示例#1
0
void FilterTurbulence::render_cairo(FilterSlot &slot)
{
    cairo_surface_t *input = slot.getcairo(_input);
    cairo_surface_t *out = ink_cairo_surface_create_same_size(input, CAIRO_CONTENT_COLOR_ALPHA);

    if (!gen->ready()) {
        Geom::Point ta(fTileX, fTileY);
        Geom::Point tb(fTileX + fTileWidth, fTileY + fTileHeight);
        gen->init(seed, Geom::Rect(ta, tb),
            Geom::Point(XbaseFrequency, YbaseFrequency), stitchTiles,
            type == TURBULENCE_FRACTALNOISE, numOctaves);
    }

    Geom::Affine unit_trans = slot.get_units().get_matrix_primitiveunits2pb().inverse();
    Geom::Rect slot_area = slot.get_slot_area();
    double x0 = slot_area.min()[Geom::X];
    double y0 = slot_area.min()[Geom::Y];

    ink_cairo_surface_synthesize(out, Turbulence(*gen, unit_trans, x0, y0));

    cairo_surface_mark_dirty(out);

    slot.set(_output, out);
    cairo_surface_destroy(out);
}
示例#2
0
void FilterFlood::render_cairo(FilterSlot &slot)
{
    cairo_surface_t *input = slot.getcairo(_input);

    double r = SP_RGBA32_R_F(color);
    double g = SP_RGBA32_G_F(color);
    double b = SP_RGBA32_B_F(color);
    double a = opacity;

#if defined(HAVE_LIBLCMS1) || defined(HAVE_LIBLCMS2)

    if (icc) {
        guchar ru, gu, bu;
        icc_color_to_sRGB(icc, &ru, &gu, &bu);
        r = SP_COLOR_U_TO_F(ru);
        g = SP_COLOR_U_TO_F(gu);
        b = SP_COLOR_U_TO_F(bu);
    }
#endif

    cairo_surface_t *out = ink_cairo_surface_create_same_size(input, CAIRO_CONTENT_COLOR_ALPHA);

    // Get filter primitive area in user units
    Geom::Rect fp = filter_primitive_area( slot.get_units() );

    // Convert to Cairo units
    Geom::Rect fp_cairo = fp * slot.get_units().get_matrix_user2pb();

    // Get area in slot (tile to fill)
    Geom::Rect sa = slot.get_slot_area();

    // Get overlap
    Geom::OptRect optoverlap = intersect( fp_cairo, sa );
    if( optoverlap ) {

        Geom::Rect overlap = *optoverlap;

        double dx = fp_cairo.min()[Geom::X] - sa.min()[Geom::X];
        double dy = fp_cairo.min()[Geom::Y] - sa.min()[Geom::Y];
        if( dx < 0.0 ) dx = 0.0;
        if( dy < 0.0 ) dy = 0.0;

        cairo_t *ct = cairo_create(out);
        cairo_set_source_rgba(ct, r, g, b, a);
        cairo_set_operator(ct, CAIRO_OPERATOR_SOURCE);
        cairo_rectangle(ct, dx, dy, overlap.width(), overlap.height() );
        cairo_fill(ct);
        cairo_destroy(ct);
    }

    slot.set(_output, out);
    cairo_surface_destroy(out);
}
int FilterSkeleton::render(FilterSlot &slot,
                           FilterUnits const &/*units*/) {
    //NRPixBlock *in = slot.get(_input);
    NRPixBlock *out = new NRPixBlock();

    /* Insert rendering code here */

    out->empty = FALSE;
    slot.set(_output, out);

    return 0;
}
void FilterTile::render_cairo(FilterSlot &slot)
{
    static bool tile_warning = false;

//IMPLEMENT ME!
    if (!tile_warning) {
        g_warning("Renderer for feTile is not implemented.");
        tile_warning = true;
    }

    cairo_surface_t *in = slot.getcairo(_input);
    slot.set(_output, in);
}
int FilterConvolveMatrix::render(FilterSlot &slot, FilterUnits const &/*units*/) {
    NRPixBlock *in = slot.get(_input);
    if (!in) {
        g_warning("Missing source image for feConvolveMatrix (in=%d)", _input);
        return 1;
    }
    if (orderX<=0 || orderY<=0) {
        g_warning("Empty kernel!");
        return 1;
    }
    if (targetX<0 || targetX>=orderX || targetY<0 || targetY>=orderY) {
        g_warning("Invalid target!");
        return 1;
    }
    if (kernelMatrix.size()!=(unsigned int)(orderX*orderY)) {
        g_warning("kernelMatrix does not have orderX*orderY elements!");
        return 1;
    }

    if (bias!=0) {
        g_warning("It is unknown whether Inkscape's implementation of bias in feConvolveMatrix is correct!");
        // The SVG specification implies that feConvolveMatrix is defined for premultiplied colors (which makes sense).
        // It also says that bias should simply be added to the result for each color (without taking the alpha into account)
        // However, it also says that one purpose of bias is "to have .5 gray value be the zero response of the filter".
        // It seems sensible to indeed support the latter behaviour instead of the former, but this does appear to go against the standard.
        // Note that Batik simply does not support bias!=0
    }
    if (edgeMode!=CONVOLVEMATRIX_EDGEMODE_NONE) {
        g_warning("Inkscape only supports edgeMode=\"none\" (and a filter uses a different one)!");
        // Note that to properly support edgeMode the interaction with area_enlarge should be well understood (and probably something needs to change)
        // area_enlarge should NOT let Inkscape enlarge the area beyond the filter area, it should only enlarge the rendered area if a part of the object is rendered to make it overlapping (enough) with adjacent parts.
    }

    NRPixBlock *out = new NRPixBlock;

    nr_pixblock_setup_fast(out, in->mode,
                           in->area.x0, in->area.y0, in->area.x1, in->area.y1,
                           true);

    unsigned char *in_data = NR_PIXBLOCK_PX(in);
    unsigned char *out_data = NR_PIXBLOCK_PX(out);

    unsigned int const width = in->area.x1 - in->area.x0;
    unsigned int const height = in->area.y1 - in->area.y0;

    // Set up predivided kernel matrix
    std::vector<double> kernel(kernelMatrix);
    for(size_t i=0; i<kernel.size(); i++) {
        kernel[i] /= divisor; // The code that creates this object makes sure that divisor != 0
    }

    if (in->mode==NR_PIXBLOCK_MODE_R8G8B8A8P) {
        if (preserveAlpha) {
            convolve2D<true,true>(out_data, in_data, width, height, &kernel.front(), orderX, orderY, targetX, targetY, bias);
        } else {
            convolve2D<true,false>(out_data, in_data, width, height, &kernel.front(), orderX, orderY, targetX, targetY, bias);
        }
    } else {
        if (preserveAlpha) {
            convolve2D<false,true>(out_data, in_data, width, height, &kernel.front(), orderX, orderY, targetX, targetY, bias);
        } else {
            convolve2D<false,false>(out_data, in_data, width, height, &kernel.front(), orderX, orderY, targetX, targetY, bias);
        }
    }

    out->empty = FALSE;
    slot.set(_output, out);
    return 0;
}
void FilterTile::render_cairo(FilterSlot &slot)
{
    // FIX ME!
    static bool tile_warning = false;
    if (!tile_warning) {
        g_warning("Renderer for feTile has non-optimal implementation, expect slowness and bugs.");
        tile_warning = true;
    }

    // Fixing isn't so easy as the Inkscape renderer breaks the canvas into "rendering" tiles for
    // faster rendering. (The "rendering" tiles are not the same as the tiles in this primitive.)
    // Only if the the feTile tile source falls inside the current "rendering" tile will the tile
    // image be available.

    // This input source contains only the "rendering" tile.
    cairo_surface_t *in = slot.getcairo(_input);

    // For debugging
    // static int i = 0;
    // ++i;
    // std::stringstream filename;
    // filename << "dump." << i << ".png";
    // cairo_surface_write_to_png( in, filename.str().c_str() );

    // This is the feTile source area as determined by the input primitive area (see SVG spec).
    Geom::Rect tile_area = slot.get_primitive_area(_input);

    if( tile_area.width() == 0.0 || tile_area.height() == 0.0 ) {

        slot.set(_output, in);
        std::cerr << "FileTile::render_cairo: tile has zero width or height" << std::endl;

    } else {

        cairo_surface_t *out = ink_cairo_surface_create_identical(in);
        // color_interpolation_filters for out same as in.
        copy_cairo_surface_ci(in, out);
        cairo_t *ct = cairo_create(out);

        // The rectangle of the "rendering" tile.
        Geom::Rect sa = slot.get_slot_area();

        Geom::Affine trans = slot.get_units().get_matrix_user2pb();

        // Create feTile tile ----------------

        // Get tile area in pixbuf units (tile transformed).
        Geom::Rect tt = tile_area * trans;

        // Shift between "rendering" tile and feTile tile
        Geom::Point shift = sa.min() - tt.min();

        // Create feTile tile surface
        cairo_surface_t *tile = cairo_surface_create_similar(in, cairo_surface_get_content(in),
                                tt.width(), tt.height());
        cairo_t *ct_tile = cairo_create(tile);
        cairo_set_source_surface(ct_tile, in, shift[Geom::X], shift[Geom::Y]);
        cairo_paint(ct_tile);

        // Paint tiles ------------------

        // For debugging
        // std::stringstream filename;
        // filename << "tile." << i << ".png";
        // cairo_surface_write_to_png( tile, filename.str().c_str() );

        // Determine number of feTile rows and columns
        Geom::Rect pr = filter_primitive_area( slot.get_units() );
        int tile_cols = ceil( pr.width()  / tile_area.width() );
        int tile_rows = ceil( pr.height() / tile_area.height() );

        // Do tiling (TO DO: restrict to slot area.)
        for( int col=0; col < tile_cols; ++col ) {
            for( int row=0; row < tile_rows; ++row ) {

                Geom::Point offset( col*tile_area.width(), row*tile_area.height() );
                offset *= trans;
                offset[Geom::X] -= trans[4];
                offset[Geom::Y] -= trans[5];

                cairo_set_source_surface(ct, tile, offset[Geom::X], offset[Geom::Y]);
                cairo_paint(ct);
            }
        }
        slot.set(_output, out);

        // Clean up
        cairo_destroy(ct);
        cairo_surface_destroy(out);
        cairo_destroy(ct_tile);
        cairo_surface_destroy(tile);
    }
}
示例#7
0
void FilterImage::render_cairo(FilterSlot &slot)
{
    if (!feImageHref)
        return;

    //cairo_surface_t *input = slot.getcairo(_input);

    // Viewport is filter primitive area (in user coordinates).
    // Note: viewport calculation in non-trivial. Do not rely
    // on get_matrix_primitiveunits2pb().
    Geom::Rect vp = filter_primitive_area( slot.get_units() );
    slot.set_primitive_area(_output, vp); // Needed for tiling

    double feImageX      = vp.min()[Geom::X];
    double feImageY      = vp.min()[Geom::Y];
    double feImageWidth  = vp.width();
    double feImageHeight = vp.height();

    // feImage is suppose to use the same parameters as a normal SVG image.
    // If a width or height is set to zero, the image is not suppose to be displayed.
    // This does not seem to be what Firefox or Opera does, nor does the W3C displacement
    // filter test expect this behavior. If the width and/or height are zero, we use
    // the width and height of the object bounding box.
    Geom::Affine m = slot.get_units().get_matrix_user2filterunits().inverse();
    Geom::Point bbox_00 = Geom::Point(0,0) * m;
    Geom::Point bbox_w0 = Geom::Point(1,0) * m;
    Geom::Point bbox_0h = Geom::Point(0,1) * m;
    double bbox_width = Geom::distance(bbox_00, bbox_w0);
    double bbox_height = Geom::distance(bbox_00, bbox_0h);

    if( feImageWidth  == 0 ) feImageWidth  = bbox_width;
    if( feImageHeight == 0 ) feImageHeight = bbox_height;

    // Internal image, like <use>
    if (from_element) {
        if (!SVGElem) return;

        // TODO: do not recreate the rendering tree every time
        // TODO: the entire thing is a hack, we should give filter primitives an "update" method
        //       like the one for DrawingItems
        document->ensureUpToDate();

        Drawing drawing;
        Geom::OptRect optarea = SVGElem->visualBounds();
        if (!optarea) return;

        unsigned const key = SPItem::display_key_new(1);
        DrawingItem *ai = SVGElem->invoke_show(drawing, key, SP_ITEM_SHOW_DISPLAY);
        if (!ai) {
            g_warning("feImage renderer: error creating DrawingItem for SVG Element");
            return;
        }
        drawing.setRoot(ai);

        Geom::Rect area = *optarea;
        Geom::Affine user2pb = slot.get_units().get_matrix_user2pb();

        /* FIXME: These variables are currently unused.  Why were they calculated?
        double scaleX = feImageWidth / area.width();
        double scaleY = feImageHeight / area.height();
        */

        Geom::Rect sa = slot.get_slot_area();
        cairo_surface_t *out = cairo_image_surface_create(CAIRO_FORMAT_ARGB32,
            sa.width(), sa.height());
        Inkscape::DrawingContext dc(out, sa.min());
        dc.transform(user2pb); // we are now in primitive units
        dc.translate(feImageX, feImageY);
//        dc.scale(scaleX, scaleY);  No scaling should be done

        Geom::IntRect render_rect = area.roundOutwards();
//        dc.translate(render_rect.min());  This seems incorrect

        // Update to renderable state
        drawing.update(render_rect);
        drawing.render(dc, render_rect);
        SVGElem->invoke_hide(key);

        // For the moment, we'll assume that any image is in sRGB color space
        set_cairo_surface_ci(out, SP_CSS_COLOR_INTERPOLATION_SRGB);

        slot.set(_output, out);
        cairo_surface_destroy(out);
        return;
    }

    // External image, like <image>
    if (!image && !broken_ref) {
        broken_ref = true;

        /* TODO: If feImageHref is absolute, then use that (preferably handling the
         * case that it's not a file URI).  Otherwise, go up the tree looking
         * for an xml:base attribute, and use that as the base URI for resolving
         * the relative feImageHref URI.  Otherwise, if document->base is valid,
         * then use that as the base URI.  Otherwise, use feImageHref directly
         * (i.e. interpreting it as relative to our current working directory).
         * (See http://www.w3.org/TR/xmlbase/#resolution .) */
        gchar *fullname = feImageHref;
        if ( !g_file_test( fullname, G_FILE_TEST_EXISTS ) ) {
            // Try to load from relative postion combined with document base
            if( document ) {
                fullname = g_build_filename( document->getBase(), feImageHref, NULL );
            }
        }
        if ( !g_file_test( fullname, G_FILE_TEST_EXISTS ) ) {
            // Should display Broken Image png.
            g_warning("FilterImage::render: Can not find: %s", feImageHref  );
            return;
        }
        image = Inkscape::Pixbuf::create_from_file(fullname);
        if( fullname != feImageHref ) g_free( fullname );

        if ( !image ) {
            g_warning("FilterImage::render: failed to load image: %s", feImageHref);
            return;
        }

        broken_ref = false;
    }

    if (broken_ref) {
        return;
    }

    cairo_surface_t *image_surface = image->getSurfaceRaw();

    Geom::Rect sa = slot.get_slot_area();
    cairo_surface_t *out = cairo_image_surface_create(CAIRO_FORMAT_ARGB32,
        sa.width(), sa.height());

    // For the moment, we'll assume that any image is in sRGB color space
    // set_cairo_surface_ci(out, SP_CSS_COLOR_INTERPOLATION_SRGB);
    // This seemed like a sensible thing to do but it breaks filters-displace-01-f.svg

    cairo_t *ct = cairo_create(out);
    cairo_translate(ct, -sa.min()[Geom::X], -sa.min()[Geom::Y]);

    // now ct is in pb coordinates, note the feWidth etc. are in user units
    ink_cairo_transform(ct, slot.get_units().get_matrix_user2pb());

    // now ct is in the coordinates of feImageX etc.

    // Now that we have the viewport, we must map image inside.
    // Partially copied from sp-image.cpp.

    // Do nothing if preserveAspectRatio is "none".
    if( aspect_align != SP_ASPECT_NONE ) {

        // Check aspect ratio of image vs. viewport
        double feAspect = feImageHeight/feImageWidth;
        double aspect = (double)image->height()/(double)image->width();
        bool ratio = (feAspect < aspect);

        double ax, ay; // Align side
        switch( aspect_align ) {
            case SP_ASPECT_XMIN_YMIN:
                ax = 0.0;
                ay = 0.0;
                break;
            case SP_ASPECT_XMID_YMIN:
                ax = 0.5;
                ay = 0.0;
                break;
            case SP_ASPECT_XMAX_YMIN:
                ax = 1.0;
                ay = 0.0;
                break;
            case SP_ASPECT_XMIN_YMID:
                ax = 0.0;
                ay = 0.5;
                break;
            case SP_ASPECT_XMID_YMID:
                ax = 0.5;
                ay = 0.5;
                break;
            case SP_ASPECT_XMAX_YMID:
                ax = 1.0;
                ay = 0.5;
                break;
            case SP_ASPECT_XMIN_YMAX:
                ax = 0.0;
                ay = 1.0;
                break;
            case SP_ASPECT_XMID_YMAX:
                ax = 0.5;
                ay = 1.0;
                break;
            case SP_ASPECT_XMAX_YMAX:
                ax = 1.0;
                ay = 1.0;
                break;
            default:
                ax = 0.0;
                ay = 0.0;
                break;
        }

        if( aspect_clip == SP_ASPECT_SLICE ) {
            // image clipped by viewbox

            if( ratio ) {
                // clip top/bottom
                feImageY -= ay * (feImageWidth * aspect - feImageHeight);
                feImageHeight = feImageWidth * aspect;
            } else {
                // clip sides
                feImageX -= ax * (feImageHeight / aspect - feImageWidth); 
                feImageWidth = feImageHeight / aspect;
            }

        } else {
            // image fits into viewbox

            if( ratio ) {
                // fit to height
                feImageX += ax * (feImageWidth - feImageHeight / aspect );
                feImageWidth = feImageHeight / aspect;
            } else {
                // fit to width
                feImageY += ay * (feImageHeight - feImageWidth * aspect);
                feImageHeight = feImageWidth * aspect;
            }
        }
    }

    double scaleX = feImageWidth / image->width();
    double scaleY = feImageHeight / image->height();

    cairo_translate(ct, feImageX, feImageY);
    cairo_scale(ct, scaleX, scaleY);
    cairo_set_source_surface(ct, image_surface, 0, 0);
    cairo_paint(ct);
    cairo_destroy(ct);

    slot.set(_output, out);
}
int FilterSpecularLighting::render(FilterSlot &slot, FilterUnits const &units) {
    NRPixBlock *in = slot.get(_input);
    if (!in) {
        g_warning("Missing source image for feSpecularLighting (in=%d)", _input);
        return 1;
    }

    NRPixBlock *out = new NRPixBlock;

    //Fvector *L = NULL; //vector to the light

    int w = in->area.x1 - in->area.x0;
    int h = in->area.y1 - in->area.y0;
    int x0 = in->area.x0;
    int y0 = in->area.y0;
    int i, j;
    //As long as FilterRes and kernel unit is not supported we hardcode the
    //default value
    int dx = 1; //TODO setup
    int dy = 1; //TODO setup
    //surface scale
    Geom::Matrix trans = units.get_matrix_primitiveunits2pb();
    gdouble ss = surfaceScale * trans[0];
    gdouble ks = specularConstant; //diffuse lighting constant
    NR::Fvector L, N, LC, H;
    gdouble inter;

    nr_pixblock_setup_fast(out, NR_PIXBLOCK_MODE_R8G8B8A8N,
            in->area.x0, in->area.y0, in->area.x1, in->area.y1,
            true);
    unsigned char *data_i = NR_PIXBLOCK_PX (in);
    unsigned char *data_o = NR_PIXBLOCK_PX (out);
    //No light, nothing to do
    switch (light_type) {
        case DISTANT_LIGHT:
            //the light vector is constant
            {
            DistantLight *dl = new DistantLight(light.distant, lighting_color);
            dl->light_vector(L);
            dl->light_components(LC);
            NR::normalized_sum(H, L, NR::EYE_VECTOR);
            //finish the work
            for (i = 0, j = 0; i < w*h; i++) {
                NR::compute_surface_normal(N, ss, in, i / w, i % w, dx, dy);
                COMPUTE_INTER(inter, N, H, ks, specularExponent);

                data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_RED]); // CLAMP includes rounding!
                data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_GREEN]);
                data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_BLUE]);
                data_o[j] = MAX(MAX(data_o[j-3], data_o[j-2]), data_o[j-1]);
                ++j;
            }
            out->empty = FALSE;
            delete dl;
            }
            break;
        case POINT_LIGHT:
            {
            PointLight *pl = new PointLight(light.point, lighting_color, trans);
            pl->light_components(LC);
        //TODO we need a reference to the filter to determine primitiveUnits
        //if objectBoundingBox is used, use a different matrix for light_vector
        // UPDATE: trans is now correct matrix from primitiveUnits to
        // pixblock coordinates
            //finish the work
            for (i = 0, j = 0; i < w*h; i++) {
                NR::compute_surface_normal(N, ss, in, i / w, i % w, dx, dy);
                pl->light_vector(L,
                        i % w + x0,
                        i / w + y0,
                        ss * (double) data_i[4*i+3]/ 255);
                NR::normalized_sum(H, L, NR::EYE_VECTOR);
                COMPUTE_INTER(inter, N, H, ks, specularExponent);

                data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_RED]);
                data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_GREEN]);
                data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_BLUE]);
                data_o[j] = MAX(MAX(data_o[j-3], data_o[j-2]), data_o[j-1]);
                ++j;
            }
            out->empty = FALSE;
            delete pl;
            }
            break;
        case SPOT_LIGHT:
            {
            SpotLight *sl = new SpotLight(light.spot, lighting_color, trans);
        //TODO we need a reference to the filter to determine primitiveUnits
        //if objectBoundingBox is used, use a different matrix for light_vector
        // UPDATE: trans is now correct matrix from primitiveUnits to
        // pixblock coordinates
            //finish the work
            for (i = 0, j = 0; i < w*h; i++) {
                NR::compute_surface_normal(N, ss, in, i / w, i % w, dx, dy);
                sl->light_vector(L,
                    i % w + x0,
                    i / w + y0,
                    ss * (double) data_i[4*i+3]/ 255);
                sl->light_components(LC, L);
                NR::normalized_sum(H, L, NR::EYE_VECTOR);
                COMPUTE_INTER(inter, N, H, ks, specularExponent);

                data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_RED]);
                data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_GREEN]);
                data_o[j++] = CLAMP_D_TO_U8(inter * LC[LIGHT_BLUE]);
                data_o[j] = MAX(MAX(data_o[j-3], data_o[j-2]), data_o[j-1]);
                ++j;
            }
            out->empty = FALSE;
            delete sl;
            }
            break;
        //else unknown light source, doing nothing
        case NO_LIGHT:
        default:
            {
            if (light_type != NO_LIGHT)
                g_warning("unknown light source %d", light_type);
            out->empty = false;
            }
    }

    //finishing
    slot.set(_output, out);
    //nr_pixblock_release(in);
    //delete in;
    return 0;
}