示例#1
0
FilterDataPtr TransformFilter::apply(FilterDataPtr input) {
    // To apply the transform, we just add a new node and put all root nodes as
    // children of it.

    for(FilterData::const_iterator md_it = input->begin(); md_it != input->end(); md_it++) {
        VisualPtr vis = *md_it;
        MeshdataPtr md( std::tr1::dynamic_pointer_cast<Meshdata>(vis) );

        if (!md) {
            SILOG(transform-filter, warning, "Can't transform this type of visual: " << vis->type());
            continue;
        }

        Node new_root(NullNodeIndex, mTransform);
        new_root.children = md->rootNodes;

        NodeIndex new_root_index = md->nodes.size();
        md->nodes.push_back(new_root);

        md->rootNodes.clear();
        md->rootNodes.push_back(new_root_index);
    }

    return input;
}
示例#2
0
FilterDataPtr SaveFilter::apply(FilterDataPtr input) {
    assert(input->single());

    ModelsSystem* parser = ModelsSystemFactory::getSingleton().getConstructor("any")("");
    VisualPtr vis = input->get();
    bool success = parser->convertVisual(vis, mFormat, mFilename);
    if (!success) {
        std::cout << "Error saving mesh." << std::endl;
        return FilterDataPtr();
    }
    return input;
}
FilterDataPtr SquashMaterialsFilter::apply(FilterDataPtr input) {
    using namespace Sirikata::Transfer;

    assert(input->single());
    MeshdataPtr md = input->get();

    // This keeps track of our new set of unique materials and will replace
    // Meshdata::materials.
    MaterialEffectInfoList new_materials;
    // And this keeps track of how the indices are remapped. This is used to
    // update all material indices to use indices for new_materials.
    typedef std::map<uint32, uint32> MaterialReindexMap;
    MaterialReindexMap reindexes;

    // First, scan through and generate unique materials and the map necessary
    // to map old material indices to new material indices
    for(uint32 mat_idx = 0; mat_idx < md->materials.size(); mat_idx++) {
        MaterialEffectInfo& orig_mat = md->materials[mat_idx];

        // First, try to find an identical material
        bool found_match = false;
        for(uint32 nmi = 0; nmi < new_materials.size(); nmi++) {
            if (orig_mat == new_materials[nmi]) {
                reindexes[mat_idx] = nmi;
                found_match = true;
                break;
            }
        }
        if (found_match) continue;

        // If we can't find one, use this as a new material in the new list
        uint32 new_mat_idx = new_materials.size();
        new_materials.push_back( orig_mat );
        reindexes[mat_idx] = new_mat_idx;
    }

    // Now, replace materials and run through all the data referencing materials
    // and replace indices
    md->materials = new_materials;
    // Materials are referenced in the SubMeshGeometry::Primitive, but those are
    // then bound to actual materials by the
    // GeometryInstance::MaterialBindingMap. To fix up bindings, we just need to
    // remap all the values in all MaterialBindingMaps.
    for(GeometryInstanceList::iterator geo_inst_it = md->instances.begin(); geo_inst_it != md->instances.end(); geo_inst_it++) {
        GeometryInstance& geo_inst = *geo_inst_it;

        for(GeometryInstance::MaterialBindingMap::iterator mat_binding_it = geo_inst.materialBindingMap.begin(); mat_binding_it != geo_inst.materialBindingMap.end(); mat_binding_it++) {
            mat_binding_it->second = reindexes[ mat_binding_it->second ];
        }
    }

    // FIXME we could also try to run through and squash references to materials
    // into a single reference, i.e. so that MaterialBindingMaps don't refer to
    // the same one twice. This is more complicated because of the level of
    // indirection and the fact that multiple GeometryInstances could refer to
    // the same SubMeshGeometry -- we would need to make sure that all
    // GeometryInstances referring to each SubMeshGeometry could squash in the
    // same way.

    // We munged input directly, return same FilterDataPtr
    return input;
}
示例#4
0
FilterDataPtr PrintFilter::apply(FilterDataPtr input) {
    assert(input->single());

    MeshdataPtr md = input->get();

    if(mTexturesOnly) {
        for(TextureList::const_iterator it = md->textures.begin(); it != md->textures.end(); it++) {
            printf("%s\n", it->c_str());
        }
        return input;
    }

    printf("URI: %s\n", md->uri.c_str());
    printf("ID: %ld\n", md->id);
    printf("Hash: %s\n", md->hash.toString().c_str());

    printf("Texture List:\n");
    for(TextureList::const_iterator it = md->textures.begin(); it != md->textures.end(); it++) {
        printf("   %s\n", it->c_str());
    }

    printf("Submesh Geometry List:\n");
    for(SubMeshGeometryList::const_iterator it = md->geometry.begin(); it != md->geometry.end(); it++) {
        printf("   Name: %s, Positions: %d Normals: %d Primitives: %d, UVs: %d (sets) x %d (stride) x %d (count)\n", it->name.c_str(),
            (int)it->positions.size(), (int)it->normals.size(), (int)it->primitives.size(),
            (int)it->texUVs.size(), (int)( it->texUVs.size() ? it->texUVs[0].stride : 0), (int)( it->texUVs.size() ? it->texUVs[0].uvs.size() : 0));

        for(std::vector<SubMeshGeometry::Primitive>::const_iterator p = it->primitives.begin(); p != it->primitives.end(); p++) {
            printf("      Primitive: material: %d, indices: %d, type: %s\n", (int)p->materialId, (int)p->indices.size(), PrimitiveTypeToString(p->primitiveType));
        }
    }

    printf("Lights:\n");
    for(LightInfoList::const_iterator it = md->lights.begin(); it != md->lights.end(); it++) {
        printf("   Type: %d Power: %f\n", it->mType, it->mPower);
    }

    printf("Material Effects:\n");
    for(MaterialEffectInfoList::const_iterator it = md->materials.begin(); it != md->materials.end(); it++) {
        printf("   Textures: %d Shininess: %f Reflectivity: %f\n", (int)it->textures.size(), it->shininess, it->reflectivity);
        for(MaterialEffectInfo::TextureList::const_iterator t_it = it->textures.begin(); t_it != it->textures.end(); t_it++)
            printf("     Texture: %s, color = %s, affects %s, %s, min: %s, mag: %s, wrap = (%s, %s, %s), max_mip = %d, mip_bias = %f\n",
                t_it->uri.c_str(),
                t_it->color.toString().c_str(),
                AffectingToString(t_it->affecting),
                SamplerTypeToString(t_it->samplerType),
                SamplerFilterToString(t_it->minFilter),
                SamplerFilterToString(t_it->magFilter),
                WrapModeToString(t_it->wrapS),
                WrapModeToString(t_it->wrapT),
                WrapModeToString(t_it->wrapU),
                t_it->maxMipLevel,
                t_it->mipBias
            );
    }

    printf("Geometry Instances: (%d in list, %d instanced)\n", (int)md->instances.size(), (int)md->getInstancedGeometryCount());
    for(GeometryInstanceList::const_iterator it = md->instances.begin(); it != md->instances.end(); it++) {
        printf("   Index: %d MapSize: %d\n", it->geometryIndex, (int)it->materialBindingMap.size());
        for(GeometryInstance::MaterialBindingMap::const_iterator m = it->materialBindingMap.begin(); m != it->materialBindingMap.end(); m++) {
            printf("      map from: %d to: %d\n", (int)m->first, (int)m->second);
        }
    }

    printf("Light Instances: (%d in list, %d instanced)\n", (int)md->lightInstances.size(), (int)md->getInstancedLightCount());
    for(LightInstanceList::const_iterator it = md->lightInstances.begin(); it != md->lightInstances.end(); it++) {
        printf("   Index: %d Matrix: %s\n", it->lightIndex, md->getTransform(it->parentNode).toString().c_str());
    }

    printf("Material Effect size: %d\n", (int)md->materials.size());

    printf("Nodes size: %d (%d roots)\n", (int)md->nodes.size(), (int)md->rootNodes.size());
    for(uint32 ri = 0; ri < md->rootNodes.size(); ri++) {
        std::stack<NodeState> node_stack;
        node_stack.push( NodeState(md->rootNodes[ri]) );
        String indent = "";

        while(!node_stack.empty()) {
            NodeState& curnode = node_stack.top();

            if (curnode.curChild == -1) {
                // First time we've seen this node, print info and move it
                // forward to start procesing children
                printf("%s %d\n", indent.c_str(), curnode.node);
                curnode.curChild++;
                indent += " ";
            }
            else if (curnode.curChild >= (int)md->nodes[curnode.node].children.size()) {
                // We finished with this node
                node_stack.pop();
                indent = indent.substr(1); // reduce indent
            }
            else {
                // Normal iteration, process next child
                int32 childindex = curnode.curChild;
                curnode.curChild++;
                node_stack.push( NodeState(md->nodes[curnode.node].children[childindex]) );
            }
        }
    }

    printf("Joints: %d instanced (%d in list)\n", md->getJointCount(), md->joints.size());

    // Compute the expected number of draw calls assuming no smart
    // transformation is occuring. This should be:
    // Number of instances * number of primitives in instance
    // This really should trace from the root to make sure that all instances
    // are actually drawn...
    uint32 draw_calls = 0;

    Meshdata::GeometryInstanceIterator geoinst_it = md->getGeometryInstanceIterator();
    uint32 geoinst_idx;
    Matrix4x4f pos_xform;
    while( geoinst_it.next(&geoinst_idx, &pos_xform) ) {
        draw_calls += md->geometry[ md->instances[geoinst_idx].geometryIndex ].primitives.size();
    }
    printf("Estimated draw calls: %d\n", draw_calls);

    return input;
}