示例#1
0
bool ElasticityForce::evalForce (ElmMats& elmat, const Vec3& th,
                                 const FiniteElement& fe) const
{
  // Integrate the nodal force vector
  Vector& ES = elmat.b.front();
  size_t nsd = fe.dNdX.cols();
  for (size_t a = 1; a <= fe.N.size(); a++)
    for (size_t d = 1; d <= nsd; d++)
      ES(nsd*(a-1)+d) += th[d-1]*fe.N(a)*fe.detJxW;

  return true;
}
示例#2
0
bool Elasticity::evalBou (LocalIntegral& elmInt, const FiniteElement& fe,
                          const Vec3& X, const Vec3& normal) const
{
  if (!tracFld && !fluxFld)
  {
    std::cerr <<" *** Elasticity::evalBou: No tractions."<< std::endl;
    return false;
  }
  else if (!eS)
  {
    std::cerr <<" *** Elasticity::evalBou: No load vector."<< std::endl;
    return false;
  }

  // Axi-symmetric integration point volume; 2*pi*r*|J|*w
  const double detJW = axiSymmetry ? 2.0*M_PI*X.x*fe.detJxW : fe.detJxW;

  // Evaluate the surface traction
  Vec3 T = this->getTraction(X,normal);

  // Store traction value for visualization
  if (fe.iGP < tracVal.size() && !T.isZero())
  {
    tracVal[fe.iGP].first = X;
    tracVal[fe.iGP].second += T;
  }

  // Pull-back traction to reference configuration
  if (!this->pullBackTraction(T))
    return false;

  // Integrate the force vector
  Vector& ES = static_cast<ElmMats&>(elmInt).b[eS-1];
  for (size_t a = 1; a <= fe.N.size(); a++)
    for (unsigned short int i = 1; i <= nsd; i++)
      ES(nsd*(a-1)+i) += T[i-1]*fe.N(a)*detJW;

  return true;
}
示例#3
0
bool ElasticBase::evalPoint (LocalIntegral& elmInt, const FiniteElement& fe,
                             const Vec3& pval)
{
  if (!eS)
  {
    std::cerr <<" *** ElasticBase::evalPoint: No load vector."<< std::endl;
    return false;
  }

  Vector& ES = static_cast<ElmMats&>(elmInt).b[eS-1];
  for (size_t a = 1; a <= fe.N.size(); a++)
    for (unsigned short int i = 1; i <= npv && i <= 3; i++)
      ES(npv*(a-1)+i) += pval(i)*fe.N(a)*fe.detJxW;

  if (eS == 1)
  {
    RealArray& sumLoad = static_cast<ElmMats&>(elmInt).c;
    for (size_t i = 0; i < sumLoad.size() && i < 3; i++)
      sumLoad[i] += pval[i]*fe.detJxW;
  }

  return true;
}
示例#4
0
bool ElasticCable::evalInt (LocalIntegral& elmInt,
                            const FiniteElement& fe,
                            const Vec3& X) const
{
  size_t a, aa, b, bb;
  unsigned char i, j, k, l, o;
  const size_t nen = fe.N.size();

  // Set up reference configuration

  Vec3 dX(fe.G.getColumn(1));
  Vec3 ddX(fe.G.getColumn(2));
#if INT_DEBUG > 1
  std::cout <<"ElasticCable: X = "<< X <<" dX = "<< dX <<" ddX = "<< ddX <<"\n";
#endif

  // Compute current configuration

  ElmMats& elMat = static_cast<ElmMats&>(elmInt);
  const Vector& eV = elMat.vec.front(); // Current displacement vector

  Vec3   x(X);
  Vec3  dx(dX);
  Vec3 ddx(ddX);
  for (i = 0; i < 3; i++)
  {
      x[i] += eV.dot(fe.N,i,3);
     dx[i] += eV.dot(fe.dNdX,i,3);
    ddx[i] += eV.dot(fe.d2NdX2,i,3);
  }
#if INT_DEBUG > 1
  std::cout <<"ElasticCable: x = "<< x <<" dx = "<< dx <<" ddx = "<< ddx <<"\n";
#endif

  // Compute local coordinate systems of the reference and current configuration

  Vec3 B_unit, N_unit;
  double B_len, N_len;
  if (!evalLocalAxes(dX,ddX,B_unit,N_unit,B_len,N_len)) return false;
#if INT_DEBUG > 1
  std::cout <<"ElasticCable: B_unit = "<< B_unit <<" N_unit = "<< N_unit <<"\n";
#endif

  Vec3 b_unit, n_unit;
  double b_len, n_len;
  if (!evalLocalAxes(dx,ddx,b_unit,n_unit,b_len,n_len)) return false;
  Vec3   bin    = b_unit * b_len;
  double b_len2 = b_len  * b_len;
  Vec3   n      = n_unit * n_len;
  double n_len2 = n_len  * n_len;
#if INT_DEBUG > 1
  std::cout <<"ElasticCable: b = "<< bin <<" b_unit = "<< b_unit
            <<"\n              n = "<< n <<" n_unit = "<< n_unit << std::endl;
#endif

  // Calculate derivative of b_unit

  std::vector<Matrix> db(nen,Matrix(3,3)), db_unit(nen,Matrix(3,3));
  std::vector<Vec3>   db_normal(nen);

  for (i = 1; i <= 3; i++)
    for (k = 1; k <= 3; k++)
      for (l = 1; l <= 3; l++)
      {
        double eps_kli = 0.5*(k-l)*(l-i)*(i-k);
        double eps_kil = 0.5*(k-i)*(i-l)*(l-k);
        for (a = 1; a <= nen; a++)
          db[a-1](k,i) += (eps_kil*fe.dNdX(a,1)*ddx[l-1] +
                           eps_kli*dx[l-1]*fe.d2NdX2(a,1,1));
      }

  for (i = 1; i <= 3; i++)
    for (a = 0; a < nen; a++)
      for (k = 1; k <= 3; k++)
        db_normal[a][i-1] += b_unit[k-1]*db[a](k,i);

  for (i = 1; i <= 3; i++)
    for (k = 1; k <= 3; k++)
      for (a = 0; a < nen; a++)
        db_unit[a](k,i) += (db[a](k,i) - b_unit[k-1]*db_normal[a][i-1])/b_len;

#if INT_DEBUG > 2
  std::cout <<"ElasticCable: db_unit:\n";
  for (a = 0; a < nen; a++)
    std::cout <<"node "<< a+1 << db_unit[a];
#endif

  // Calculate second derivative of b_unit

  std::vector< std::vector<Matrix3D> > ddb(nen), ddb_unit(nen);
  std::vector< std::vector<Matrix>   > ddb_normal(nen);
  for (a = 0; a < nen; a++)
  {
    ddb[a].resize(nen,Matrix3D(3,3,3));
    ddb_unit[a].resize(nen,Matrix3D(3,3,3));
    ddb_normal[a].resize(nen,Matrix(3,3));
  }

  for (i = 1; i <= 3; i++)
    for (j = 1; j <= 3; j++)
      for (k = 1; k <= 3; k++)
      {
        double eps_kij = 0.5*(k-i)*(i-j)*(j-k);
        double eps_kji = 0.5*(k-j)*(j-i)*(i-k);
        for (a = 1; a <= nen; a++)
          for (b = 1; b <= nen; b++)
            ddb[a-1][b-1](k,i,j) = (eps_kji*fe.d2NdX2(a,1,1)*fe.dNdX(b,1) +
                                    eps_kij*fe.d2NdX2(b,1,1)*fe.dNdX(a,1));
      }

#if INT_DEBUG > 3
  std::cout <<"ElasticCable: ddb:\n";
  for (a = 0; a < nen; a++)
    for (b = 0; b < nen; b++)
      std::cout <<"nodes "<< a+1 <<","<< b+1 << ddb[a][b];
#endif

  for (i = 1; i <= 3; i++)
    for (j = 1; j <= 3; j++)
      for (a = 0; a < nen; a++)
        for (b = 0; b < nen; b++)
          for (k = 1; k <= 3; k++)
            ddb_normal[a][b](i,j) += (ddb[a][b](k,i,j)*bin[k-1] +
                                      db[a](k,i)*db[b](k,j) -
                                      bin[k-1]*db[a](k,i)*bin[k-1]*db[b](k,j) /
                                      b_len2) / b_len;

#if INT_DEBUG > 3
  std::cout <<"ElasticCable: ddb_normal:\n";
  for (a = 0; a < nen; a++)
    for (b = 0; b < nen; b++)
      std::cout <<"nodes "<< a+1 <<","<< b+1 << ddb_normal[a][b];
#endif

  for (i = 1; i <= 3; i++)
    for (j = 1; j <= 3; j++)
      for (a = 0; a < nen; a++)
        for (b = 0; b < nen; b++)
          for (k = 1; k <= 3; k++)
            ddb_unit[a][b](k,i,j) = (ddb[a][b](k,i,j)/b_len -
                                     db[a](k,i)*db_normal[b][j-1]/b_len2 -
                                     db[b](k,j)*db_normal[a][i-1]/b_len2 -
                                     bin[k-1]*(ddb_normal[a][b](i,j) -
                                               db_normal[a][i-1]*
                                               db_normal[b][j-1]*2.0 /
                                               b_len) / b_len2);

#if INT_DEBUG > 2
  std::cout <<"ElasticCable: ddb_unit:\n";
  for (a = 0; a < nen; a++)
    for (b = 0; b < nen; b++)
      std::cout <<"nodes "<< a+1 <<","<< b+1 << ddb_unit[a][b];
#endif

  // Calculate derivative of n_unit

  std::vector<Matrix> dn(nen,Matrix(3,3)), dn_unit(nen,Matrix(3,3));
  std::vector<Vec3>   dn_normal(nen);

  for (i = 1; i <= 3; i++)
    for (k = 1; k <= 3; k++)
      for (l = 1; l <= 3; l++)
      {
        double eps_kli = 0.5*(k-l)*(l-i)*(i-k);
        for (a = 0; a < nen; a++)
        {
          dn[a](k,i) += eps_kli*b_unit[l-1]*fe.dNdX(1+a,1);
          for (o = 1; o <= 3; o++)
          {
            double eps_kol = 0.5*(k-o)*(o-l)*(l-k);
            dn[a](k,i) += eps_kol*db_unit[a](o,i)*dx[l-1];
          }
        }
      }

  for (i = 1; i <= 3; i++)
    for (a = 0; a < nen; a++)
      for (k = 1; k <= 3; k++)
        dn_normal[a][i-1] += n_unit[k-1]*dn[a](k,i);

  for (i = 1; i <= 3; i++)
    for (k = 1; k <= 3; k++)
      for (a = 0; a < nen; a++)
        dn_unit[a](k,i) += (dn[a](k,i) - n_unit[k-1]*dn_normal[a][i-1])/n_len;

#if INT_DEBUG > 2
  std::cout <<"\nElasticCable: dn_unit:\n";
  for (a = 0; a < nen; a++)
    std::cout <<"node "<< a+1 << dn_unit[a];
#endif

  // Calculate second derivative of n_unit

  std::vector< std::vector<Matrix3D> > ddn(nen), ddn_unit(nen);
  std::vector< std::vector<Matrix>   > ddn_normal(nen);
  for (a = 0; a < nen; a++)
  {
    ddn[a].resize(nen,Matrix3D(3,3,3));
    ddn_unit[a].resize(nen,Matrix3D(3,3,3));
    ddn_normal[a].resize(nen,Matrix(3,3));
  }

  for (i = 1; i <= 3; i++)
    for (j = 1; j <= 3; j++)
      for (a = 0; a < nen; a++)
        for (b = 0; b < nen; b++)
          for (k = 1; k <= 3; k++)
            for (o = 1; o <= 3; o++)
            {
              double eps_koj = 0.5*(k-o)*(o-j)*(j-k);
              double eps_koi = 0.5*(k-o)*(o-i)*(i-k);
              ddn[a][b](k,i,j) += (eps_koj*db_unit[a](o,i)*fe.dNdX(1+b,1) +
                                   eps_koi*db_unit[b](o,j)*fe.dNdX(1+a,1));
              for (l = 1; l <= 3; l++)
              {
                double eps_kol = 0.5*(k-o)*(o-l)*(l-k);
                ddn[a][b](k,i,j) += eps_kol*ddb_unit[a][b](o,i,j)*dx[l-1];
              }
            }

  for (i = 1; i <= 3; i++)
    for (j = 1; j <= 3; j++)
      for (a = 0; a < nen; a++)
        for (b = 0; b < nen; b++)
          for (k = 1; k <= 3; k++)
            ddn_normal[a][b](i,j) += (ddn[a][b](k,i,j)*n[k-1] +
                                      dn[a](k,i)*dn[b](k,j) -
                                      n[k-1]*dn[a](k,i)*
                                      n[k-1]*dn[b](k,j)/n_len2) / n_len;

  for (i = 1; i <= 3; i++)
    for (j = 1; j <= 3; j++)
      for (a = 0; a < nen; a++)
        for (b = 0; b < nen; b++)
          for (k = 1; k <= 3; k++)
            ddn_unit[a][b](k,i,j) = (ddn[a][b](k,i,j)/n_len -
                                     dn[a](k,i)*dn_normal[b][j-1]/n_len2 -
                                     dn[b](k,j)*dn_normal[a][i-1]/n_len2 -
                                     n[k-1]*(ddn_normal[a][b](i,j) -
                                             dn_normal[a][i-1]*
                                             dn_normal[b][j-1]*2.0 /
                                             n_len) / n_len2);

#if INT_DEBUG > 2
  std::cout <<"ElasticCable: ddn_unit:\n";
  for (a = 0; a < nen; a++)
    for (b = 0; b < nen; b++)
      std::cout <<"nodes "<< a+1 <<","<< b+1 << ddn_unit[a][b];
#endif

  // Axial strain
  double eps = 0.5*(dx*dx - dX*dX);

  // Derivative of the axial strain
  Vector deps(3*nen);
  for (a = aa = 1; a <= nen; a++)
    for (i = 1; i <= 3; i++, aa++)
      deps(aa) = fe.dNdX(a,1)*dx[i-1];

  // Second derivative of the axial strain
  Matrix ddeps(3*nen,3*nen);
  for (a = 1; a <= nen; a++)
    for (b = 1; b <= nen; b++)
      for (i = 1; i <= 3; i++)
        ddeps(3*(a-1)+i,3*(b-1)+i) = fe.dNdX(a,1)*fe.dNdX(b,1);

  // Curvature
  double kappa = (ddx*n_unit - ddX*N_unit);

  // Derivative of the curvature
  Vector dkappa(3*nen);
  for (a = aa = 1; a <= nen; a++)
    for (i = 1; i <= 3; i++, aa++)
    {
      dkappa(aa) = fe.d2NdX2(a,1,1)*n_unit[i-1];
      for (k = 1; k <= 3; k++)
        dkappa(aa) += ddx[k-1]*dn_unit[a-1](k,i);
    }

  // Second derivative of the curvature
  Matrix ddkappa(3*nen,3*nen);
  for (a = 0, aa = 1; a < nen; a++)
    for (i = 1; i <= 3; i++, aa++)
      for (b = 0, bb = 1; b < nen; b++)
        for (j = 1; j <= 3; j++, bb++)
        {
          ddkappa(aa,bb) = (fe.d2NdX2(1+a,1,1)*dn_unit[b](i,j) +
                            fe.d2NdX2(1+b,1,1)*dn_unit[a](j,i));
          for (k = 1; k <= 3; k++)
            ddkappa(aa,bb) += ddx[k-1]*ddn_unit[a][b](k,i,j);
        }

#if INT_DEBUG > 1
  std::cout <<"ElasticCable: eps = "<< eps <<" kappa = "<< kappa
            <<"\ndeps:"<< deps <<"dkappa:"<< dkappa
            <<"ddeps:"<< ddeps <<"ddkappa:"<< ddkappa;
#endif

  // Norm of initial contravariant basis (G^1)
  double normG1contr2   = 1.0 / (dX.x*dX.x + dX.y*dX.y + dX.z*dX.z);
  double normG1contr4JW = normG1contr2 * normG1contr2 * fe.detJxW;

  double EAxJW = EA * normG1contr4JW; // volume-weighted axial stiffness
  double EIxJW = EI * normG1contr4JW; // volume-weighted bending stiffness

  if (iS)
  {
    // Integrate the internal forces (note the negative sign here)
    elMat.b[iS-1].add(deps,-eps*EAxJW);
    elMat.b[iS-1].add(dkappa,-kappa*EIxJW);
  }

  if (eKm)
  {
    // Integrate the material stiffness matrix
    elMat.A[eKm-1].outer_product(deps,deps*EAxJW,true);
    elMat.A[eKm-1].outer_product(dkappa,dkappa*EIxJW,true);
  }

  if (eKg)
  {
    // Integrate the geometric stiffness matrix
    elMat.A[eKg-1].add(ddeps,eps*EAxJW);
    elMat.A[eKg-1].add(ddkappa,kappa*EIxJW);
  }

  if (lineMass > 0.0)
  {
    double dMass = lineMass*fe.detJxW;
    if (eM)
    {
      // Integrate the mass matrix
      Matrix& M = elMat.A[eM-1];
      for (a = 1; a <= nen; a++)
        for (b = 1; b <= nen; b++)
          for (i = 1; i <= 3; i++)
            M(3*(a-1)+i,3*(b-1)+i) += fe.N(a)*fe.N(b)*dMass;
    }

    if (eS && !gravity.isZero())
    {
      // Integrate the external (gravitation) forces
      Vector& S = elMat.b[eS-1];
      for (a = 1; a <= nen; a++)
        for (i = 1; i <= 3; i++)
          S(3*(a-1)+i) += fe.N(a)*gravity[i-1]*dMass;
    }
  }

  return true;
}