3B Cave definition
  FairModule* cave= new R3BCave("CAVE");
  cave->SetGeometryFileName("r3b_cave.geo");
  run->AddModule(cave);
  
  //R3B Target definition
  if (fDetList->FindObject("TARGET") ) {
    R3BModule* target= new R3BTarget(Target.Data());
    target->SetGeometryFileName(((TObjString*)fDetList->GetValue("TARGET"))->GetString().Data());
    run->AddModule(target);
  }
  
  //R3B SiTracker Cooling definition
  if (fDetList->FindObject("VACVESSELCOOL") ) {
    R3BModule* vesselcool= new R3BVacVesselCool(Target.Data());
    vesselcool->SetGeometryFileName(((TObjString*)fDetList->GetValue("VACVESSELCOOL"))->GetString().Data());
    run->AddModule(vesselcool);
  }
  
  //R3B Magnet definition
  if (fDetList->FindObject("ALADIN") ) {
    fFieldMap = 0;
    R3BModule* mag = new R3BMagnet("AladinMagnet");
    mag->SetGeometryFileName(((TObjString*)fDetList->GetValue("ALADIN"))->GetString().Data());
    run->AddModule(mag);
  }
  
  //R3B Magnet definition
  if (fDetList->FindObject("GLAD") ) {
    fFieldMap = 1;
    R3BModule* mag = new R3BGladMagnet("GladMagnet");
    mag->SetGeometryFileName(((TObjString*)fDetList->GetValue("GLAD"))->GetString().Data());
    run->AddModule(mag);
  }
  
  if (fDetList->FindObject("CRYSTALBALL") ) {
    //R3B Crystal Calorimeter
    R3BDetector* xball = new R3BXBall("XBall", kTRUE);
    xball->SetGeometryFileName(((TObjString*)fDetList->GetValue("CRYSTALBALL"))->GetString().Data());
    run->AddModule(xball);
  }
  
  if (fDetList->FindObject("CALIFA") ) {
    // CALIFA Calorimeter
    R3BDetector* calo = new R3BCalo("Califa", kTRUE);
    ((R3BCalo *)calo)->SelectGeometryVersion(10);
    //Selecting the Non-uniformity of the crystals (1 means +-1% max deviation)
    ((R3BCalo *)calo)->SetNonUniformity(1.0);
    calo->SetGeometryFileName(((TObjString*)fDetList->GetValue("CALIFA"))->GetString().Data());
    run->AddModule(calo);
  }

  // Tracker
  if (fDetList->FindObject("TRACKER")  ) {
    R3BDetector* tra = new R3BTra("Tracker", kTRUE);
    tra->SetGeometryFileName(((TObjString*)fDetList->GetValue("TRACKER"))->GetString().Data());
    tra->SetEnergyCut(1e-4);
    run->AddModule(tra);
  }
  
  // STaRTrack
  if (fDetList->FindObject("STaRTrack")  ) {
    R3BDetector* tra = new R3BSTaRTra("STaRTrack", kTRUE);
    tra->SetGeometryFileName(((TObjString*)fDetList->GetValue("STaRTrack"))->GetString().Data());
    run->AddModule(tra);
  }
  
  // DCH drift chambers
  if (fDetList->FindObject("DCH") ) {
    R3BDetector* dch = new R3BDch("Dch", kTRUE);
    dch->SetGeometryFileName(((TObjString*)fDetList->GetValue("DCH"))->GetString().Data());
    run->AddModule(dch);
  }
  
  // Tof
  if (fDetList->FindObject("TOF") ) {
    R3BDetector* tof = new R3BTof("Tof", kTRUE);
    tof->SetGeometryFileName(((TObjString*)fDetList->GetValue("TOF"))->GetString().Data());
    run->AddModule(tof);
  }
  
  // mTof
  if (fDetList->FindObject("MTOF") ) {
    R3BDetector* mTof = new R3BmTof("mTof", kTRUE);
    mTof->SetGeometryFileName(((TObjString*)fDetList->GetValue("MTOF"))->GetString().Data());
    run->AddModule(mTof);
  }

  // dTof
  if (fDetList->FindObject("DTOF") ) {
    R3BDetector* dTof = new R3BdTof("dTof", kTRUE);
    dTof->SetGeometryFileName(((TObjString*)fDetList->GetValue("DTOF"))->GetString().Data());
    run->AddModule(dTof);
  }
  
  // GFI detector
  if (fDetList->FindObject("GFI") ) {
    R3BDetector* gfi = new R3BGfi("Gfi", kTRUE);
    gfi->SetGeometryFileName(((TObjString*)fDetList->GetValue("GFI"))->GetString().Data());
    run->AddModule(gfi);
  }
  
  // Land Detector
  if (fDetList->FindObject("LAND") ) {
    R3BDetector* land = new R3BLand("Land", kTRUE);
    land->SetVerboseLevel(1);
    land->SetGeometryFileName(((TObjString*)fDetList->GetValue("LAND"))->GetString().Data());
    run->AddModule(land);
  }
  
  // NeuLand Scintillator Detector
  if(fDetList->FindObject("SCINTNEULAND")) {
    R3BDetector* land = new R3BLand("Land", kTRUE);
    land->SetVerboseLevel(1);
    land->SetGeometryFileName(((TObjString*)fDetList->GetValue("SCINTNEULAND"))->GetString().Data());
    run->AddModule(land);
  }
  
  // MFI Detector
  if(fDetList->FindObject("MFI")) {
    R3BDetector* mfi = new R3BMfi("Mfi", kTRUE);
    mfi->SetGeometryFileName(((TObjString*)fDetList->GetValue("MFI"))->GetString().Data());
    run->AddModule(mfi);
  }

  // PSP Detector
  if(fDetList->FindObject("PSP")) {
    R3BDetector* psp = new R3BPsp("Psp", kTRUE);
    psp->SetGeometryFileName(((TObjString*)fDetList->GetValue("PSP"))->GetString().Data());
    run->AddModule(psp);
  }
  
  // Luminosity detector
  if (fDetList->FindObject("LUMON") ) {
    R3BDetector* lumon = new ELILuMon("LuMon", kTRUE);
    lumon->SetGeometryFileName(((TObjString*)fDetList->GetValue("LUMON"))->GetString().Data());
    run->AddModule(lumon);
  }
  
  
  // -----   Create R3B  magnetic field ----------------------------------------
  Int_t typeOfMagneticField = 0;
  Int_t fieldScale = 1;
  Bool_t fVerbose = kFALSE;
  
  //NB: <D.B>
  // If the Global Position of the Magnet is changed
  // the Field Map has to be transformed accordingly
  FairField *magField = NULL;
  if (fFieldMap == 0) {
    magField = new R3BAladinFieldMap("AladinMaps");
    ((R3BAladinFieldMap*)magField)->SetCurrent(fMeasCurrent);
    ((R3BAladinFieldMap*)magField)->SetScale(fieldScale);
    
    if ( fR3BMagnet == kTRUE ) {
      run->SetField(magField);
    } else {
      run->SetField(NULL);
    }
  } else if(fFieldMap == 1){
    magField = new R3BGladFieldMap("R3BGladMap");
    ((R3BGladFieldMap*)magField)->SetPosition(0., 0., +350-119.94);
    ((R3BGladFieldMap*)magField)->SetScale(fieldScale);
    
    if ( fR3BMagnet == kTRUE ) {
      run->SetField(magField);
    } else {
      run->SetField(NULL);
    }
  }  //! end of field map section
  
  
  // -----   Create PrimaryGenerator   --------------------------------------
  // 1 - Create the Main API class for the Generator
  FairPrimaryGenerator* primGen = new FairPrimaryGenerator();
  
  if (fGenerator.CompareTo("box") == 0  ) {
    // 2- Define the BOX generator
    Int_t pdgId = 211; // pion beam
    Double32_t theta1 = 0.;  // polar angle distribution
    Double32_t theta2 = 7.;
    Double32_t momentum = 0.8;
    FairBoxGenerator* boxGen = new FairBoxGenerator(pdgId, 50);
    boxGen->SetThetaRange(theta1, theta2);
    boxGen->SetPRange(momentum, momentum*2.);
    boxGen->SetPhiRange(0, 360);
    boxGen->SetXYZ(0.0, 0.0, -1.5);
//    boxGen->SetXYZ(0.0, 0.0, -300.);
    // add the box generator
    primGen->AddGenerator(boxGen);
  }
  
  if (fGenerator.CompareTo("ascii") == 0  ) {
    R3BAsciiGenerator* gen = new R3BAsciiGenerator((dir+"/input/"+InFile).Data());
    primGen->AddGenerator(gen);
  }
  
  if (fGenerator.CompareTo("r3b") == 0  ) {
    R3BSpecificGenerator *pR3bGen = new R3BSpecificGenerator();
    
    // R3bGen properties
    pR3bGen->SetBeamInteractionFlag("off");
    pR3bGen->SetBeamInteractionFlag("off");
    pR3bGen->SetRndmFlag("off");
    pR3bGen->SetRndmEneFlag("off");
    pR3bGen->SetBoostFlag("off");
    pR3bGen->SetReactionFlag("on");
    pR3bGen->SetGammasFlag("off");
    pR3bGen->SetDecaySchemeFlag("off");
    pR3bGen->SetDissociationFlag("off");
    pR3bGen->SetBackTrackingFlag("off");
    pR3bGen->SetSimEmittanceFlag("off");
    
    // R3bGen Parameters
    pR3bGen->SetBeamEnergy(1.); // Beam Energy in GeV
    pR3bGen->SetSigmaBeamEnergy(1.e-03); // Sigma(Ebeam) GeV
    pR3bGen->SetParticleDefinition(2212); // Use Particle Pdg Code
    pR3bGen->SetEnergyPrim(0.3); // Particle Energy in MeV
    Int_t fMultiplicity = 50;
    pR3bGen->SetNumberOfParticles(fMultiplicity); // Mult.
    
    // Reaction type
    //        1: "Elas"
    //        2: "iso"
    //        3: "Trans"
    pR3bGen->SetReactionType("Elas");
    
    // Target  type
    //        1: "LeadTarget"
    //        2: "Parafin0Deg"
    //        3: "Parafin45Deg"
    //        4: "LiH"
    
    pR3bGen->SetTargetType(Target.Data());
    Double_t thickness = (0.11/2.)/10.;  // cm
    pR3bGen->SetTargetHalfThicknessPara(thickness); // cm
    pR3bGen->SetTargetThicknessLiH(3.5); // cm
    pR3bGen->SetTargetRadius(1.); // cm
    
    pR3bGen->SetSigmaXInEmittance(1.); //cm
    pR3bGen->SetSigmaXPrimeInEmittance(0.0001); //cm
    
    // Dump the User settings
    pR3bGen->PrintParameters();
    primGen->AddGenerator(pR3bGen);
  }
  
  run->SetGenerator(primGen);
  
  
  //-------Set visualisation flag to true------------------------------------
  run->SetStoreTraj(fVis);
  

  FairLogger::GetLogger()->SetLogVerbosityLevel("LOW");

  
  // -----   Initialize simulation run   ------------------------------------
  run->Init();

  
  // ------  Increase nb of step for CALO
  Int_t nSteps = -15000;
  gMC->SetMaxNStep(nSteps);
  
  
  // -----   Runtime database   ---------------------------------------------
  R3BFieldPar* fieldPar = (R3BFieldPar*) rtdb->getContainer("R3BFieldPar");
  if(NULL != magField)
  {
      fieldPar->SetParameters(magField);
      fieldPar->setChanged();
  }
  Bool_t kParameterMerged = kTRUE;
  FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
  parOut->open(ParFile.Data());
  rtdb->setOutput(parOut);
  rtdb->saveOutput();
  rtdb->print();
  
  
  // -----   Start run   ----------------------------------------------------
  if(nEvents > 0) {
    run->Run(nEvents);
  }
  
  
  // -----   Finish   -------------------------------------------------------
  timer.Stop();
  Double_t rtime = timer.RealTime();
  Double_t ctime = timer.CpuTime();
  cout << endl << endl;
  cout << "Macro finished succesfully." << endl;
  cout << "Output file is "    << OutFile << endl;
  cout << "Parameter file is " << ParFile << endl;
  cout << "Real time " << rtime << " s, CPU time " << ctime
  << "s" << endl << endl;
  // ------------------------------------------------------------------------

  
  cout << " Test passed" << endl;
  cout << " All ok " << endl;
}
/********************************************************************************
 *    Copyright (C) 2014 GSI Helmholtzzentrum fuer Schwerionenforschung GmbH    *
 *                                                                              *
 *              This software is distributed under the terms of the             * 
 *         GNU Lesser General Public Licence version 3 (LGPL) version 3,        *  
 *                  copied verbatim in the file "LICENSE"                       *
 ********************************************************************************/
Int_t  sql_params_read_bin()
{
  // ----  Load libraries   -------------------------------------------------
  gROOT->LoadMacro("$VMCWORKDIR/gconfig/basiclibs.C");
  basiclibs();
  gSystem->Load("libGenVector");
  gSystem->Load("libGeoBase");
  gSystem->Load("libFairDB");
  gSystem->Load("libParBase");
  gSystem->Load("libBase");
  gSystem->Load("libMCStack");
  gSystem->Load("libField");
  gSystem->Load("libTutorial5");


  // Create a Runtime Database singleton.
  FairRuntimeDb* db = FairRuntimeDb::instance();

  // Set the SQL IO as first input
  FairParTSQLIo* inp = new FairParTSQLIo();
  // Verbosity level
  inp->SetVerbosity(1);

  inp->open();
  db->setFirstInput(inp);

  // Create the container via the factory if not already created
  FairDbTutParBin* p1 = (FairDbTutParBin*)(db->getContainer("TUTParBin"));

  p1->Print();

  // Create a dummy runID using date in UTC from which
  // corresponding  parameters will be initialised

  ValTimeStamp tStamp(2015,02,20,10,07,48);
  UInt_t runId = tStamp.GetSec();
  cout << "-I- looking for parameters at runID# " << runId << endl;
  cout << "-I- corresponding  time in runID (UTC) " << tStamp.AsString("c") << endl;

  // Use the generated RunID to initialised the parameter
  // using the SQL-based IO input
  db->initContainers(runId);


 

  cout << endl;
  cout << "-I- Initialisation from SQL Database:" << endl;
  cout << endl;

 // Get the container after initialisation
  // from the RuntimeDB
  FairDbTutParBin* pp1 = (FairDbTutParBin*)(db->getContainer("TUTParBin"));
  pp1->Print();

  cout << endl;


  if (db) delete db;
  return 0;
}
示例#9
0
void sim(Int_t file_nr=0, Int_t nEvents=1, Int_t s=0, Int_t seed=1){
  Char_t filenr[4];
  sprintf(filenr,"%04d",file_nr);
  printf("Filenr: %s\n", filenr);

  TString signal;
  if (s!=3312 && s!=3334) signal = "la";
  else if (s==3312) signal = "xi";
  else if (s==3334) signal = "om";

  // ----- Paths and file names  --------------------------------------------
  TString inDir   = gSystem->Getenv("URQMD_INPUT_PATH");
  TString inFile  = inDir + "/urqmd.auau.25gev.centr." + filenr + ".ftn14";
  TString outDir= TString(filenr);
  outDir+= "/";
  gSystem->mkdir(outDir.Data());
  TString outFile = outDir+signal+".mc.root";
  TString parFile = outDir+signal+".par.root";

  // -----  Geometries  -----------------------------------------------------
  TString caveGeom   = "cave.geo";
  TString pipeGeom   = "pipe_standard.geo";
  TString targetGeom = "target_au_250mu.geo";
  TString magnetGeom = "magnet_standard.geo";
  TString stsGeom    = "sts_Standard_s3055AAFK5.SecD.geo";

  // -----   Magnetic field   -----------------------------------------------
  TString fieldMap    = "FieldMuonMagnet";   // name of field map
  Double_t fieldZ     = 50.;                 // field centre z position
  Double_t fieldScale =  1.;                 // field scaling factor

  gDebug = 0;
  gRandom->SetSeed(seed);

  // ----  Load libraries   -------------------------------------------------
  cout << endl << "=== much_sim.C : Loading libraries ..." << endl;
  gROOT->LoadMacro("$VMCWORKDIR/gconfig/basiclibs.C");
  basiclibs();
  gROOT->LoadMacro("$VMCWORKDIR/analysis/hyperon/analysislibs.C");
  analysislibs();

  FairRunSim* fRun = new FairRunSim();
  fRun->SetName("TGeant3");
  fRun->SetOutputFile(outFile.Data());
  FairRuntimeDb* rtdb = fRun->GetRuntimeDb();

  fRun->SetMaterials("media.geo");

  // -----   Create detectors and passive volumes   -------------------------
  cout << endl << "=== much_sim.C : Create geeometry ..." << endl;
  if ( caveGeom != "" ) {
    FairModule* cave = new CbmCave("CAVE");
    cave->SetGeometryFileName(caveGeom);
    fRun->AddModule(cave);
    cout << "    --- " << caveGeom << endl;
  }

  if ( pipeGeom != "" ) {
    FairModule* pipe = new CbmPipe("PIPE");
    pipe->SetGeometryFileName(pipeGeom);
    fRun->AddModule(pipe);
    cout << "    --- " << pipeGeom << endl;
  }

  if ( targetGeom != "" ) {
    FairModule* target = new CbmTarget("Target");
    target->SetGeometryFileName(targetGeom);
    fRun->AddModule(target);
    cout << "    --- " << targetGeom << endl;
  }

  if ( magnetGeom != "" ) {
    FairModule* magnet = new CbmMagnet("MAGNET");
    magnet->SetGeometryFileName(magnetGeom);
    fRun->AddModule(magnet);
    cout << "    --- " << magnetGeom << endl;
  }

  if ( stsGeom != "" ) {
    FairDetector* sts = new CbmSts("STS", kTRUE);
    sts->SetGeometryFileName(stsGeom);
    cout << "    --- " << stsGeom << endl;
    fRun->AddModule(sts);
  }


  // -----   Create magnetic field   ----------------------------------------
  cout << endl << "=== much_sim.C : Create magnetic field ..." << endl;
  CbmFieldMap* magField = NULL;
  if ( fieldMap == "FieldActive" || fieldMap == "FieldIron")
    magField = new CbmFieldMapSym3(fieldMap);
  else if ( fieldMap == "FieldAlligator" )
    magField = new CbmFieldMapSym2(fieldMap);
  else if ( fieldMap == "FieldMuonMagnet" )
    magField = new CbmFieldMapSym3(fieldMap);
  else {
    cout << "===> ERROR: Field map " << fieldMap << " unknown! " << endl;
    exit;
  }

  magField->SetPosition(0., 0., fieldZ);
  magField->SetScale(fieldScale);
  fRun->SetField(magField);

  // -----   Create PrimaryGenerator   --------------------------------------
  cout << endl << "=== much_sim.C : Create generators ..." << endl;
  FairPrimaryGenerator* primGen = new FairPrimaryGenerator();

  if (signal=="om"){
    delete gRandom;
    gRandom = new TRandom3();
    CbmAnaHypYPtGenerator* gen = new CbmAnaHypYPtGenerator(3334);
    gen->SetDistributionPt(0.1603);          //  6 GeV
    gen->SetDistributionY(1.277,0.412);      //  6 GeV
    //gen->SetDistributionPt(0.149808);        // 25 GeV
    //gen->SetDistributionY(1.9875,0.546669);  // 25 GeV
    gen->Init();
    primGen->AddGenerator(gen);
  } else if (signal=="xi"){
    delete gRandom;
    gRandom = new TRandom3();
    CbmAnaHypYPtGenerator* gen = new CbmAnaHypYPtGenerator(3312);
    gen->SetDistributionPt(0.1603);            //  6 GeV
    gen->SetDistributionY(1.277,0.412);        //  6 GeV
    //gen->SetDistributionPt(0.154319);          //  25 GeV
    //gen->SetDistributionY(1.98604,0.617173);   //  25 GeV
    gen->Init();
    primGen->AddGenerator(gen);
  }

  FairUrqmdGenerator*  urqmdGen = new FairUrqmdGenerator(inFile.Data());
  primGen->AddGenerator(urqmdGen);

  fRun->SetGenerator(primGen);
  // ------------------------------------------------------------------------


  fRun->Init();

  // ------------------------------------------------------------------------
  CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar");
  fieldPar->SetParameters(magField);
  fieldPar->setChanged();
  fieldPar->setInputVersion(fRun->GetRunId(),1);
  Bool_t kParameterMerged = kTRUE;
  FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
  parOut->open(parFile);
  rtdb->setOutput(parOut);
  rtdb->saveOutput();
  rtdb->print();
  // ------------------------------------------------------------------------

  TStopwatch timer;
  timer.Start();

  fRun->Run(nEvents);

  // -----   Finish   -------------------------------------------------------
  timer.Stop();
  Double_t rtime = timer.RealTime();
  Double_t ctime = timer.CpuTime();
  cout << endl << endl;
  cout << "=== sim.C : Macro finished successfully." << endl;
  cout << "=== sim.C : Output file is " << outFile << endl;
  cout << "=== sim.C : Real time used: " << rtime << "s " << endl;
  cout << "=== sim.C : CPU time used : " << ctime << "s " << endl;
  cout << endl << endl;
  // ------------------------------------------------------------------------
}
示例#10
0
void run_sim(Int_t nEvents = 2)
{

  // ========================================================================
  //          Adjust this part according to your requirements

  // ----- Paths and file names  --------------------------------------------
  TString inDir   = gSystem->Getenv("VMCWORKDIR");
  TString inFile  = inDir + "/input/urqmd.ftn14";

  TString outDir  = "data";
  TString outFile = outDir + "/test.mc.root";
  TString parFile = outDir + "/params.root";
 
  TString HsdFile = "./jpsiHsd.auau25gev.000";
  
  // -----  Geometries  -----------------------------------------------------
  TString caveGeom   = "cave.geo";
  TString targetGeom = "target_au_250mu.geo";
  TString pipeGeom   = "pipe_standard.geo";
  TString magnetGeom = "passive/magnet_v09e.geo";
  TString mvdGeom    = "mvd/mvd_v07a.geo";
  TString stsGeom    = "sts/sts_v11a.geo";
  TString richGeom   = "rich/rich_v08a.geo";
  TString trdGeom    = "trd/trd_v11c.geo";
  TString tofGeom    = "tof/tof_v07a.geo";
//  TString ecalGeom   = "ecal/ecal_v08a.geo";
  
  // -----   Magnetic field   -----------------------------------------------
  TString fieldMap    = "field_v10e";   // name of field map
  Double_t fieldZ     = 50.;             // field centre z position
  Double_t fieldScale =  1.;             // field scaling factor
  
  // In general, the following parts need not be touched
  // ========================================================================




  // ----    Debug option   -------------------------------------------------
  gDebug = 0;
  // ------------------------------------------------------------------------



  // -----   Timer   --------------------------------------------------------
  TStopwatch timer;
  timer.Start();
  // ------------------------------------------------------------------------


  // ----  Load libraries   -------------------------------------------------
  gROOT->LoadMacro("$VMCWORKDIR/gconfig/basiclibs.C");
  basiclibs();
  gSystem->Load("libGeoBase");
  gSystem->Load("libParBase");
  gSystem->Load("libBase");
  gSystem->Load("libCbmBase");
  gSystem->Load("libCbmData");
  gSystem->Load("libField");
  gSystem->Load("libGen");
  gSystem->Load("libCbmGenerators");
  gSystem->Load("libPassive");
  gSystem->Load("libEcal");
  gSystem->Load("libKF");
  gSystem->Load("libMvd");
  gSystem->Load("libSts");
  gSystem->Load("libRich");
  gSystem->Load("libTrd");
  gSystem->Load("libTof");
  // -----------------------------------------------------------------------

 
 
  // -----   Create simulation run   ----------------------------------------
  FairRunSim* fRun = new FairRunSim();
  fRun->SetName("TGeant3");              // Transport engine
  fRun->SetOutputFile(outFile);          // Output file
  FairRuntimeDb* rtdb = fRun->GetRuntimeDb();
  // ------------------------------------------------------------------------


  // -----   Create media   -------------------------------------------------
  fRun->SetMaterials("media.geo");       // Materials
  // ------------------------------------------------------------------------


  // -----   Create detectors and passive volumes   -------------------------
  if ( caveGeom != "" ) {
    FairModule* cave = new CbmCave("CAVE");
    cave->SetGeometryFileName(caveGeom);
    fRun->AddModule(cave);
  }

  if ( pipeGeom != "" ) {
    FairModule* pipe = new CbmPipe("PIPE");
    pipe->SetGeometryFileName(pipeGeom);
    fRun->AddModule(pipe);
  }
  
  if ( targetGeom != "" ) {
    FairModule* target = new CbmTarget("Target");
    target->SetGeometryFileName(targetGeom);
    fRun->AddModule(target);
  }

  if ( magnetGeom != "" ) {
    FairModule* magnet = new CbmMagnet("MAGNET");
    magnet->SetGeometryFileName(magnetGeom);
    fRun->AddModule(magnet);
  }
  
  if ( mvdGeom != "" ) {
    FairDetector* mvd = new CbmMvd("MVD", kTRUE);
    mvd->SetGeometryFileName(mvdGeom);
    fRun->AddModule(mvd);
  }

  if ( stsGeom != "" ) {
    FairDetector* sts = new CbmSts("STS", kTRUE);
    sts->SetGeometryFileName(stsGeom);
    fRun->AddModule(sts);
  }

  if ( richGeom != "" ) {
    FairDetector* rich = new CbmRich("RICH", kTRUE);
    rich->SetGeometryFileName(richGeom);
    fRun->AddModule(rich);
  }
  

  if ( trdGeom != "" ) {
    FairDetector* trd = new CbmTrd("TRD",kTRUE );
    trd->SetGeometryFileName(trdGeom);
    fRun->AddModule(trd);
  }

  if ( tofGeom != "" ) {
    FairDetector* tof = new CbmTof("TOF", kTRUE);
    tof->SetGeometryFileName(tofGeom);
    fRun->AddModule(tof);
  }
  
/*
  if ( ecalGeom != "" ) {
    FairDetector* ecal = new CbmEcal("ECAL", kTRUE, ecalGeom.Data()); 
    fRun->AddModule(ecal);
  }
*/  
  // ------------------------------------------------------------------------



  // -----   Create magnetic field   ----------------------------------------
  CbmFieldMap* magField = new CbmFieldMapSym2(fieldMap);
  magField->SetPosition(0., 0., fieldZ);
  magField->SetScale(fieldScale);
  fRun->SetField(magField);
  // ------------------------------------------------------------------------



  // -----   Create PrimaryGenerator   --------------------------------------
  FairPrimaryGenerator* primGen = new FairPrimaryGenerator();

  FairUrqmdGenerator*  urqmdGen = new FairUrqmdGenerator(inFile);
  primGen->AddGenerator(urqmdGen);

  CbmHsdGenerator*  hsdGen = new CbmHsdGenerator(HsdFile,"Jpsi");
  primGen->AddGenerator(hsdGen);


  fRun->SetGenerator(primGen);       
  // ------------------------------------------------------------------------
  // Decay J/Psi using Pythia
  fRun->SetPythiaDecayer("./DecayConfig.C");

 
  // -Trajectories Visualization (TGeoManager Only )
  // Switch this on if you want to visualize tracks in the
  // eventdisplay.
  // This is normally switch off, because of the huge files created
  // when it is switched on. 
  // fRun->SetStoreTraj(kTRUE);

  // -----   Run initialisation   -------------------------------------------
  fRun->Init();
  // ------------------------------------------------------------------------
  
  // Set cuts for storing the trajectories.
  // Switch this on only if trajectories are stored.
  // Choose this cuts according to your needs, but be aware
  // that the file size of the output file depends on these cuts

  // FairTrajFilter* trajFilter = FairTrajFilter::Instance();
  // trajFilter->SetStepSizeCut(0.01); // 1 cm
  // trajFilter->SetVertexCut(-2000., -2000., 4., 2000., 2000., 100.);
  // trajFilter->SetMomentumCutP(10e-3); // p_lab > 10 MeV
  // trajFilter->SetEnergyCut(0., 1.02); // 0 < Etot < 1.04 GeV
  // trajFilter->SetStorePrimaries(kTRUE);
  // trajFilter->SetStoreSecondaries(kTRUE);

  // -----   Runtime database   ---------------------------------------------
  CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar");
  fieldPar->SetParameters(magField);
  fieldPar->setChanged();
  fieldPar->setInputVersion(fRun->GetRunId(),1);
  Bool_t kParameterMerged = kTRUE;
  FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
  parOut->open(parFile.Data());
  rtdb->setOutput(parOut);
  rtdb->saveOutput();
  rtdb->print();
  // ------------------------------------------------------------------------

 
  // -----   Start run   ----------------------------------------------------
  fRun->Run(nEvents);
  // ------------------------------------------------------------------------
  fRun->CreateGeometryFile("data/geofile_full.root");


  // -----   Finish   -------------------------------------------------------
  timer.Stop();
  Double_t rtime = timer.RealTime();
  Double_t ctime = timer.CpuTime();
  cout << endl << endl;
  cout << "Macro finished succesfully." << endl;
  cout << "Output file is "    << outFile << endl;
  cout << "Parameter file is " << parFile << endl;
  cout << "Real time " << rtime << " s, CPU time " << ctime 
       << "s" << endl << endl;
  // ------------------------------------------------------------------------

  cout << " Test passed" << endl;
  cout << " All ok " << endl;
}
示例#11
0
void global_sim(Int_t nEvents = 10, Int_t seed = 555)
{
	gRandom->SetSeed(seed);

	TString script = TString(gSystem->Getenv("LIT_SCRIPT"));

	// Files
	//	TString urqmdFile  = "/Users/andrey/Development/cbm/d/urqmd/auau/25gev/centr/urqmd.auau.25gev.centr.0000.ftn14"; // input UrQMD file
	TString urqmdFile  = "../../input/urqmd.auau.25gev.centr.0000.ftn14"; // input UrQMD file
	TString dir = "data/"; // Directory for output simulation files
	TString mcFile = dir + "mc.0000.root"; //MC file name
	TString parFile = dir + "param.0000.root"; //Parameter file name

	// Geometry
	TString caveGeom = "cave.geo";
	TString	targetGeom = "target_au_250mu.geo";
	TString	pipeGeom = "pipe_standard.geo";
	TString	stsGeom = "sts/sts_v12b.geo.root";
        TString richGeom = "rich/rich_v08a.geo";
	TString	tofGeom  = "tof/tof_V13b.geo";
	TString	fieldMap = "field_v12a";
	TString	magnetGeom = "passive/magnet_v12a.geo";

	// If SCRIPT environment variable is set to "yes", i.e. macro is run via script
	if (script == "yes") {
		urqmdFile  = TString(gSystem->Getenv("LIT_URQMD_FILE"));
		mcFile = TString(gSystem->Getenv("LIT_MC_FILE"));
		parFile = TString(gSystem->Getenv("LIT_PAR_FILE"));
	}
	// -----   Magnetic field   -----------------------------------------------
	Double_t fieldZ = 50.; // field center z position
	Double_t fieldScale = 1.; // field scaling factor

	TStopwatch timer;
	timer.Start();

	gROOT->LoadMacro("$VMCWORKDIR/macro/littrack/loadlibs.C");
	loadlibs();

	FairRunSim* fRun = new FairRunSim();
	fRun->SetName("TGeant3"); // Transport engine
	fRun->SetOutputFile(mcFile); // Output file
	FairRuntimeDb* rtdb = fRun->GetRuntimeDb();

	fRun->SetMaterials("media.geo"); // Materials
//	fRun->SetStoreTraj(kTRUE);

	if ( caveGeom != "" ) {
		FairModule* cave = new CbmCave("CAVE");
		cave->SetGeometryFileName(caveGeom);
		fRun->AddModule(cave);
		cout << "    --- " << caveGeom << endl;
	}

	if ( pipeGeom != "" ) {
		FairModule* pipe = new CbmPipe("PIPE");
		pipe->SetGeometryFileName(pipeGeom);
		fRun->AddModule(pipe);
		cout << "    --- " << pipeGeom << endl;
	}

	if ( targetGeom != "" ) {
		FairModule* target = new CbmTarget("Target");
		target->SetGeometryFileName(targetGeom);
		fRun->AddModule(target);
		cout << "    --- " << targetGeom << endl;
	}

	if ( magnetGeom != "" ) {
		FairModule* magnet = new CbmMagnet("MAGNET");
		magnet->SetGeometryFileName(magnetGeom);
		fRun->AddModule(magnet);
		cout << "    --- " << magnetGeom << endl;
	}

	if ( stsGeom != "" ) {
		FairDetector* sts = new CbmSts("STS", kTRUE);
		sts->SetGeometryFileName(stsGeom);
		fRun->AddModule(sts);
		cout << "    --- " << stsGeom << endl;
	}

        if ( richGeom != "" ) {
		FairDetector* rich = new CbmRich("RICH", kTRUE);
		rich->SetGeometryFileName(richGeom);
		fRun->AddModule(rich);
	}

	if ( tofGeom != "" ) {
		FairDetector* tof = new CbmTof("TOF", kTRUE);
		tof->SetGeometryFileName(tofGeom);
		fRun->AddModule(tof);
		cout << "    --- " << tofGeom << endl;
	}
	// ------------------------------------------------------------------------

   // -----   Create magnetic field   ----------------------------------------
   CbmFieldMap* magField = new CbmFieldMapSym2(fieldMap);
   magField->SetPosition(0., 0., fieldZ);
   magField->SetScale(fieldScale);
   fRun->SetField(magField);
   // ------------------------------------------------------------------------

   CbmMCEventHeader* mcHeader = new CbmMCEventHeader();
   fRun->SetMCEventHeader(mcHeader);

	// ------------------------------------------------------------------------
	FairPrimaryGenerator* primGen = new FairPrimaryGenerator();
	//  CbmUnigenGenerator*  urqmdGen = new CbmUnigenGenerator(urqmdFile);
	CbmUrqmdGenerator*  urqmdGen = new CbmUrqmdGenerator(urqmdFile);
	primGen->AddGenerator(urqmdGen);
	fRun->SetGenerator(primGen);
	fRun->Init();

	// -----   Runtime database   ---------------------------------------------
	CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar");
	fieldPar->SetParameters(magField);
	fieldPar->setChanged();
	fieldPar->setInputVersion(fRun->GetRunId(),1);
	Bool_t kParameterMerged = kTRUE;
	FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
	parOut->open(parFile.Data());
	rtdb->setOutput(parOut);
	rtdb->saveOutput();
	rtdb->print();
	// ------------------------------------------------------------------------

	// -----   Start run   ----------------------------------------------------
	fRun->Run(nEvents);
	// ------------------------------------------------------------------------

	// -----   Finish   -------------------------------------------------------
	timer.Stop();
	Double_t rtime = timer.RealTime();
	Double_t ctime = timer.CpuTime();
	cout << endl << endl;
	cout << "Macro finished successfully." << endl;
	cout << "Test passed"<< endl;
   cout << " All ok " << endl;
	cout << "Output file is " << mcFile << endl;
	cout << "Real time used: " << rtime << "s " << endl;
	cout << "CPU time used : " << ctime << "s " << endl << endl << endl;
	// ------------------------------------------------------------------------
}
示例#12
0
文件: r3ball.C 项目: malabi/R3BRoot
void r3ball(Int_t nEvents = 1,
	    TMap& fDetList,
            TString Target = "LeadTarget",
            Bool_t fVis = kFALSE,
            TString fMC = "TGeant3",
            TString fGenerator = "box",
            Bool_t fUserPList = kFALSE,
            Bool_t fR3BMagnet = kTRUE,
            Bool_t fCalifaHitFinder = kFALSE,
            Bool_t fStarTrackHitFinder = kFALSE,
            Double_t fMeasCurrent = 2000.,
            TString OutFile = "r3bsim.root",
            TString ParFile = "r3bpar.root",
            TString InFile = "evt_gen.dat",
            double energy1, double energy2)
{


  TString dir = getenv("VMCWORKDIR");
  TString r3bdir = dir + "/macros";
  
  TString r3b_geomdir = dir + "/geometry";
  gSystem->Setenv("GEOMPATH",r3b_geomdir.Data());
  
  TString r3b_confdir = dir + "gconfig";
  gSystem->Setenv("CONFIG_DIR",r3b_confdir.Data());
  
  // In general, the following parts need not be touched
  // ========================================================================
  
  // ----    Debug option   -------------------------------------------------
  gDebug = 0;
  // ------------------------------------------------------------------------
  
  // -----   Timer   --------------------------------------------------------
  TStopwatch timer;
  timer.Start();
  // ------------------------------------------------------------------------
  
  
  // -----   Create simulation run   ----------------------------------------
  FairRunSim* run = new FairRunSim();
  run->SetName(fMC.Data());              // Transport engine
  run->SetOutputFile(OutFile.Data());          // Output file
  FairRuntimeDb* rtdb = run->GetRuntimeDb();
  
  FairLogger::GetLogger()->SetLogScreenLevel("DEBUG");
  
  //  R3B Special Physics List in G4 case
  if ( (fUserPList  == kTRUE ) &&
       (fMC.CompareTo("TGeant4")   == 0)
      ){
    run->SetUserConfig("g4R3bConfig.C");
    run->SetUserCuts("SetCuts.C");
  }
  
  
  // -----   Create media   -------------------------------------------------
  run->SetMaterials("media_r3b.geo");       // Materials
  
  
  // Magnetic field map type
  Int_t fFieldMap = 0;
  
  
  // Global Transformations
  //- Two ways for a Volume Rotation are supported
  //-- 1) Global Rotation (Euler Angles definition)
  //-- This represent the composition of : first a rotation about Z axis with
  //-- angle phi, then a rotation with theta about the rotated X axis, and
  //-- finally a rotation with psi about the new Z axis.
  Double_t phi,theta,psi;
  
  //-- 2) Rotation in Ref. Frame of the Volume
  //-- Rotation is Using Local Ref. Frame axis angles
  Double_t thetaX,thetaY,thetaZ;
  

  //- Global Translation  Lab. frame.
  Double_t tx,ty,tz;
  
  
  // -----   Create R3B geometry --------------------------------------------
  //R3B Cave definition
  FairModule* cave= new R3BCave("CAVE");
  cave->SetGeometryFileName("r3b_cave.geo");
  run->AddModule(cave);
  

  //R3B Target definition
  if (fDetList.FindObject("TARGET") ) {
    R3BModule* target= new R3BTarget(Target.Data());
    target->SetGeometryFileName(((TObjString*)fDetList.GetValue("TARGET"))->GetString().Data());
    run->AddModule(target);
  }
  
  //R3B SiTracker Cooling definition
  if (fDetList.FindObject("VACVESSELCOOL") ) {
    R3BModule* vesselcool= new R3BVacVesselCool(Target.Data());
    vesselcool->SetGeometryFileName(((TObjString*)fDetList.GetValue("VACVESSELCOOL"))->GetString().Data());
    run->AddModule(vesselcool);
  }
  //R3B Magnet definition
  if (fDetList.FindObject("ALADIN") ) {
    fFieldMap = 0;
    R3BModule* mag = new R3BMagnet("AladinMagnet");
    mag->SetGeometryFileName(((TObjString*)fDetList.GetValue("ALADIN"))->GetString().Data());
    run->AddModule(mag);
  }
  
  //R3B Magnet definition
  if (fDetList.FindObject("GLAD") ) {
    fFieldMap = 1;
    R3BModule* mag = new R3BGladMagnet("GladMagnet", ((TObjString*)fDetList->GetValue("GLAD"))->GetString(), "GLAD Magnet");
    run->AddModule(mag);
  }
  
  if (fDetList.FindObject("CRYSTALBALL") ) {
    //R3B Crystal Calorimeter
    R3BDetector* xball = new R3BXBall("XBall", kTRUE);
    xball->SetGeometryFileName(((TObjString*)fDetList.GetValue("CRYSTALBALL"))->GetString().Data());
    run->AddModule(xball);
  }
  
  if (fDetList.FindObject("CALIFA") ) {
    // CALIFA Calorimeter
    R3BDetector* califa = new R3BCalifa("Califa", kTRUE);
//    ((R3BCalifa *)califa)->SelectGeometryVersion(0x438b);
    ((R3BCalifa *)califa)->SelectGeometryVersion(17);
    //Selecting the Non-uniformity of the crystals (1 means +-1% max deviation)
    ((R3BCalifa *)califa)->SetNonUniformity(.0);
    califa->SetGeometryFileName(((TObjString*)fDetList.GetValue("CALIFA"))->GetString().Data());
    run->AddModule(califa);
  }

  // Tracker
  if (fDetList.FindObject("TRACKER")  ) {
    R3BDetector* tra = new R3BTra("Tracker", kTRUE);
    tra->SetGeometryFileName(((TObjString*)fDetList.GetValue("TRACKER"))->GetString().Data());
    run->AddModule(tra);
  }
  
  // STaRTrack
  if (fDetList.FindObject("STaRTrack")  ) {
    R3BDetector* tra = new R3BSTaRTra("STaRTrack", kTRUE);
    tra->SetGeometryFileName(((TObjString*)fDetList.GetValue("STaRTrack"))->GetString().Data());
    run->AddModule(tra);
  }
  
  // DCH drift chambers
  if (fDetList.FindObject("DCH") ) {
    R3BDetector* dch = new R3BDch("Dch", kTRUE);
    dch->SetGeometryFileName(((TObjString*)fDetList.GetValue("DCH"))->GetString().Data());
    run->AddModule(dch);
  }
  
  // Tof
  if (fDetList.FindObject("TOF") ) {
    R3BDetector* tof = new R3BTof("Tof", kTRUE);
    tof->SetGeometryFileName(((TObjString*)fDetList.GetValue("TOF"))->GetString().Data());
    run->AddModule(tof);
  }
  
  // mTof
  if (fDetList.FindObject("MTOF") ) {
    R3BDetector* mTof = new R3BmTof("mTof", kTRUE);
    mTof->SetGeometryFileName(((TObjString*)fDetList.GetValue("MTOF"))->GetString().Data());
    run->AddModule(mTof);
  }

  // GFI detector
  if (fDetList.FindObject("GFI") ) {
    R3BDetector* gfi = new R3BGfi("Gfi", kTRUE);
    gfi->SetGeometryFileName(((TObjString*)fDetList.GetValue("GFI"))->GetString().Data());
    run->AddModule(gfi);
  }
  
  // Land Detector
  if (fDetList.FindObject("LAND") ) {
    R3BDetector* land = new R3BLand("Land", kTRUE);
    land->SetVerboseLevel(1);
    land->SetGeometryFileName(((TObjString*)fDetList.GetValue("LAND"))->GetString().Data());
    run->AddModule(land);
  }
  
  // NeuLand Scintillator Detector
  if(fDetList.FindObject("SCINTNEULAND")) {
    R3BDetector* land = new R3BLand("Land", kTRUE);
    land->SetVerboseLevel(1);
    land->SetGeometryFileName(((TObjString*)fDetList.GetValue("SCINTNEULAND"))->GetString().Data());
    run->AddModule(land);
  }
  
  // MFI Detector
  if(fDetList.FindObject("MFI")) {
    R3BDetector* mfi = new R3BMfi("Mfi", kTRUE);
    mfi->SetGeometryFileName(((TObjString*)fDetList.GetValue("MFI"))->GetString().Data());
    run->AddModule(mfi);
  }

  // PSP Detector
  if(fDetList.FindObject("PSP")) {
    R3BDetector* psp = new R3BPsp("Psp", kTRUE);
    psp->SetGeometryFileName(((TObjString*)fDetList.GetValue("PSP"))->GetString().Data());
    run->AddModule(psp);
  }
  
  // Luminosity detector
  if (fDetList.FindObject("LUMON") ) {
    R3BDetector* lumon = new ELILuMon("LuMon", kTRUE);
    lumon->SetGeometryFileName(((TObjString*)fDetList.GetValue("LUMON"))->GetString().Data());
    run->AddModule(lumon);
  }
  
  // -----   Create R3B  magnetic field ----------------------------------------
  Int_t typeOfMagneticField = 0;
  Int_t fieldScale = 1;
  Bool_t fVerbose = kFALSE;
  
  //NB: <D.B>
  // If the Global Position of the Magnet is changed
  // the Field Map has to be transformed accordingly
  if (fFieldMap == 0) {
    R3BAladinFieldMap* magField = new R3BAladinFieldMap("AladinMaps");
    magField->SetCurrent(fMeasCurrent);
    magField->SetScale(fieldScale);
    
    if ( fR3BMagnet == kTRUE ) {
      run->SetField(magField);
    } else {
      run->SetField(NULL);
    }
  } else if(fFieldMap == 1){
    R3BGladFieldMap* magField = new R3BGladFieldMap("R3BGladMap");
    magField->SetScale(fieldScale);
    
    if ( fR3BMagnet == kTRUE ) {
      run->SetField(magField);
    } else {
      run->SetField(NULL);
    }
  }  //! end of field map section
  
  // -----   Create PrimaryGenerator   --------------------------------------

  // 1 - Create the Main API class for the Generator
  FairPrimaryGenerator* primGen = new FairPrimaryGenerator();
  
  if (fGenerator.CompareTo("ion") == 0  ) {
          // R3B Ion Generator
          Int_t z = 30;  // Atomic number
          Int_t a = 65; // Mass number
          Int_t q = 0;   // Charge State 
          Int_t m = 1;   // Multiplicity
          Double_t px = 40./a;  // X-Momentum / per nucleon!!!!!!
          Double_t py = 600./a;  // Y-Momentum / per nucleon!!!!!!
          Double_t pz = 0.01/a;  // Z-Momentum / per nucleon!!!!!!
          R3BIonGenerator* ionGen = new R3BIonGenerator(z,a,q,m,px,py,pz);
          ionGen->SetSpotRadius(1,1,0);
          // add the ion generator
          primGen->AddGenerator(ionGen);
  }

  if (fGenerator.CompareTo("ascii") == 0  ) {
    R3BAsciiGenerator* gen = new R3BAsciiGenerator((dir+"/input/"+InFile).Data());
    primGen->AddGenerator(gen);
  }
  

  if (fGenerator.CompareTo("box") == 0  ) {
	  // 2- Define the BOX generator
	  Double_t pdgId=2212; // proton beam
	  Double_t theta1= 25.;  // polar angle distribution
	  //Double_t theta2= 7.;
	  Double_t theta2= 66.;
//	  Double_t momentum=1.09008; // 500 MeV/c
//	  Double_t momentum=0.4445834; // 100 MeV/c
          Double_t momentum1=TMath::Sqrt(energy1*energy1 + 2*energy1*0.938272046);
          Double_t momentum2=TMath::Sqrt(energy2*energy2 + 2*energy2*0.938272046);
	  FairBoxGenerator* boxGen = new FairBoxGenerator(pdgId, 1);
	  boxGen->SetThetaRange (   theta1,   theta2);
	  boxGen->SetPRange     (momentum1,momentum2);
	  boxGen->SetPhiRange   (0,360.);
	  //boxGen->SetXYZ(0.0,0.0,-1.5);
	  boxGen->SetXYZ(0.0,0.0,0.0);
          boxGen->SetDebug(kFALSE);
	  // add the box generator
	  primGen->AddGenerator(boxGen);

          //primGen->SetTarget(0.25, 0.5);
          //primGen->SmearVertexZ(kTRUE);
  } 
	
  if (fGenerator.CompareTo("gammas") == 0  ) {
        // 2- Define the CALIFA Test gamma generator
        //Double_t pdgId=22; // gamma emission
        Double_t pdgId=2212; // proton emission
        Double_t theta1= 10.;  // polar angle distribution
        Double_t theta2= 40.;
        //Double_t theta2= 90.; 
        //Double_t momentum=0.002; // 0.010 GeV/c = 10 MeV/c 
        Double_t momentumI=0.002; // 0.010 GeV/c = 10 MeV/c 
        Double_t momentumF=0.002; // 0.010 GeV/c = 10 MeV/c 
        //Double_t momentumF=0.808065; // 0.808065 GeV/c (300MeV Kin Energy for protons) 
        //Double_t momentumI=0.31016124; // 0.31016124 GeV/c (50MeV Kin Energy for protons)
        //Double_t momentum=0.4442972; // 0.4442972 GeV/c (100MeV Kin Energy for protons)
        //Double_t momentum=0.5509999; // 0.5509999 GeV/c (150MeV Kin Energy for protons)
        //Double_t momentumI=0.64405; // 0.64405 GeV/c (200MeV Kin Energy for protons) 
        Int_t multiplicity = 1;
        R3BCALIFATestGenerator* gammasGen = new R3BCALIFATestGenerator(pdgId, multiplicity);
        gammasGen->SetThetaRange (theta1,   theta2);
        gammasGen->SetCosTheta();
        gammasGen->SetPRange(momentumI,momentumF);
        gammasGen->SetPhiRange(-180.,180.);
        //gammasGen->SetXYZ(0.0,0.0,-1.5);
        //gammasGen->SetXYZ(0.0,0.0,0);
        gammasGen->SetBoxXYZ(-0.1,0.1,-0.1,0.1,-0.1,0.1);
        //gammasGen->SetLorentzBoost(0.8197505718204776); //beta=0.81975 for 700 A MeV
        // add the gamma generator
        primGen->AddGenerator(gammasGen);
  }


  if (fGenerator.CompareTo("r3b") == 0  ) {
    R3BSpecificGenerator *pR3bGen = new R3BSpecificGenerator();
    
    // R3bGen properties
    pR3bGen->SetBeamInteractionFlag("off");
    pR3bGen->SetRndmFlag("off");
    pR3bGen->SetRndmEneFlag("off");
    pR3bGen->SetBoostFlag("off");
    pR3bGen->SetReactionFlag("on");
    pR3bGen->SetGammasFlag("off");
    pR3bGen->SetDecaySchemeFlag("off");
    pR3bGen->SetDissociationFlag("off");
    pR3bGen->SetBackTrackingFlag("off");
    pR3bGen->SetSimEmittanceFlag("off");
    
    // R3bGen Parameters
    pR3bGen->SetBeamEnergy(1.); // Beam Energy in GeV
    pR3bGen->SetSigmaBeamEnergy(1.e-03); // Sigma(Ebeam) GeV
    pR3bGen->SetParticleDefinition(2212); // Use Particle Pdg Code
    pR3bGen->SetEnergyPrim(0.3); // Particle Energy in MeV
    Int_t fMultiplicity = 50;
    pR3bGen->SetNumberOfParticles(fMultiplicity); // Mult.
    
    // Reaction type
    //        1: "Elas"
    //        2: "iso"
    //        3: "Trans"
    pR3bGen->SetReactionType("Elas");
    
    // Target  type
    //        1: "LeadTarget"
    //        2: "Parafin0Deg"
    //        3: "Parafin45Deg"
    //        4: "LiH"
    
    pR3bGen->SetTargetType(Target.Data());
    Double_t thickness = (0.11/2.)/10.;  // cm
    pR3bGen->SetTargetHalfThicknessPara(thickness); // cm
    pR3bGen->SetTargetThicknessLiH(3.5); // cm
    pR3bGen->SetTargetRadius(1.); // cm
    
    pR3bGen->SetSigmaXInEmittance(1.); //cm
    pR3bGen->SetSigmaXPrimeInEmittance(0.0001); //cm
    
    // Dump the User settings
    pR3bGen->PrintParameters();
    primGen->AddGenerator(pR3bGen);
  }
  
  if (fGenerator.CompareTo("p2p") == 0  ) {
    R3Bp2pGenerator* gen = new R3Bp2pGenerator(("/lustre/nyx/fairgsi/mwinkel/r3broot/input/p2p/build/" + InFile).Data());
    primGen->AddGenerator(gen);

#if 0
    // Coincident gammas
    R3BGammaGenerator *gammaGen = new R3BGammaGenerator();
    
    gammaGen->SetEnergyLevel(0, 0.);
    gammaGen->SetEnergyLevel(1, 3E-3);
    gammaGen->SetEnergyLevel(2, 4E-3);

    gammaGen->SetBranchingRatio(2, 1, 0.5);
    gammaGen->SetBranchingRatio(2, 0, 0.5);
    gammaGen->SetBranchingRatio(1, 0, 1.);

    gammaGen->SetInitialLevel(2);

    gammaGen->SetLorentzBoost(TVector3(0, 0, 0.777792));

    primGen->AddGenerator(gammaGen);
#endif
  }

  run->SetGenerator(primGen);
  
  
  //-------Set visualisation flag to true------------------------------------
  run->SetStoreTraj(fVis);
  

  FairLogger::GetLogger()->SetLogVerbosityLevel("LOW");

 
  // ----- Initialize CalifaHitFinder task (CrystalCal to Hit) ------------------------------------
  if(fCalifaHitFinder) {
    R3BCalifaCrystalCal2Hit* califaHF = new R3BCalifaCrystalCal2Hit();
    califaHF->SetClusteringAlgorithm(1,0);
    califaHF->SetDetectionThreshold(0.000050);//50 KeV
    califaHF->SetExperimentalResolution(6.);  //percent @ 1 MeV
    //califaHF->SetComponentResolution(.25);    //sigma = 0.5 MeV
    califaHF->SetPhoswichResolution(3.,5.);   //percent @ 1 MeV for LaBr and LaCl 
    califaHF->SelectGeometryVersion(17);
    califaHF->SetAngularWindow(0.25,0.25);      //[0.25 around 14.3 degrees, 3.2 for the complete calorimeter]
    run->AddTask(califaHF);
  }

  // ----- Initialize StarTrackHitfinder task ------------------------------------
  if(fStarTrackHitFinder) {
    R3BSTaRTraHitFinder* trackHF = new R3BSTaRTraHitFinder();
    //trackHF->SetClusteringAlgorithm(1,0);
    trackHF->SetDetectionThreshold(0.000050); //50 KeV
    trackHF->SetExperimentalResolution(0.);
    //trackHF->SetAngularWindow(0.15,0.15);      //[0.25 around 14.3 degrees, 3.2 for the complete calorimeter]
    run->AddTask(trackHF);
  }
  
	
  // -----   Initialize simulation run   ------------------------------------
  run->Init();

  // ------  Increase nb of step for CALO
  Int_t nSteps = 150000;
  TVirtualMC::GetMC()->SetMaxNStep(nSteps);
  
  
  // -----   Runtime database   ---------------------------------------------
  R3BFieldPar* fieldPar = (R3BFieldPar*) rtdb->getContainer("R3BFieldPar");
      fieldPar->SetParameters(magField);
      fieldPar->setChanged();
  Bool_t kParameterMerged = kTRUE;
  FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
  parOut->open(ParFile.Data());
  rtdb->setOutput(parOut);
  rtdb->saveOutput();
  rtdb->print();
  
  
  // -----   Start run   ----------------------------------------------------
  if(nEvents > 0) {
    run->Run(nEvents);
  }
  
  
  // -----   Finish   -------------------------------------------------------
  timer.Stop();
  Double_t rtime = timer.RealTime();
  Double_t ctime = timer.CpuTime();
  cout << endl << endl;
  cout << "Macro finished succesfully." << endl;
  cout << "Output file is "    << OutFile << endl;
  cout << "Parameter file is " << ParFile << endl;
  cout << "Real time " << rtime << " s, CPU time " << ctime
  << "s" << endl << endl;
  // ------------------------------------------------------------------------

  cout << " Test passed" << endl;
  cout << " All ok " << endl;

}
示例#13
0
void run(TString runNumber)
{
    TStopwatch timer;
    timer.Start();

    const Int_t nev = -1;                                // number of events to read, -1 - untill CTRL+C
    TString inDir = "/Volumes/Data/kresan/s438b/lmd/";   // directory with lmd files
    TString outDir = "/Volumes/Data/kresan/s438b/data/"; // output directory
    TString histDir = "/Users/kresan/Sites/";            // web-server directory

    TString outputFileName = outDir + runNumber + "_raw.root";                  // name of output file
    TString histFileName = histDir + "hist_s438b_" + runNumber + "_raw.root";   // name of file with control histograms
    const Int_t refresh = 100000;                                               // refresh rate for saving control histograms
    TString parFileName = outDir + "params_" + runNumber + "_raw.root";         // name of parameter file
    //const Long64_t maxSize = 1 * 1024 * 1024 * 1024;                          // 1 GByte       // file split size

    const char *landMappingName = "cfg_neuland_s438b.hh";   // mapping file
    const Int_t nBarsPerPlane = 50;
    const Int_t updateRate = 150000;
    const Int_t minStats = 5000;
    const Int_t nModules = 800;

    // Create source with unpackers ----------------------------------------------
    Int_t iFile = 0;
    Int_t kFile = 0;
    if(runNumber.Contains("run331"))
    {
        iFile = 5209;
        kFile = 5229;
    }
    FairLmdSource* source = new FairLmdSource();
    char strName[1000];
    for(Int_t i = iFile; i < kFile; i++)
    {
        sprintf(strName, "%s%s_%4d.lmd", inDir.Data(), runNumber.Data(), i);
        for(Int_t j = 0; j < 1000; j++) if(' ' == strName[j]) strName[j] = '0';
        cout << strName << endl;
        source->AddFile(strName);
    }

    R3BEventHeaderUnpack *event_unpack = new R3BEventHeaderUnpack();
    source->AddUnpacker(event_unpack);

    // NeuLAND MBS parameters -------------------------------
    Short_t type = 94;
    Short_t subType = 9400;
    Short_t procId = 12;
    Short_t subCrate = 0;
    Short_t control = 3;
    source->AddUnpacker(new R3BLandUnpack(type, subType, procId, subCrate, control));
    // ------------------------------------------------------

    // LOS MBS parameters -----------------------------------
    type = 88;
    subType = 8800;
    procId = 10;
    subCrate = 7;
    control = 5;
    //source->AddUnpacker(new R3BLosUnpack(type, subType, procId, subCrate, control));
    // ------------------------------------------------------
    // ---------------------------------------------------------------------------

    // Create online run ---------------------------------------------------------
    FairRunOnline* run = new FairRunOnline(source);
    run->SetOutputFile(outputFileName.Data());
    run->SetGenerateHtml(kTRUE, histFileName.Data(), refresh);
    // ---------------------------------------------------------------------------

    // Create ALADIN field map ---------------------------------------------------
    R3BAladinFieldMap* magField = new R3BAladinFieldMap("AladinMaps");
    Double_t fMeasCurrent = 2500.; // I_current [A]
    magField->SetCurrent(fMeasCurrent);
    magField->SetScale(1.);
    run->SetField(magField);
    // ---------------------------------------------------------------------------

    // Channel mapping -----------------------------------------------------------
    R3BLandMapping* map = new R3BLandMapping();
    map->SetFileName(landMappingName);
    map->SetNofBarsPerPlane(nBarsPerPlane);
    run->AddTask(map);
    // ---------------------------------------------------------------------------

    // TCAL ----------------------------------------------------------------------
    R3BLandTcalFill* tcalFill = new R3BLandTcalFill("TcalFill");
    tcalFill->SetUpdateRate(updateRate);
    tcalFill->SetMinStats(minStats);
    tcalFill->SetTrigger(2);
    tcalFill->SetNofModules(nModules, 50);
    run->AddTask(tcalFill);

    R3BLosTcalFill* losTcalFill = new R3BLosTcalFill("LosTcalFill");
    losTcalFill->SetUpdateRate(updateRate);
    losTcalFill->SetMinStats(minStats);
    losTcalFill->SetNofModules(20);
    //run->AddTask(losTcalFill);
    // ---------------------------------------------------------------------------

    // Add analysis task ---------------------------------------------------------
    R3BLandRawAna* ana = new R3BLandRawAna("LandRawAna", 1);
    run->AddTask(ana);
    // ---------------------------------------------------------------------------

    // Initialize ----------------------------------------------------------------
    run->Init();
    //((TTree*)gFile->Get("cbmsim"))->SetMaxTreeSize(maxSize);
    FairLogger::GetLogger()->SetLogScreenLevel("INFO");
    // ---------------------------------------------------------------------------

    // Runtime data base ---------------------------------------------------------
    FairRuntimeDb* rtdb = run->GetRuntimeDb();
    R3BFieldPar* fieldPar = (R3BFieldPar*)rtdb->getContainer("R3BFieldPar");
    fieldPar->SetParameters(magField);
    fieldPar->setChanged();
    Bool_t kParameterMerged = kTRUE;
    FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
    parOut->open(parFileName);
    rtdb->setOutput(parOut);
    rtdb->print();
    // ---------------------------------------------------------------------------

    // Run -----------------------------------------------------------------------
    run->Run(nev, 0);
    rtdb->saveOutput();
    // ---------------------------------------------------------------------------

    timer.Stop();
    Double_t rtime = timer.RealTime();
    Double_t ctime = timer.CpuTime();
    cout << endl << endl;
    cout << "Macro finished succesfully." << endl;
    cout << "Output file is " << outputFileName << endl;
    cout << "Parameter file is " << parFileName << endl;
    cout << "Real time " << rtime << " s, CPU time " << ctime << "s" << endl << endl;
}
/********************************************************************************
 *    Copyright (C) 2014 GSI Helmholtzzentrum fuer Schwerionenforschung GmbH    *
 *                                                                              *
 *              This software is distributed under the terms of the             * 
 *         GNU Lesser General Public Licence version 3 (LGPL) version 3,        *  
 *                  copied verbatim in the file "LICENSE"                       *
 ********************************************************************************/
Int_t  sql_params_write_bin()
{
  // ----  Load libraries   -------------------------------------------------
  gROOT->LoadMacro("$VMCWORKDIR/gconfig/basiclibs.C");
  basiclibs();
  gSystem->Load("libGenVector");
  gSystem->Load("libGeoBase");
  gSystem->Load("libFairDB");
  gSystem->Load("libParBase");
  gSystem->Load("libBase");
  gSystem->Load("libMCStack");
  gSystem->Load("libTutorial5");

  // Generate a unique RunID
  FairRunIdGenerator runID;
  UInt_t runId =  runID.generateId();

  FairRuntimeDb* db = FairRuntimeDb::instance();
  cout << "-I- FairRuntimeDb created ----> " << db << endl;

  // Create in memory the relevant container
  FairDbTutParBin* p1 = (FairDbTutParBin*)(db->getContainer("TUTParBin"));

  // Set the Ascii IO as first input
  FairParAsciiFileIo* inp1 = new FairParAsciiFileIo();

  //TString work = getenv("VMCWORKDIR");
  TString filename = "ascii-example_bin.par";
  inp1->open(filename.Data(),"in");
  db->setFirstInput(inp1);

  // Set the SQL based IO as second input
  FairParTSQLIo* inp2 = new FairParTSQLIo();
  inp2->open();
  db->setSecondInput(inp2);


  // <INIT> containers from Ascii input
  // with assigned  RunId
  db->initContainers(runId);

  // Additionnally  prime some dummy values to the data members that are not
  // initialized using the ascii input file .
 
  p1->FillDummy();

  cout << endl;
  cout << "\n  -I- FAIRDB: RuntimeDB::init from Ascii File done using RunID# " <<  runId << endl;
  cout << endl;

  // <WRITE> back containers to the user-defined
  // Database using the Sql based IO of the
  // second input.

  db->setOutput(inp2);
  db->writeContainers();

  cout << endl;
  cout << "-I-  FAIRDB: RuntimeDB Parameters successfully written to DB with RunID# " << runId << endl;
  cout << endl;

  if (db) delete db;
  return 0;
}
示例#15
0
文件: run_sim.C 项目: malabi/R3BRoot
void run_sim()
{
    TString transport = "TGeant4";
    Bool_t userPList = kFALSE; // option for TGeant4

    TString outFile = "sim.root";
    TString parFile = "par.root";

    Bool_t magnet = kTRUE;
    Float_t fieldScale = -0.68;

    TString generator1 = "box";
    TString generator2 = "ascii";
    TString generator3 = "r3b";
    TString generator = generator1;
    TString inputFile = "";

    Int_t nEvents = 1;
    Bool_t storeTrajectories = kTRUE;
    Int_t randomSeed = 335566; // 0 for time-dependent random numbers

    // Target type
    TString target1 = "LeadTarget";
    TString target2 = "Para";
    TString target3 = "Para45";
    TString target4 = "LiH";
    TString targetType = target4;

    // ------------------------------------------------------------------------
    // Stable part ------------------------------------------------------------

    TString dir = getenv("VMCWORKDIR");

    // ----    Debug option   -------------------------------------------------
    gDebug = 0;

    // -----   Timer   --------------------------------------------------------
    TStopwatch timer;
    timer.Start();

    // -----   Create simulation run   ----------------------------------------
    FairRunSim* run = new FairRunSim();
    run->SetName(transport);            // Transport engine
    run->SetOutputFile(outFile.Data()); // Output file
    FairRuntimeDb* rtdb = run->GetRuntimeDb();

    //  R3B Special Physics List in G4 case
    if ((userPList == kTRUE) && (transport.CompareTo("TGeant4") == 0))
    {
        run->SetUserConfig("g4R3bConfig.C");
        run->SetUserCuts("SetCuts.C");
    }

    // -----   Create media   -------------------------------------------------
    run->SetMaterials("media_r3b.geo"); // Materials

    // -----   Create R3B geometry --------------------------------------------
    // R3B Cave definition
    FairModule* cave = new R3BCave("CAVE");
    cave->SetGeometryFileName("r3b_cave.geo");
    run->AddModule(cave);

    // To skip the detector comment out the line with: run->AddModule(...

    // Target
    run->AddModule(new R3BTarget(targetType, "target_" + targetType + ".geo.root"));

    // GLAD
    //run->AddModule(new R3BGladMagnet("glad_v17_flange.geo.root")); // GLAD should not be moved or rotated

    // PSP
    run->AddModule(new R3BPsp("psp_v13a.geo.root", {}, -221., -89., 94.1));

    // R3B SiTracker Cooling definition
    //run->AddModule(new R3BVacVesselCool(targetType, "vacvessel_v14a.geo.root"));

    // STaRTrack
    //run->AddModule(new R3BSTaRTra("startra_v16-300_2layers.geo.root", { 0., 0., 20. }));

    // CALIFA
    R3BCalifa* califa = new R3BCalifa("califa_10_v8.11.geo.root");
    califa->SelectGeometryVersion(10);
    // Selecting the Non-uniformity of the crystals (1 means +-1% max deviation)
    califa->SetNonUniformity(1.0);
    //run->AddModule(califa);

    // Tof
    //run->AddModule(new R3BTof("tof_v17a.geo.root", { -417.359574, 2.400000, 960.777114 }, { "", -90., +31., 90. }));

    // mTof
    run->AddModule(new R3BmTof("mtof_v17a.geo.root", { -155.824045, 0.523976, 761.870346 }, { "", -90., +16.7, 90. }));

    // MFI
    //run->AddModule(new R3BMfi("mfi_v17a.geo.root", { -63.82, 0., 520.25 }, { "", 90., +13.5, 90. })); // s412

    // NeuLAND
    // run->AddModule(new R3BNeuland("neuland_test.geo.root", { 0., 0., 1400. + 12 * 5. }));

    // -----   Create R3B  magnetic field ----------------------------------------
    // NB: <D.B>
    // If the Global Position of the Magnet is changed
    // the Field Map has to be transformed accordingly
    R3BGladFieldMap* magField = new R3BGladFieldMap("R3BGladMap");
    magField->SetScale(fieldScale);

    if (magnet == kTRUE)
    {
        run->SetField(magField);
    }
    else
    {
        run->SetField(NULL);
    }

    // -----   Create PrimaryGenerator   --------------------------------------
    // 1 - Create the Main API class for the Generator
    FairPrimaryGenerator* primGen = new FairPrimaryGenerator();

    if (generator.CompareTo("box") == 0)
    {
        FairIonGenerator* boxGen = new FairIonGenerator(50, 128, 50, 1, 0., 0., 1.3, 0., 0., 0.);
        primGen->AddGenerator(boxGen);
    }

    if (generator.CompareTo("ascii") == 0)
    {
        R3BAsciiGenerator* gen = new R3BAsciiGenerator((dir + "/input/" + inputFile).Data());
        primGen->AddGenerator(gen);
    }

    run->SetGenerator(primGen);

    run->SetStoreTraj(storeTrajectories);

    FairLogger::GetLogger()->SetLogVerbosityLevel("LOW");
    FairLogger::GetLogger()->SetLogScreenLevel("INFO");

    // -----   Initialize simulation run   ------------------------------------
    run->Init();
    TVirtualMC::GetMC()->SetRandom(new TRandom3(randomSeed));

    // ------  Increase nb of step for CALO
    Int_t nSteps = -15000;
    TVirtualMC::GetMC()->SetMaxNStep(nSteps);

    // -----   Runtime database   ---------------------------------------------
    R3BFieldPar* fieldPar = (R3BFieldPar*)rtdb->getContainer("R3BFieldPar");
    if (NULL != magField)
    {
        fieldPar->SetParameters(magField);
        fieldPar->setChanged();
    }
    Bool_t kParameterMerged = kTRUE;
    FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
    parOut->open(parFile.Data());
    rtdb->setOutput(parOut);
    rtdb->saveOutput();
    rtdb->print();

    // -----   Start run   ----------------------------------------------------
    if (nEvents > 0)
    {
        run->Run(nEvents);
    }

    // -----   Finish   -------------------------------------------------------
    timer.Stop();
    Double_t rtime = timer.RealTime();
    Double_t ctime = timer.CpuTime();
    cout << endl << endl;
    cout << "Macro finished succesfully." << endl;
    cout << "Output file is " << outFile << endl;
    cout << "Parameter file is " << parFile << endl;
    cout << "Real time " << rtime << " s, CPU time " << ctime << "s" << endl << endl;

    cout << " Test passed" << endl;
    cout << " All ok " << endl;

    // Snap a picture of the geometry
    // If this crashes, set "OpenGL.SavePicturesViaFBO: no" in your .rootrc
    /*gStyle->SetCanvasPreferGL(kTRUE);
    gGeoManager->GetTopVolume()->Draw("ogl");
    TGLViewer* v = (TGLViewer*)gPad->GetViewer3D();
    v->SetStyle(TGLRnrCtx::kOutline);
    v->RequestDraw();
    v->SavePicture("run_sim-side.png");
    v->SetPerspectiveCamera(TGLViewer::kCameraPerspXOZ, 25., 0, 0, -90. * TMath::DegToRad(), 0. * TMath::DegToRad());
    v->SavePicture("run_sim-top.png");*/
}
示例#16
0
emc_complete(Int_t nEvents = 10, Float_t mom = 1., Int_t charge = 1,
	     TString phys_list, Bool_t full_panda,
	     TString out_dat, TString out_par){

  TStopwatch timer;
  timer.Start();
  gDebug=0;

  // Load basic libraries
  // If it does not work,  please check the path of the libs and put it by hands
  gROOT->LoadMacro("$VMCWORKDIR/gconfig/rootlogon.C");
  gROOT->LoadMacro("$VMCWORKDIR/gconfig/basiclibs.C");
  rootlogon();
  basiclibs();
  //gSystem->ListLibraries();
  
  FairRunSim *fRun = new FairRunSim();
	
  // set the MC version used
  // ------------------------
  Bool_t G3 = strncmp(phys_list.Data(),"G3_",3)==0;
  cout << "Setting up MC engine to " << (G3?"TGeant3":"TGeant4") << " with " << (full_panda?"full PANDA":"EMCal only")<< endl;
  fRun->SetName(G3?"TGeant3":"TGeant4");

  fRun->SetOutputFile(out_dat);
	
  /**Get the run time data base for this session and set the needed input*/
  FairRuntimeDb* rtdb = fRun->GetRuntimeDb();

  /**Set the digitization parameters */
  TString emcDigiFile = gSystem->Getenv("VMCWORKDIR");
  emcDigiFile += "/macro/params/emc.par";
  
  FairParAsciiFileIo* parIo1 = new FairParAsciiFileIo();
  parIo1->open(emcDigiFile.Data(),"in");
  rtdb->setFirstInput(parIo1);        

  /**Parameters created for this simulation goes to the out put*/
  Bool_t kParameterMerged=kTRUE;
  FairParRootFileIo* output=new FairParRootFileIo(kParameterMerged);
  output->open(out_par);
  rtdb->setOutput(output);
	
  // Set Material file Name
  //-----------------------
  fRun->SetMaterials("media_pnd.geo");

  // Create and add detectors
  //-------------------------
  FairModule *Cave= new PndCave("CAVE");
  Cave->SetGeometryFileName("pndcave.geo");
  fRun->AddModule(Cave);
  if (full_panda) {
    //-------------------------  Magnet   ----------------- 
    FairModule *Magnet= new PndMagnet("MAGNET");
    //Magnet->SetGeometryFileName("FullSolenoid_V842.root");
    Magnet->SetGeometryFileName("FullSuperconductingSolenoid_v831.root");
    fRun->AddModule(Magnet);
    FairModule *Dipole= new PndMagnet("MAGNET");
    Dipole->SetGeometryFileName("dipole.geo");
    fRun->AddModule(Dipole);
    //-------------------------  Pipe     -----------------
    FairModule *Pipe= new PndPipe("PIPE");
    Pipe->SetGeometryFileName("beampipe_201112.root");
    fRun->AddModule(Pipe);
    //-------------------------  STT       -----------------
    FairDetector *Stt= new PndStt("STT", kTRUE);
    Stt->SetGeometryFileName("straws_skewed_blocks_35cm_pipe.geo");
    fRun->AddModule(Stt);
    //-------------------------  MVD       -----------------
    FairDetector *Mvd = new PndMvdDetector("MVD", kTRUE);
    Mvd->SetGeometryFileName("Mvd-2.1_FullVersion.root");
    fRun->AddModule(Mvd);
    //-------------------------  GEM       -----------------
    FairDetector *Gem = new PndGemDetector("GEM", kTRUE);
    Gem->SetGeometryFileName("gem_3Stations.root");
    fRun->AddModule(Gem);
  }

  //-------------------------  EMC       -----------------
  PndEmc *Emc = new PndEmc("EMC",kTRUE);
  Emc->SetGeometryVersion(1);
  Emc->SetStorageOfData(kFALSE);
  fRun->AddModule(Emc);

  if (full_panda) {
    //-------------------------  SCITIL    -----------------
    FairDetector *SciT = new PndSciT("SCIT",kTRUE);
    SciT->SetGeometryFileName("barrel-SciTil_07022013.root");
    fRun->AddModule(SciT);
    //-------------------------  DRC       -----------------
    PndDrc *Drc = new PndDrc("DIRC", kTRUE);
    Drc->SetGeometryFileName("dirc_l0_p0_updated.root"); 
    Drc->SetRunCherenkov(kFALSE);
    fRun->AddModule(Drc); 
    //-------------------------  DISC      -----------------
    PndDsk* Dsk = new PndDsk("DSK", kTRUE);
    Dsk->SetStoreCerenkovs(kFALSE);
    Dsk->SetStoreTrackPoints(kFALSE);
    fRun->AddModule(Dsk);
    //-------------------------  MDT       -----------------
    PndMdt *Muo = new PndMdt("MDT",kTRUE);
    Muo->SetBarrel("fast");
    Muo->SetEndcap("fast");
    Muo->SetMuonFilter("fast");
    Muo->SetForward("fast");
    Muo->SetMdtMagnet(kTRUE);
    Muo->SetMdtMFIron(kTRUE);
    fRun->AddModule(Muo);
    //-------------------------  FTS       -----------------
    FairDetector *Fts= new PndFts("FTS", kTRUE);
    Fts->SetGeometryFileName("fts.geo");
    fRun->AddModule(Fts); 
    //-------------------------  FTOF      -----------------
    FairDetector *FTof = new PndFtof("FTOF",kTRUE);
    FTof->SetGeometryFileName("ftofwall.root");
    fRun->AddModule(FTof);
    //-------------------------  RICH       ----------------
    FairDetector *Rich= new PndRich("RICH",kFALSE);
    Rich->SetGeometryFileName("rich_v2.geo");
    fRun->AddModule(Rich);
  }
  
  // Create and Set Event Generator
  //-------------------------------
  FairPrimaryGenerator* primGen = new FairPrimaryGenerator();
  fRun->SetGenerator(primGen);
	
  // Box Generator. first number: PDG particle code: 2nd number: particle multiplicity per event
  FairBoxGenerator* boxGen = new FairBoxGenerator(charge*211, 1); // 13 = muon // 1 = multipl. // 211 = pi+ // -211 = pi-
  boxGen->SetPRange(mom,mom); // GeV/c
  // boxGen->SetPtRange(1.,1.); // GeV/c
  boxGen->SetPhiRange(0., 360.); // Azimuth angle range [degree]
  boxGen->SetThetaRange(85., 95.); // Polar angle in lab system range [degree] - restrict to small rapidity
  boxGen->SetXYZ(0., 0., 0.); // vertex coordinates [mm]
  primGen->AddGenerator(boxGen);  
	
  fRun->SetStoreTraj(kTRUE); // to store particle trajectories 
  fRun->SetBeamMom(15);	

  //---------------------Create and Set the Field(s)---------- 
  PndMultiField *fField= new PndMultiField("FULL");
  fRun->SetField(fField);
	
  //----------- Add Hit producer task to the simulation ------
  PndEmcHitProducer* emcHitProd = new PndEmcHitProducer();
  emcHitProd->SetStorageOfData(kFALSE);
  fRun->AddTask(emcHitProd);

  PndEmcHitsToWaveform* emcHitsToWaveform= new PndEmcHitsToWaveform(0);
  PndEmcWaveformToDigi* emcWaveformToDigi=new PndEmcWaveformToDigi(0);
  //emcHitsToWaveform->SetStorageOfData(kFALSE);
  //emcWaveformToDigi->SetStorageOfData(kFALSE);
  fRun->AddTask(emcHitsToWaveform);  // full digitization
  fRun->AddTask(emcWaveformToDigi);  // full digitization
 
  PndEmcMakeCluster* emcMakeCluster= new PndEmcMakeCluster(0);
  //emcMakeCluster->SetStorageOfData(kFALSE);
  fRun->AddTask(emcMakeCluster);

  PndEmcHdrFiller* emcHdrFiller = new PndEmcHdrFiller();
  fRun->AddTask(emcHdrFiller); // ECM header

  PndEmcMakeBump* emcMakeBump= new PndEmcMakeBump();
  //emcMakeBump->SetStorageOfData(kFALSE);
  fRun->AddTask(emcMakeBump);

  PndEmcMakeRecoHit* emcMakeRecoHit= new PndEmcMakeRecoHit();
  fRun->AddTask(emcMakeRecoHit);
	
  /**Initialize the session*/
  fRun->Init();
  PndEmcMapper *emcMap = PndEmcMapper::Init(1);

  /**After initialization now we can save the field parameters */
  PndMultiFieldPar* Par = (PndMultiFieldPar*) rtdb->getContainer("PndMultiFieldPar");
  if (fField) {  Par->SetParameters(fField); }
  Par->setInputVersion(fRun->GetRunId(),1);
  Par->setChanged();

  /**All parameters are initialized and ready to be saved*/
  rtdb->saveOutput();
  rtdb->print();
		
  // Transport nEvents
  // -----------------
  fRun->Run(nEvents);
	
  timer.Stop();
	
  printf("RealTime=%f seconds, CpuTime=%f seconds\n",timer.RealTime(),timer.CpuTime());
	
}  
示例#17
0
void run_sim(Int_t nEvents = 2)
{
   TTree::SetMaxTreeSize(90000000000);
	Int_t iVerbose = 0;

	TString script = TString(gSystem->Getenv("SCRIPT"));
	TString parDir = TString(gSystem->Getenv("VMCWORKDIR")) + TString("/parameters");

	//gRandom->SetSeed(10);

	TString inFile = "/Users/slebedev/Development/cbm/data/urqmd/auau/25gev/centr/urqmd.auau.25gev.centr.00001.root";
	TString parFile = "/Users/slebedev/Development/cbm/data/simulations/rich/richreco/param.0001.root";
	TString outFile = "/Users/slebedev/Development/cbm/data/simulations/rich/richreco/mc.0001.root";

	TString caveGeom = "cave.geo";
	TString pipeGeom = "pipe/pipe_standard.geo";
	TString magnetGeom = "magnet/magnet_v12a.geo";
	TString mvdGeom = "";
	TString stsGeom = "sts/sts_v13d.geo.root";
	TString richGeom= "rich/rich_v13c_pipe_1_al_1.root";
	TString trdGeom = "trd/trd_v13g.geo.root";
	TString tofGeom = "tof/tof_v13b.geo.root";
	TString ecalGeom = "";
	TString fieldMap = "field_v12a";

	TString electrons = "yes"; // If "yes" than primary electrons will be generated
	Int_t NELECTRONS = 5; // number of e- to be generated
	Int_t NPOSITRONS = 5; // number of e+ to be generated
	TString urqmd = "yes"; // If "yes" than UrQMD will be used as background
	TString pluto = "no"; // If "yes" PLUTO particles will be embedded
	TString plutoFile = "";
	TString plutoParticle = "";
	Double_t fieldZ = 50.; // field center z position
	Double_t fieldScale =  1.0; // field scaling factor

	if (script == "yes") {
		inFile = TString(gSystem->Getenv("IN_FILE"));
		outFile = TString(gSystem->Getenv("MC_FILE"));
		parFile = TString(gSystem->Getenv("PAR_FILE"));

		caveGeom = TString(gSystem->Getenv("CAVE_GEOM"));
		pipeGeom = TString(gSystem->Getenv("PIPE_GEOM"));
		mvdGeom = TString(gSystem->Getenv("MVD_GEOM"));
		stsGeom = TString(gSystem->Getenv("STS_GEOM"));
		richGeom = TString(gSystem->Getenv("RICH_GEOM"));
		trdGeom = TString(gSystem->Getenv("TRD_GEOM"));
		tofGeom = TString(gSystem->Getenv("TOF_GEOM"));
		ecalGeom = TString(gSystem->Getenv("ECAL_GEOM"));
		fieldMap = TString(gSystem->Getenv("FIELD_MAP"));
		magnetGeom = TString(gSystem->Getenv("MAGNET_GEOM"));

		NELECTRONS = TString(gSystem->Getenv("NELECTRONS")).Atoi();
		NPOSITRONS = TString(gSystem->Getenv("NPOSITRONS")).Atoi();
		electrons = TString(gSystem->Getenv("ELECTRONS"));
		urqmd = TString(gSystem->Getenv("URQMD"));
		pluto = TString(gSystem->Getenv("PLUTO"));
		plutoFile = TString(gSystem->Getenv("PLUTO_FILE"));
		plutoParticle = TString(gSystem->Getenv("PLUTO_PARTICLE"));
		fieldScale = TString(gSystem->Getenv("FIELD_MAP_SCALE")).Atof();
	}

	gDebug = 0;
	TStopwatch timer;
	timer.Start();

   gROOT->LoadMacro("$VMCWORKDIR/macro/littrack/loadlibs.C");
   loadlibs();

	FairRunSim* fRun = new FairRunSim();
	fRun->SetName("TGeant3"); // Transport engine
	fRun->SetOutputFile(outFile);
	FairRuntimeDb* rtdb = fRun->GetRuntimeDb();
	//fRun->SetStoreTraj(kTRUE);

	fRun->SetMaterials("media.geo"); // Materials

	if ( caveGeom != "" ) {
		FairModule* cave = new CbmCave("CAVE");
		cave->SetGeometryFileName(caveGeom);
		fRun->AddModule(cave);
	}

	if ( pipeGeom != "" ) {
		FairModule* pipe = new CbmPipe("PIPE");
		pipe->SetGeometryFileName(pipeGeom);
		fRun->AddModule(pipe);
	}

	CbmTarget* target = new CbmTarget("Gold", 0.025); // 250 mum
	fRun->AddModule(target);

	if ( magnetGeom != "" ) {
		FairModule* magnet = new CbmMagnet("MAGNET");
		magnet->SetGeometryFileName(magnetGeom);
		fRun->AddModule(magnet);
	}

	if ( mvdGeom != "" ) {
		FairDetector* mvd = new CbmMvd("MVD", kTRUE);
		mvd->SetGeometryFileName(mvdGeom);
		fRun->AddModule(mvd);
	}

	if ( stsGeom != "" ) {
		FairDetector* sts = new CbmStsMC(kTRUE);
		sts->SetGeometryFileName(stsGeom);
		fRun->AddModule(sts);
	}

	if ( richGeom != "" ) {
		FairDetector* rich = new CbmRich("RICH", kTRUE);
		rich->SetGeometryFileName(richGeom);
		fRun->AddModule(rich);
	}

	if ( trdGeom != "" ) {
		FairDetector* trd = new CbmTrd("TRD",kTRUE );
		trd->SetGeometryFileName(trdGeom);
		fRun->AddModule(trd);
	}

	if ( tofGeom != "" ) {
		FairDetector* tof = new CbmTof("TOF", kTRUE);
		tof->SetGeometryFileName(tofGeom);
		fRun->AddModule(tof);
	}

	// -----   Create magnetic field   ----------------------------------------
	CbmFieldMap* magField = NULL;
	magField = new CbmFieldMapSym2(fieldMap);
	magField->SetPosition(0., 0., fieldZ);
	magField->SetScale(fieldScale);
	fRun->SetField(magField);

	// -----   Create PrimaryGenerator   --------------------------------------
	FairPrimaryGenerator* primGen = new FairPrimaryGenerator();

	if (urqmd == "yes"){
		//CbmUrqmdGenerator*  urqmdGen = new CbmUrqmdGenerator(inFile);
	    CbmUnigenGenerator*  urqmdGen = new CbmUnigenGenerator(inFile);
		urqmdGen->SetEventPlane(0. , 360.);
		primGen->AddGenerator(urqmdGen);
	}

	//add electrons
	if (electrons == "yes"){
		FairBoxGenerator* boxGen1 = new FairBoxGenerator(11, NPOSITRONS);
		boxGen1->SetPtRange(0.,3.);
		boxGen1->SetPhiRange(0.,360.);
		boxGen1->SetThetaRange(2.5,25.);
		boxGen1->SetCosTheta();
		boxGen1->Init();
		primGen->AddGenerator(boxGen1);

		FairBoxGenerator* boxGen2 = new FairBoxGenerator(-11, NELECTRONS);
		boxGen2->SetPtRange(0.,3.);
		boxGen2->SetPhiRange(0.,360.);
		boxGen2->SetThetaRange(2.5,25.);
		boxGen2->SetCosTheta();
		boxGen2->Init();
		primGen->AddGenerator(boxGen2);

//      CbmLitPolarizedGenerator *polGen;
//      polGen = new CbmLitPolarizedGenerator(443, NELECTRONS);
//      polGen->SetDistributionPt(0.176);        // 25 GeV
//      polGen->SetDistributionY(1.9875,0.228);  // 25 GeV
//      polGen->SetRangePt(0.,3.);
//      polGen->SetRangeY(1.,3.);
//      polGen->SetBox(0);
//      polGen->SetRefFrame(CbmLitPolarizedGenerator::kHelicity);
//      polGen->SetDecayMode(CbmLitPolarizedGenerator::kDiElectron);
//      polGen->SetAlpha(0);
//      polGen->Init();
//      primGen->AddGenerator(polGen);
   }

	if (pluto == "yes") {
		FairPlutoGenerator *plutoGen= new FairPlutoGenerator(plutoFile);
		primGen->AddGenerator(plutoGen);
	}

	fRun->SetGenerator(primGen);

	fRun->Init();

	// -----   Runtime database   ---------------------------------------------
	CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar");
	fieldPar->SetParameters(magField);
	fieldPar->setChanged();
	fieldPar->setInputVersion(fRun->GetRunId(),1);
	Bool_t kParameterMerged = kTRUE;
	FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged);
	parOut->open(parFile.Data());
	rtdb->setOutput(parOut);
	rtdb->saveOutput();
	rtdb->print();

	fRun->Run(nEvents);

	timer.Stop();
	Double_t rtime = timer.RealTime();
	Double_t ctime = timer.CpuTime();
	cout << endl << endl;
	cout << "Macro finished succesfully." << endl;
	cout << "Output file is "    << outFile << endl;
	cout << "Parameter file is " << parFile << endl;
	cout << "Real time " << rtime << " s, CPU time " << ctime
       << "s" << endl << endl;

	cout << " Test passed" << endl;
	cout << " All ok " << endl;
}