示例#1
0
void PannerNode::calculateAzimuthElevation(double* outAzimuth, double* outElevation)
{
    double azimuth = 0.0;

    // Calculate the source-listener vector
    FloatPoint3D listenerPosition = listener()->position();
    FloatPoint3D sourceListener = m_position - listenerPosition;

    // normalize() does nothing if the length of |sourceListener| is zero.
    sourceListener.normalize();

    // Align axes
    FloatPoint3D listenerFront = listener()->orientation();
    FloatPoint3D listenerUp = listener()->upVector();
    FloatPoint3D listenerRight = listenerFront.cross(listenerUp);
    listenerRight.normalize();

    FloatPoint3D listenerFrontNorm = listenerFront;
    listenerFrontNorm.normalize();

    FloatPoint3D up = listenerRight.cross(listenerFrontNorm);

    float upProjection = sourceListener.dot(up);

    FloatPoint3D projectedSource = sourceListener - upProjection * up;
    projectedSource.normalize();

    azimuth = 180.0 * acos(projectedSource.dot(listenerRight)) / piDouble;
    fixNANs(azimuth); // avoid illegal values

    // Source  in front or behind the listener
    double frontBack = projectedSource.dot(listenerFrontNorm);
    if (frontBack < 0.0)
        azimuth = 360.0 - azimuth;

    // Make azimuth relative to "front" and not "right" listener vector
    if ((azimuth >= 0.0) && (azimuth <= 270.0))
        azimuth = 90.0 - azimuth;
    else
        azimuth = 450.0 - azimuth;

    // Elevation
    double elevation = 90.0 - 180.0 * acos(sourceListener.dot(up)) / piDouble;
    fixNANs(elevation); // avoid illegal values

    if (elevation > 90.0)
        elevation = 180.0 - elevation;
    else if (elevation < -90.0)
        elevation = -180.0 - elevation;

    if (outAzimuth)
        *outAzimuth = azimuth;
    if (outElevation)
        *outElevation = elevation;
}
示例#2
0
double PannerNode::calculateDopplerRate()
{
    double dopplerShift = 1.0;
    double dopplerFactor = listener()->dopplerFactor();

    if (dopplerFactor > 0.0) {
        double speedOfSound = listener()->speedOfSound();

        const FloatPoint3D &sourceVelocity = m_velocity;
        const FloatPoint3D &listenerVelocity = listener()->velocity();

        // Don't bother if both source and listener have no velocity
        bool sourceHasVelocity = !sourceVelocity.isZero();
        bool listenerHasVelocity = !listenerVelocity.isZero();

        if (sourceHasVelocity || listenerHasVelocity) {
            // Calculate the source to listener vector
            FloatPoint3D listenerPosition = listener()->position();
            FloatPoint3D sourceToListener = m_position - listenerPosition;

            double sourceListenerMagnitude = sourceToListener.length();

            if (!sourceListenerMagnitude) {
                // Source and listener are at the same position. Skip the computation of the doppler
                // shift, and just return the cached value.
                dopplerShift = m_cachedDopplerRate;
            } else {
                double listenerProjection = sourceToListener.dot(listenerVelocity) / sourceListenerMagnitude;
                double sourceProjection = sourceToListener.dot(sourceVelocity) / sourceListenerMagnitude;

                listenerProjection = -listenerProjection;
                sourceProjection = -sourceProjection;

                double scaledSpeedOfSound = speedOfSound / dopplerFactor;
                listenerProjection = std::min(listenerProjection, scaledSpeedOfSound);
                sourceProjection = std::min(sourceProjection, scaledSpeedOfSound);

                dopplerShift = ((speedOfSound - dopplerFactor * listenerProjection) / (speedOfSound - dopplerFactor * sourceProjection));
                fixNANs(dopplerShift); // avoid illegal values

                // Limit the pitch shifting to 4 octaves up and 3 octaves down.
                if (dopplerShift > 16.0)
                    dopplerShift = 16.0;
                else if (dopplerShift < 0.125)
                    dopplerShift = 0.125;
            }
        }
    }

    return dopplerShift;
}
示例#3
0
float PannerNode::dopplerRate(ContextRenderLock& r)
{
    double dopplerShift = 1.0;

    // FIXME: optimize for case when neither source nor listener has changed...
    double dopplerFactor = listener(r)->dopplerFactor();

    if (dopplerFactor > 0.0) 
	{
        double speedOfSound = listener(r)->speedOfSound();

        const FloatPoint3D &sourceVelocity = m_velocity;
        const FloatPoint3D &listenerVelocity = listener(r)->velocity();

        // Don't bother if both source and listener have no velocity
        bool sourceHasVelocity = !sourceVelocity.isZero();
        bool listenerHasVelocity = !listenerVelocity.isZero();

        if (sourceHasVelocity || listenerHasVelocity) 
		{
            // Calculate the source to listener vector
            FloatPoint3D listenerPosition = listener(r)->position();
            FloatPoint3D sourceToListener = m_position - listenerPosition;

            double sourceListenerMagnitude = sourceToListener.length();

            double listenerProjection = sourceToListener.dot(listenerVelocity) / sourceListenerMagnitude;
            double sourceProjection = sourceToListener.dot(sourceVelocity) / sourceListenerMagnitude;

            listenerProjection = -listenerProjection;
            sourceProjection = -sourceProjection;

            double scaledSpeedOfSound = speedOfSound / dopplerFactor;
            listenerProjection = min(listenerProjection, scaledSpeedOfSound);
            sourceProjection = min(sourceProjection, scaledSpeedOfSound);

            dopplerShift = ((speedOfSound - dopplerFactor * listenerProjection) / (speedOfSound - dopplerFactor * sourceProjection));
            fixNANs(dopplerShift); // avoid illegal values

            // Limit the pitch shifting to 4 octaves up and 3 octaves down.
            if (dopplerShift > 16.0)
                dopplerShift = 16.0;
            else if (dopplerShift < 0.125)
                dopplerShift = 0.125;   
        }
    }

    return static_cast<float>(dopplerShift);
}
bool RotateTransformOperation::shareSameAxis(const RotateTransformOperation* from, const RotateTransformOperation* to, FloatPoint3D* axis, double* fromAngle, double* toAngle)
{
    *axis = FloatPoint3D(0, 0, 1);
    *fromAngle = 0;
    *toAngle = 0;

    if (!from && !to)
        return true;

    bool fromZero = !from || from->axis().isZero();
    bool toZero = !to || to->axis().isZero();

    if (fromZero && toZero)
        return true;

    if (fromZero) {
        *axis = to->axis();
        *toAngle = to->angle();
        return true;
    }

    if (toZero) {
        *axis = from->axis();
        *fromAngle = from->angle();
        return true;
    }

    FloatPoint3D fromAxis = from->axis();
    FloatPoint3D toAxis = to->axis();

    double fromSquared = fromAxis.lengthSquared();
    double toSquared   = toAxis.lengthSquared();

    double dot = fromAxis.dot(toAxis);
    double error = std::abs(1 - (dot * dot) / (fromSquared * toSquared));

    if (error > angleEpsilon)
        return false;
    *axis = from->axis();
    *fromAngle = from->angle();
    *toAngle = to->angle();
    return true;
}
示例#5
0
double ConeEffect::gain(FloatPoint3D sourcePosition, FloatPoint3D sourceOrientation, FloatPoint3D listenerPosition)
{
    if (sourceOrientation.isZero() || ((m_innerAngle == 360.0) && (m_outerAngle == 360.0)))
        return 1.0; // no cone specified - unity gain

    // Normalized source-listener vector
    FloatPoint3D sourceToListener = listenerPosition - sourcePosition;
    sourceToListener.normalize();

    FloatPoint3D normalizedSourceOrientation = sourceOrientation;
    normalizedSourceOrientation.normalize();

    // Angle between the source orientation vector and the source-listener vector
    double dotProduct = sourceToListener.dot(normalizedSourceOrientation);
    double angle = 180.0 * acos(dotProduct) / piDouble;
    double absAngle = fabs(angle);

    // Divide by 2.0 here since API is entire angle (not half-angle)
    double absInnerAngle = fabs(m_innerAngle) / 2.0;
    double absOuterAngle = fabs(m_outerAngle) / 2.0;
    double gain = 1.0;

    if (absAngle <= absInnerAngle)
        // No attenuation
        gain = 1.0;
    else if (absAngle >= absOuterAngle)
        // Max attenuation
        gain = m_outerGain;
    else {
        // Between inner and outer cones
        // inner -> outer, x goes from 0 -> 1
        double x = (absAngle - absInnerAngle) / (absOuterAngle - absInnerAngle);
        gain = (1.0 - x) + m_outerGain * x;
    }

    return gain;
}
示例#6
0
void PannerNode::getAzimuthElevation(double* outAzimuth, double* outElevation)
{
    // FIXME: we should cache azimuth and elevation (if possible), so we only re-calculate if a change has been made.

    double azimuth = 0.0;

    // Calculate the source-listener vector
    FloatPoint3D listenerPosition = listener()->position();
    FloatPoint3D sourceListener = m_position - listenerPosition;

    if (sourceListener.isZero()) {
        // degenerate case if source and listener are at the same point
        *outAzimuth = 0.0;
        *outElevation = 0.0;
        return;
    }

    sourceListener.normalize();

    // Align axes
    FloatPoint3D listenerFront = listener()->orientation();
    FloatPoint3D listenerUp = listener()->upVector();
    FloatPoint3D listenerRight = listenerFront.cross(listenerUp);
    listenerRight.normalize();

    FloatPoint3D listenerFrontNorm = listenerFront;
    listenerFrontNorm.normalize();

    FloatPoint3D up = listenerRight.cross(listenerFrontNorm);

    float upProjection = sourceListener.dot(up);

    FloatPoint3D projectedSource = sourceListener - upProjection * up;
    projectedSource.normalize();

    azimuth = 180.0 * acos(projectedSource.dot(listenerRight)) / piDouble;
    fixNANs(azimuth); // avoid illegal values

    // Source  in front or behind the listener
    double frontBack = projectedSource.dot(listenerFrontNorm);
    if (frontBack < 0.0)
        azimuth = 360.0 - azimuth;

    // Make azimuth relative to "front" and not "right" listener vector
    if ((azimuth >= 0.0) && (azimuth <= 270.0))
        azimuth = 90.0 - azimuth;
    else
        azimuth = 450.0 - azimuth;

    // Elevation
    double elevation = 90.0 - 180.0 * acos(sourceListener.dot(up)) / piDouble;
    fixNANs(elevation); // avoid illegal values

    if (elevation > 90.0)
        elevation = 180.0 - elevation;
    else if (elevation < -90.0)
        elevation = -180.0 - elevation;

    if (outAzimuth)
        *outAzimuth = azimuth;
    if (outElevation)
        *outElevation = elevation;
}