示例#1
0
/// \page tutorial3
/// \section commentedsource1 Program walk-through.
/// \details
/// Main function
/// \snippet tutorial3.cpp main
/// \internal [main]
int main ()
try
{
    /// \internal [main]
    /// \endinternal

    /// \page tutorial3
    /// \details
    /// We define the grid. A Cartesian grid with 400 cells,
    /// each being 10m along each side. Note that we treat the
    /// grid as 3-dimensional, but have a thickness of only one
    /// layer in the Z direction.
    ///
    /// The Opm::GridManager is responsible for creating and destroying the grid,
    /// the UnstructuredGrid data structure contains the actual grid topology
    /// and geometry.
    /// \snippet tutorial3.cpp grid
    /// \internal [grid]
    int nx = 20;
    int ny = 20;
    int nz = 1;
    double dx = 10.0;
    double dy = 10.0;
    double dz = 10.0;
    using namespace Opm;
    GridManager grid_manager(nx, ny, nz, dx, dy, dz);
    const UnstructuredGrid& grid = *grid_manager.c_grid();
    int num_cells = grid.number_of_cells;
    /// \internal [grid]
    /// \endinternal

    /// \page tutorial3
    /// \details
    /// We define the properties of the fluid.\n
    /// Number of phases, phase densities, phase viscosities,
    /// rock porosity and permeability.
    ///
    /// We always use SI units in the simulator. Many units are
    /// available for use, however.  They are stored as constants in
    /// the Opm::unit namespace, while prefixes are in the Opm::prefix
    /// namespace. See Units.hpp for more.
    /// \snippet tutorial3.cpp set properties
    /// \internal [set properties]
    int num_phases = 2;
    using namespace Opm::unit;
    using namespace Opm::prefix;
    std::vector<double> density(num_phases, 1000.0);
    std::vector<double> viscosity(num_phases, 1.0*centi*Poise);
    double porosity = 0.5;
    double permeability = 10.0*milli*darcy;
    /// \internal [set properties]
    /// \endinternal

    /// \page tutorial3
    /// \details We define the relative permeability function. We use a basic fluid
    /// description and set this function to be linear. For more realistic fluid, the
    /// saturation function may be interpolated from experimental data.
    /// \snippet tutorial3.cpp relperm
    /// \internal [relperm]
    SaturationPropsBasic::RelPermFunc rel_perm_func = SaturationPropsBasic::Linear;
    /// \internal [relperm]
    /// \endinternal

    /// \page tutorial3
    /// \details We construct a basic fluid and rock property object
    /// with the properties we have defined above.  Each property is
    /// constant and hold for all cells.
    /// \snippet tutorial3.cpp properties
    /// \internal [properties]
    IncompPropertiesBasic props(num_phases, rel_perm_func, density, viscosity,
                                porosity, permeability, grid.dimensions, num_cells);
    /// \internal [properties]
    /// \endinternal

    /// \page tutorial3
    /// \details Gravity parameters. Here, we set zero gravity.
    /// \snippet tutorial3.cpp gravity
    /// \internal [gravity]
    const double *grav = 0;
    std::vector<double> omega;
    /// \internal [gravity]
    /// \endinternal

    /// \page tutorial3
    /// \details We set up the source term. Positive numbers indicate that the cell is a source,
    /// while negative numbers indicate a sink.
    /// \snippet tutorial3.cpp source
    /// \internal [source]
    std::vector<double> src(num_cells, 0.0);
    src[0] = 1.;
    src[num_cells-1] = -1.;
    /// \internal [source]
    /// \endinternal

    /// \page tutorial3
    /// \details We set up the boundary conditions. Letting bcs be empty is equivalent
    /// to no-flow boundary conditions.
    /// \snippet tutorial3.cpp boundary
    /// \internal [boundary]
    FlowBCManager bcs;
    /// \internal [boundary]
    /// \endinternal

    /// \page tutorial3
    /// \details We may now set up the pressure solver. At this point,
    /// unchanging parameters such as transmissibility are computed
    /// and stored internally by the IncompTpfa class. The null pointer
    /// constructor argument is for wells, which are not used in this tutorial.
    /// \snippet tutorial3.cpp pressure solver
    /// \internal [pressure solver]
    LinearSolverUmfpack linsolver;
    IncompTpfa psolver(grid, props, linsolver, grav, NULL, src, bcs.c_bcs());
    /// \internal [pressure solver]
    /// \endinternal

    /// \page tutorial3
    /// \details We set up a state object for the wells. Here, there are
    /// no wells and we let it remain empty.
    /// \snippet tutorial3.cpp well
    /// \internal [well]
    WellState well_state;
    /// \internal [well]
    /// \endinternal

    /// \page tutorial3
    /// \details We compute the pore volume
    /// \snippet tutorial3.cpp pore volume
    /// \internal [pore volume]
    std::vector<double> porevol;
    Opm::computePorevolume(grid, props.porosity(), porevol);
    /// \internal [pore volume]
    /// \endinternal

    /// \page tutorial3
    /// \details Set up the transport solver. This is a reordering implicit Euler transport solver.
    /// \snippet tutorial3.cpp transport solver
    /// \internal [transport solver]
    const double tolerance = 1e-9;
    const int max_iterations = 30;
    Opm::TransportSolverTwophaseReorder transport_solver(grid, props, NULL, tolerance, max_iterations);
    /// \internal [transport solver]
    /// \endinternal

    /// \page tutorial3
    /// \details Time integration parameters
    /// \snippet tutorial3.cpp time parameters
    /// \internal [time parameters]
    const double dt = 0.1*day;
    const int num_time_steps = 20;
    /// \internal [time parameters]
    /// \endinternal


    /// \page tutorial3
    /// \details We define a vector which contains all cell indexes. We use this
    /// vector to set up parameters on the whole domain.
    /// \snippet tutorial3.cpp cell indexes
    /// \internal [cell indexes]
    std::vector<int> allcells(num_cells);
    for (int cell = 0; cell < num_cells; ++cell) {
        allcells[cell] = cell;
    }
    /// \internal [cell indexes]
    /// \endinternal

    /// \page tutorial3
    /// \details
    /// We set up a two-phase state object, and
    /// initialize water saturation to minimum everywhere.
    /// \snippet tutorial3.cpp two-phase state
    /// \internal [two-phase state]
    TwophaseState state;
    state.init(grid.number_of_cells , grid.number_of_faces, 2);
    initSaturation( allcells , props , state , MinSat );

    /// \internal [two-phase state]
    /// \endinternal

    /// \page tutorial3
    /// \details This string stream will be used to construct a new
    /// output filename at each timestep.
    /// \snippet tutorial3.cpp output stream
    /// \internal [output stream]
    std::ostringstream vtkfilename;
    /// \internal [output stream]
    /// \endinternal


    /// \page tutorial3
    /// \details Loop over the time steps.
    /// \snippet tutorial3.cpp time loop
    /// \internal [time loop]
    for (int i = 0; i < num_time_steps; ++i) {
        /// \internal [time loop]
	/// \endinternal


        /// \page tutorial3
        /// \details Solve the pressure equation
        /// \snippet tutorial3.cpp solve pressure
        /// \internal [solve pressure]
        psolver.solve(dt, state, well_state);
        /// \internal [solve pressure]
	/// \endinternal

        /// \page tutorial3
        /// \details  Solve the transport equation.
        /// \snippet tutorial3.cpp transport solve
	/// \internal [transport solve]
        transport_solver.solve(&porevol[0], &src[0], dt, state);
        /// \internal [transport solve]
	/// \endinternal

        /// \page tutorial3
        /// \details Write the output to file.
        /// \snippet tutorial3.cpp write output
	/// \internal [write output]
        vtkfilename.str("");
        vtkfilename << "tutorial3-" << std::setw(3) << std::setfill('0') << i << ".vtu";
        std::ofstream vtkfile(vtkfilename.str().c_str());
        Opm::DataMap dm;
        dm["saturation"] = &state.saturation();
        dm["pressure"] = &state.pressure();
        Opm::writeVtkData(grid, dm, vtkfile);
    }
}
catch (const std::exception &e) {
    std::cerr << "Program threw an exception: " << e.what() << "\n";
    throw;
}
示例#2
0
// ----------------- Main program -----------------
int
main(int argc, char** argv)
{
    using namespace Opm;

    std::cout << "\n================    Test program for incompressible two-phase flow     ===============\n\n";
    parameter::ParameterGroup param(argc, argv, false);
    std::cout << "---------------    Reading parameters     ---------------" << std::endl;

    // If we have a "deck_filename", grid and props will be read from that.
    bool use_deck = param.has("deck_filename");
    boost::scoped_ptr<EclipseGridParser> deck;
    boost::scoped_ptr<GridManager> grid;
    boost::scoped_ptr<IncompPropertiesInterface> props;
    boost::scoped_ptr<RockCompressibility> rock_comp;
    TwophaseState state;
    // bool check_well_controls = false;
    // int max_well_control_iterations = 0;
    double gravity[3] = { 0.0 };
    if (use_deck) {
        std::string deck_filename = param.get<std::string>("deck_filename");
        deck.reset(new EclipseGridParser(deck_filename));
        // Grid init
        grid.reset(new GridManager(*deck));
        // Rock and fluid init
        props.reset(new IncompPropertiesFromDeck(*deck, *grid->c_grid()));
        // check_well_controls = param.getDefault("check_well_controls", false);
        // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
        // Rock compressibility.
        rock_comp.reset(new RockCompressibility(*deck));
        // Gravity.
        gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
        // Init state variables (saturation and pressure).
        if (param.has("init_saturation")) {
            initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
        } else {
            initStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
        }
    } else {
        // Grid init.
        const int nx = param.getDefault("nx", 100);
        const int ny = param.getDefault("ny", 100);
        const int nz = param.getDefault("nz", 1);
        const double dx = param.getDefault("dx", 1.0);
        const double dy = param.getDefault("dy", 1.0);
        const double dz = param.getDefault("dz", 1.0);
        grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
        // Rock and fluid init.
        props.reset(new IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
        // Rock compressibility.
        rock_comp.reset(new RockCompressibility(param));
        // Gravity.
        gravity[2] = param.getDefault("gravity", 0.0);
        // Init state variables (saturation and pressure).
        initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
    }

    // Warn if gravity but no density difference.
    bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
    if (use_gravity) {
        if (props->density()[0] == props->density()[1]) {
            std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
        }
    }
    const double *grav = use_gravity ? &gravity[0] : 0;

    // Initialising src
    int num_cells = grid->c_grid()->number_of_cells;
    std::vector<double> src(num_cells, 0.0);
    if (use_deck) {
        // Do nothing, wells will be the driving force, not source terms.
    } else {
        // Compute pore volumes, in order to enable specifying injection rate
        // terms of total pore volume.
        std::vector<double> porevol;
        if (rock_comp->isActive()) {
            computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
        } else {
            computePorevolume(*grid->c_grid(), props->porosity(), porevol);
        }
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        const double default_injection = use_gravity ? 0.0 : 0.1;
        const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
            *tot_porevol_init/unit::day;
        src[0] = flow_per_sec;
        src[num_cells - 1] = -flow_per_sec;
    }

    // Boundary conditions.
    FlowBCManager bcs;
    if (param.getDefault("use_pside", false)) {
        int pside = param.get<int>("pside");
        double pside_pressure = param.get<double>("pside_pressure");
        bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
    }

    // Linear solver.
    LinearSolverFactory linsolver(param);

    // Write parameters used for later reference.
    bool output = param.getDefault("output", true);
    std::ofstream epoch_os;
    std::string output_dir;
    if (output) {
        output_dir =
            param.getDefault("output_dir", std::string("output"));
        boost::filesystem::path fpath(output_dir);
        try {
            create_directories(fpath);
        }
        catch (...) {
            THROW("Creating directories failed: " << fpath);
        }
        std::string filename = output_dir + "/epoch_timing.param";
        epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
        // open file to clean it. The file is appended to in SimulatorTwophase
        filename = output_dir + "/step_timing.param";
        std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
        step_os.close();
        param.writeParam(output_dir + "/simulation.param");
    }


    std::cout << "\n\n================    Starting main simulation loop     ===============\n"
              << "                        (number of epochs: "
              << (use_deck ? deck->numberOfEpochs() : 1) << ")\n\n" << std::flush;

    SimulatorReport rep;
    if (!use_deck) {
        // Simple simulation without a deck.
        WellsManager wells; // no wells.
        SimulatorIncompTwophase simulator(param,
                                          *grid->c_grid(),
                                          *props,
                                          rock_comp->isActive() ? rock_comp.get() : 0,
                                          wells,
                                          src,
                                          bcs.c_bcs(),
                                          linsolver,
                                          grav);
        SimulatorTimer simtimer;
        simtimer.init(param);
        warnIfUnusedParams(param);
        WellState well_state;
        well_state.init(0, state);
        rep = simulator.run(simtimer, state, well_state);
    } else {
        // With a deck, we may have more epochs etc.
        WellState well_state;
        int step = 0;
        SimulatorTimer simtimer;
        // Use timer for last epoch to obtain total time.
        deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
        simtimer.init(*deck);
        const double total_time = simtimer.totalTime();
        for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
            // Set epoch index.
            deck->setCurrentEpoch(epoch);

            // Update the timer.
            if (deck->hasField("TSTEP")) {
                simtimer.init(*deck);
            } else {
                if (epoch != 0) {
                    THROW("No TSTEP in deck for epoch " << epoch);
                }
                simtimer.init(param);
            }
            simtimer.setCurrentStepNum(step);
            simtimer.setTotalTime(total_time);

            // Report on start of epoch.
            std::cout << "\n\n--------------    Starting epoch " << epoch << "    --------------"
                      << "\n                  (number of steps: "
                      << simtimer.numSteps() - step << ")\n\n" << std::flush;

            // Create new wells, well_state
            WellsManager wells(*deck, *grid->c_grid(), props->permeability());
            // @@@ HACK: we should really make a new well state and
            // properly transfer old well state to it every epoch,
            // since number of wells may change etc.
            if (epoch == 0) {
                well_state.init(wells.c_wells(), state);
            }

            // Create and run simulator.
            SimulatorIncompTwophase simulator(param,
                                              *grid->c_grid(),
                                              *props,
                                              rock_comp->isActive() ? rock_comp.get() : 0,
                                              wells,
                                              src,
                                              bcs.c_bcs(),
                                              linsolver,
                                              grav);
            if (epoch == 0) {
                warnIfUnusedParams(param);
            }
            SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state);
            if (output) {
                epoch_rep.reportParam(epoch_os);
            }
            // Update total timing report and remember step number.
            rep += epoch_rep;
            step = simtimer.currentStepNum();
        }
    }

    std::cout << "\n\n================    End of simulation     ===============\n\n";
    rep.report(std::cout);

    if (output) {
      std::string filename = output_dir + "/walltime.param";
      std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
      rep.reportParam(tot_os);
    }

}
示例#3
0
// ----------------- Main program -----------------
int
main(int argc, char** argv)
{
    using namespace Opm;

    std::cout << "\n================    Test program for incompressible tof computations     ===============\n\n";
    parameter::ParameterGroup param(argc, argv, false);
    std::cout << "---------------    Reading parameters     ---------------" << std::endl;

    // If we have a "deck_filename", grid and props will be read from that.
    bool use_deck = param.has("deck_filename");
    boost::scoped_ptr<EclipseGridParser> deck;
    boost::scoped_ptr<GridManager> grid;
    boost::scoped_ptr<IncompPropertiesInterface> props;
    boost::scoped_ptr<Opm::WellsManager> wells;
    TwophaseState state;
    // bool check_well_controls = false;
    // int max_well_control_iterations = 0;
    double gravity[3] = { 0.0 };
    if (use_deck) {
        std::string deck_filename = param.get<std::string>("deck_filename");
        deck.reset(new EclipseGridParser(deck_filename));
        // Grid init
        grid.reset(new GridManager(*deck));
        // Rock and fluid init
        props.reset(new IncompPropertiesFromDeck(*deck, *grid->c_grid()));
        // Wells init.
        wells.reset(new Opm::WellsManager(*deck, *grid->c_grid(), props->permeability()));
        // Gravity.
        gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
        // Init state variables (saturation and pressure).
        if (param.has("init_saturation")) {
            initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
        } else {
            initStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
        }
    } else {
        // Grid init.
        const int nx = param.getDefault("nx", 100);
        const int ny = param.getDefault("ny", 100);
        const int nz = param.getDefault("nz", 1);
        const double dx = param.getDefault("dx", 1.0);
        const double dy = param.getDefault("dy", 1.0);
        const double dz = param.getDefault("dz", 1.0);
        grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
        // Rock and fluid init.
        props.reset(new IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
        // Wells init.
        wells.reset(new Opm::WellsManager());
        // Gravity.
        gravity[2] = param.getDefault("gravity", 0.0);
        // Init state variables (saturation and pressure).
        initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
    }

    // Warn if gravity but no density difference.
    bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
    if (use_gravity) {
        if (props->density()[0] == props->density()[1]) {
            std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
        }
    }
    const double *grav = use_gravity ? &gravity[0] : 0;

    // Initialising src
    std::vector<double> porevol;
    computePorevolume(*grid->c_grid(), props->porosity(), porevol);
    int num_cells = grid->c_grid()->number_of_cells;
    std::vector<double> src(num_cells, 0.0);
    if (use_deck) {
        // Do nothing, wells will be the driving force, not source terms.
    } else {
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        const double default_injection = use_gravity ? 0.0 : 0.1;
        const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
            *tot_porevol_init/unit::day;
        src[0] = flow_per_sec;
        src[num_cells - 1] = -flow_per_sec;
    }

    // Boundary conditions.
    FlowBCManager bcs;
    if (param.getDefault("use_pside", false)) {
        int pside = param.get<int>("pside");
        double pside_pressure = param.get<double>("pside_pressure");
        bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
    }

    // Linear solver.
    LinearSolverFactory linsolver(param);

    // Pressure solver.
    Opm::IncompTpfa psolver(*grid->c_grid(), *props, 0, linsolver,
                            0.0, 0.0, 0,
                            grav, wells->c_wells(), src, bcs.c_bcs());

    // Choice of tof solver.
    bool use_dg = param.getDefault("use_dg", false);
    int dg_degree = -1;
    if (use_dg) {
        dg_degree = param.getDefault("dg_degree", 0);
    }

    // Write parameters used for later reference.
    bool output = param.getDefault("output", true);
    std::ofstream epoch_os;
    std::string output_dir;
    if (output) {
        output_dir =
            param.getDefault("output_dir", std::string("output"));
        boost::filesystem::path fpath(output_dir);
        try {
            create_directories(fpath);
        }
        catch (...) {
            THROW("Creating directories failed: " << fpath);
        }
        std::string filename = output_dir + "/epoch_timing.param";
        epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
        // open file to clean it. The file is appended to in SimulatorTwophase
        filename = output_dir + "/step_timing.param";
        std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
        step_os.close();
        param.writeParam(output_dir + "/simulation.param");
    }

    // Init wells.
    Opm::WellState well_state;
    well_state.init(wells->c_wells(), state);

    // Main solvers.
    Opm::time::StopWatch pressure_timer;
    double ptime = 0.0;
    Opm::time::StopWatch transport_timer;
    double ttime = 0.0;
    Opm::time::StopWatch total_timer;
    total_timer.start();
    std::cout << "\n\n================    Starting main solvers     ===============" << std::endl;

    // Solve pressure.
    pressure_timer.start();
    psolver.solve(1.0, state, well_state);
    pressure_timer.stop();
    double pt = pressure_timer.secsSinceStart();
    std::cout << "Pressure solver took:  " << pt << " seconds." << std::endl;
    ptime += pt;

    // Process transport sources (to include bdy terms and well flows).
    std::vector<double> transport_src;
    Opm::computeTransportSource(*grid->c_grid(), src, state.faceflux(), 1.0,
                                wells->c_wells(), well_state.perfRates(), transport_src);

    // Solve time-of-flight.
    std::vector<double> tof;
    if (use_dg) {
        bool use_cvi = param.getDefault("use_cvi", false);
        Opm::TransportModelTracerTofDiscGal tofsolver(*grid->c_grid(), use_cvi);
        transport_timer.start();
        tofsolver.solveTof(&state.faceflux()[0], &porevol[0], &transport_src[0], dg_degree, tof);
        transport_timer.stop();
    } else {
        Opm::TransportModelTracerTof tofsolver(*grid->c_grid());
        transport_timer.start();
        tofsolver.solveTof(&state.faceflux()[0], &porevol[0], &transport_src[0], tof);
        transport_timer.stop();
    }
    double tt = transport_timer.secsSinceStart();
    std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
    ttime += tt;
    total_timer.stop();

    // Output.
    if (output) {
        std::string tof_filename = output_dir + "/tof.txt";
        std::ofstream tof_stream(tof_filename.c_str());
        std::copy(tof.begin(), tof.end(), std::ostream_iterator<double>(tof_stream, "\n"));
    }

    std::cout << "\n\n================    End of simulation     ===============\n"
              << "Total time taken: " << total_timer.secsSinceStart()
              << "\n  Pressure time:  " << ptime
              << "\n  Transport time: " << ttime << std::endl;
}
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
    using namespace Opm;

    std::cout << "\n================    Test program for weakly compressible two-phase flow with polymer    ===============\n\n";
    parameter::ParameterGroup param(argc, argv, false);
    std::cout << "---------------    Reading parameters     ---------------" << std::endl;

    // If we have a "deck_filename", grid and props will be read from that.
    bool use_deck = param.has("deck_filename");
    boost::scoped_ptr<GridManager> grid;
    boost::scoped_ptr<BlackoilPropertiesInterface> props;
    boost::scoped_ptr<RockCompressibility> rock_comp;
    Opm::DeckConstPtr deck;
    EclipseStateConstPtr eclipseState;
    PolymerBlackoilState state;
    Opm::PolymerProperties poly_props;
    // bool check_well_controls = false;
    // int max_well_control_iterations = 0;
    double gravity[3] = { 0.0 };
    if (use_deck) {
        std::string deck_filename = param.get<std::string>("deck_filename");
        ParserPtr parser(new Opm::Parser());
        deck = parser->parseFile(deck_filename);
        eclipseState.reset(new Opm::EclipseState(deck));

        // Grid init
        grid.reset(new GridManager(deck));
        // Rock and fluid init
        props.reset(new BlackoilPropertiesFromDeck(deck, eclipseState, *grid->c_grid()));
        // check_well_controls = param.getDefault("check_well_controls", false);
        // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
        // Rock compressibility.
        rock_comp.reset(new RockCompressibility(deck, eclipseState));
        // Gravity.
        gravity[2] = deck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity;
        // Init state variables (saturation and pressure).
        if (param.has("init_saturation")) {
            initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
        } else {
            initStateFromDeck(*grid->c_grid(), *props, deck, gravity[2], state);
        }
        initBlackoilSurfvol(*grid->c_grid(), *props, state);
        // Init polymer properties.
        poly_props.readFromDeck(deck, eclipseState);
    } else {
        // Grid init.
        const int nx = param.getDefault("nx", 100);
        const int ny = param.getDefault("ny", 100);
        const int nz = param.getDefault("nz", 1);
        const double dx = param.getDefault("dx", 1.0);
        const double dy = param.getDefault("dy", 1.0);
        const double dz = param.getDefault("dz", 1.0);
        grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
        // Rock and fluid init.
        props.reset(new BlackoilPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
        // Rock compressibility.
        rock_comp.reset(new RockCompressibility(param));
        // Gravity.
        gravity[2] = param.getDefault("gravity", 0.0);
        // Init state variables (saturation and pressure).
        initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
        initBlackoilSurfvol(*grid->c_grid(), *props, state);
        // Init Polymer state
        if (param.has("poly_init")) {
            double poly_init = param.getDefault("poly_init", 0.0);
            for (int cell = 0; cell < grid->c_grid()->number_of_cells; ++cell) {
                double smin[2], smax[2];
                props->satRange(1, &cell, smin, smax);
                if (state.saturation()[2*cell] > 0.5*(smin[0] + smax[0])) {
                    state.concentration()[cell] = poly_init;
                    state.maxconcentration()[cell] = poly_init;
                } else {
                    state.saturation()[2*cell + 0] = 0.;
                    state.saturation()[2*cell + 1] = 1.;
                    state.concentration()[cell] = 0.;
                    state.maxconcentration()[cell] = 0.;
                }
            }
        }
        // Init polymer properties.
        // Setting defaults to provide a simple example case.
        double c_max = param.getDefault("c_max_limit", 5.0);
        double mix_param = param.getDefault("mix_param", 1.0);
        double rock_density = param.getDefault("rock_density", 1000.0);
        double dead_pore_vol = param.getDefault("dead_pore_vol", 0.15);
        double res_factor = param.getDefault("res_factor", 1.) ; // res_factor = 1 gives no change in permeability
        double c_max_ads = param.getDefault("c_max_ads", 1.);
        int ads_index = param.getDefault<int>("ads_index", Opm::PolymerProperties::NoDesorption);
        std::vector<double> c_vals_visc(2, -1e100);
        c_vals_visc[0] = 0.0;
        c_vals_visc[1] = 7.0;
        std::vector<double> visc_mult_vals(2, -1e100);
        visc_mult_vals[0] = 1.0;
        // poly_props.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0);
        visc_mult_vals[1] = 20.0;
        std::vector<double> c_vals_ads(3, -1e100);
        c_vals_ads[0] = 0.0;
        c_vals_ads[1] = 2.0;
        c_vals_ads[2] = 8.0;
        std::vector<double> ads_vals(3, -1e100);
        ads_vals[0] = 0.0;
        ads_vals[1] = 0.0015;
        ads_vals[2] = 0.0025;
        // ads_vals[1] = 0.0;
        // ads_vals[2] = 0.0;
        std::vector<double> water_vel_vals(2, -1e100);
        water_vel_vals[0] = 0.0;
        water_vel_vals[1] = 10.0;
        std::vector<double> shear_vrf_vals(2, -1e100);
        shear_vrf_vals[0] = 1.0;
        shear_vrf_vals[1] = 1.0;
        poly_props.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads,
                       static_cast<Opm::PolymerProperties::AdsorptionBehaviour>(ads_index),
                       c_vals_visc,  visc_mult_vals, c_vals_ads, ads_vals, water_vel_vals, shear_vrf_vals);
    }

    bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
    const double *grav = use_gravity ? &gravity[0] : 0;

    // Initialising src
    int num_cells = grid->c_grid()->number_of_cells;
    std::vector<double> src(num_cells, 0.0);
    if (use_deck) {
        // Do nothing, wells will be the driving force, not source terms.
    } else {
        // Compute pore volumes, in order to enable specifying injection rate
        // terms of total pore volume.
        std::vector<double> porevol;
        if (rock_comp->isActive()) {
            computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
        } else {
            computePorevolume(*grid->c_grid(), props->porosity(), porevol);
        }
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        const double default_injection = use_gravity ? 0.0 : 0.1;
        const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
            *tot_porevol_init/unit::day;
        src[0] = flow_per_sec;
        src[num_cells - 1] = -flow_per_sec;
    }

    // Boundary conditions.
    FlowBCManager bcs;
    if (param.getDefault("use_pside", false)) {
        int pside = param.get<int>("pside");
        double pside_pressure = param.get<double>("pside_pressure");
        bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
    }

    // Linear solver.
    LinearSolverFactory linsolver(param);

    // Write parameters used for later reference.
    bool output = param.getDefault("output", true);
    if (output) {
      std::string output_dir =
        param.getDefault("output_dir", std::string("output"));
      boost::filesystem::path fpath(output_dir);
      try {
        create_directories(fpath);
      }
      catch (...) {
        OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
      }
      param.writeParam(output_dir + "/simulation.param");
    }


    std::cout << "\n\n================    Starting main simulation loop     ===============\n"
              << std::flush;

    SimulatorReport rep;
    if (!use_deck) {
        // Simple simulation without a deck.
        PolymerInflowBasic polymer_inflow(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
                                          param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
                                          param.getDefault("poly_amount", poly_props.cMax()));
        WellsManager wells;
        SimulatorCompressiblePolymer simulator(param,
                                               *grid->c_grid(),
                                               *props,
                                               poly_props,
                                               rock_comp->isActive() ? rock_comp.get() : 0,
                                               wells,
                                               polymer_inflow,
                                               src,
                                               bcs.c_bcs(),
                                               linsolver,
                                               grav);
        SimulatorTimer simtimer;
        simtimer.init(param);
        warnIfUnusedParams(param);
        WellState well_state;
        well_state.init(0, state);
        rep = simulator.run(simtimer, state, well_state);
    } else {
        // With a deck, we may have more epochs etc.
        WellState well_state;
        int step = 0;
        Opm::TimeMapPtr timeMap(new Opm::TimeMap(deck));
        SimulatorTimer simtimer;
        simtimer.init(timeMap);
        // Check for WPOLYMER presence in last report step to decide
        // polymer injection control type.
        const bool use_wpolymer = deck->hasKeyword("WPOLYMER");
        if (use_wpolymer) {
            if (param.has("poly_start_days")) {
                OPM_MESSAGE("Warning: Using WPOLYMER to control injection since it was found in deck. "
                        "You seem to be trying to control it via parameter poly_start_days (etc.) as well.");
            }
        }
        for (size_t reportStepIdx = 0; reportStepIdx < timeMap->numTimesteps(); ++reportStepIdx) {
            simtimer.setCurrentStepNum(reportStepIdx);

            // Report on start of report step.
            std::cout << "\n\n--------------    Starting report step " << reportStepIdx << "    --------------"
                      << "\n                  (number of remaining steps: "
                      << simtimer.numSteps() - step << ")\n\n" << std::flush;

            // Create new wells, polymer inflow controls.
            WellsManager wells(eclipseState , reportStepIdx , *grid->c_grid(), props->permeability());
            boost::scoped_ptr<PolymerInflowInterface> polymer_inflow;
            if (use_wpolymer) {
                if (wells.c_wells() == 0) {
                    OPM_THROW(std::runtime_error, "Cannot control polymer injection via WPOLYMER without wells.");
                }
                polymer_inflow.reset(new PolymerInflowFromDeck(deck, eclipseState, *wells.c_wells(), props->numCells(), simtimer.currentStepNum()));
            } else {
                polymer_inflow.reset(new PolymerInflowBasic(param.getDefault("poly_start_days", 300.0)*Opm::unit::day,
                                                            param.getDefault("poly_end_days", 800.0)*Opm::unit::day,
                                                            param.getDefault("poly_amount", poly_props.cMax())));
            }

            // @@@ HACK: we should really make a new well state and
            // properly transfer old well state to it every report step,
            // since number of wells may change etc.
            if (reportStepIdx == 0) {
                well_state.init(wells.c_wells(), state);
            }

            // Create and run simulator.
            SimulatorCompressiblePolymer simulator(param,
                                                   *grid->c_grid(),
                                                   *props,
                                                   poly_props,
                                                   rock_comp->isActive() ? rock_comp.get() : 0,
                                                   wells,
                                                   *polymer_inflow,
                                                   src,
                                                   bcs.c_bcs(),
                                                   linsolver,
                                                   grav);
            if (reportStepIdx == 0) {
                warnIfUnusedParams(param);
            }
            SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state);

            // Update total timing report and remember step number.
            rep += epoch_rep;
            step = simtimer.currentStepNum();
        }
    }

    std::cout << "\n\n================    End of simulation     ===============\n\n";
    rep.report(std::cout);
}
catch (const std::exception &e) {
    std::cerr << "Program threw an exception: " << e.what() << "\n";
    throw;
}
示例#5
0
// ----------------- Main program -----------------
int
main(int argc, char** argv)
try
{
    using namespace Opm;

    std::cout << "\n================    Test program for incompressible two-phase flow     ===============\n\n";
    parameter::ParameterGroup param(argc, argv, false);
    std::cout << "---------------    Reading parameters     ---------------" << std::endl;

#if ! HAVE_SUITESPARSE_UMFPACK_H
    // This is an extra check to intercept a potentially invalid request for the
    // implicit transport solver as early as possible for the user.
    {
        const bool use_reorder = param.getDefault("use_reorder", true);
        if (!use_reorder) {
            OPM_THROW(std::runtime_error, "Cannot use implicit transport solver without UMFPACK. "
                  "Either reconfigure opm-core with SuiteSparse/UMFPACK support and recompile, "
                  "or use the reordering solver (use_reorder=true).");
        }
    }
#endif

    // If we have a "deck_filename", grid and props will be read from that.
    bool use_deck = param.has("deck_filename");
    EclipseStateConstPtr eclipseState;

    Opm::DeckConstPtr deck;
    std::unique_ptr<GridManager> grid;
    std::unique_ptr<IncompPropertiesInterface> props;
    std::unique_ptr<RockCompressibility> rock_comp;
    std::unique_ptr<TwophaseState> state;
    // bool check_well_controls = false;
    // int max_well_control_iterations = 0;
    double gravity[3] = { 0.0 };
    if (use_deck) {
        ParserPtr parser(new Opm::Parser());
        ParseContext parseContext;

        std::string deck_filename = param.get<std::string>("deck_filename");
        deck = parser->parseFile(deck_filename , parseContext);
        eclipseState.reset( new EclipseState(*deck, parseContext));
        // Grid init
        grid.reset(new GridManager(*eclipseState->getInputGrid()));
        {
            const UnstructuredGrid& ug_grid = *(grid->c_grid());
            // Rock and fluid init
            props.reset(new IncompPropertiesFromDeck(deck, eclipseState, ug_grid));

            state.reset( new TwophaseState(  UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid )));

            // Rock compressibility.
            rock_comp.reset(new RockCompressibility(deck, eclipseState));
            // Gravity.
            gravity[2] = deck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity;
            // Init state variables (saturation and pressure).
            if (param.has("init_saturation")) {
                initStateBasic(ug_grid, *props, param, gravity[2], *state);
            } else {
                initStateFromDeck(ug_grid, *props, deck, gravity[2], *state);
            }
        }
    } else {
        // Grid init.
        const int nx = param.getDefault("nx", 100);
        const int ny = param.getDefault("ny", 100);
        const int nz = param.getDefault("nz", 1);
        const double dx = param.getDefault("dx", 1.0);
        const double dy = param.getDefault("dy", 1.0);
        const double dz = param.getDefault("dz", 1.0);
        grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
        {
            const UnstructuredGrid& ug_grid = *(grid->c_grid());

            // Rock and fluid init.
            props.reset(new IncompPropertiesBasic(param, ug_grid.dimensions, UgGridHelpers::numCells( ug_grid )));

            state.reset( new TwophaseState(  UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid )));
            // Rock compressibility.
            rock_comp.reset(new RockCompressibility(param));
            // Gravity.
            gravity[2] = param.getDefault("gravity", 0.0);
            // Init state variables (saturation and pressure).
            initStateBasic(ug_grid, *props, param, gravity[2], *state);
        }
    }

    // Warn if gravity but no density difference.
    bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
    if (use_gravity) {
        if (props->density()[0] == props->density()[1]) {
            std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
        }
    }
    const double *grav = use_gravity ? &gravity[0] : 0;

    // Initialising src
    int num_cells = grid->c_grid()->number_of_cells;
    std::vector<double> src(num_cells, 0.0);
    if (use_deck) {
        // Do nothing, wells will be the driving force, not source terms.
    } else {
        // Compute pore volumes, in order to enable specifying injection rate
        // terms of total pore volume.
        std::vector<double> porevol;
        if (rock_comp->isActive()) {
            computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state->pressure(), porevol);
        } else {
            computePorevolume(*grid->c_grid(), props->porosity(), porevol);
        }
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        const double default_injection = use_gravity ? 0.0 : 0.1;
        const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
            *tot_porevol_init/unit::day;
        src[0] = flow_per_sec;
        src[num_cells - 1] = -flow_per_sec;
    }

    // Boundary conditions.
    FlowBCManager bcs;
    if (param.getDefault("use_pside", false)) {
        int pside = param.get<int>("pside");
        double pside_pressure = param.get<double>("pside_pressure");
        bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
    }

    // Linear solver.
    LinearSolverFactory linsolver(param);

    // Write parameters used for later reference.
    bool output = param.getDefault("output", true);
    std::ofstream epoch_os;
    std::string output_dir;
    if (output) {
        output_dir =
            param.getDefault("output_dir", std::string("output"));
        boost::filesystem::path fpath(output_dir);
        try {
            create_directories(fpath);
        }
        catch (...) {
            OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
        }
        std::string filename = output_dir + "/epoch_timing.param";
        epoch_os.open(filename.c_str(), std::fstream::trunc | std::fstream::out);
        // open file to clean it. The file is appended to in SimulatorTwophase
        filename = output_dir + "/step_timing.param";
        std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out);
        step_os.close();
        param.writeParam(output_dir + "/simulation.param");
    }

    SimulatorReport rep;
    if (!use_deck) {
        std::cout << "\n\n================    Starting main simulation loop     ===============\n"
                  << "                        (number of report steps: 1)\n\n" << std::flush;
        // Simple simulation without a deck.
        WellsManager wells; // no wells.
        SimulatorIncompTwophase simulator(param,
                                          *grid->c_grid(),
                                          *props,
                                          rock_comp->isActive() ? rock_comp.get() : 0,
                                          wells,
                                          src,
                                          bcs.c_bcs(),
                                          linsolver,
                                          grav);
        SimulatorTimer simtimer;
        simtimer.init(param);
        warnIfUnusedParams(param);
        WellState well_state;
        well_state.init(0, *state);
        rep = simulator.run(simtimer, *state, well_state);
    } else {
        // With a deck, we may have more epochs etc.
        Opm::TimeMapConstPtr timeMap = eclipseState->getSchedule()->getTimeMap();

        std::cout << "\n\n================    Starting main simulation loop     ===============\n"
                  << "                        (number of report steps: "
                  << timeMap->numTimesteps() << ")\n\n" << std::flush;
        WellState well_state;
        int step = 0;
        SimulatorTimer simtimer;
        // Use timer for last epoch to obtain total time.
        simtimer.init(timeMap);
        const double total_time = simtimer.totalTime();
        // for (size_t reportStepIdx = 0; reportStepIdx < timeMap->numTimesteps(); ++reportStepIdx) {
        size_t reportStepIdx = 0; // Only handle a single, unchanging well setup.
        {
            // Update the timer.
            simtimer.setCurrentStepNum(step);
            simtimer.setTotalTime(total_time);

            // Report on start of report step.
            // std::cout << "\n\n--------------    Starting report step " << reportStepIdx << "    --------------"
            //           << "\n                  (number of time steps: "
            //           << simtimer.numSteps() - step << ")\n\n" << std::flush;

            // Create new wells, well_state
            WellsManager wells(eclipseState , reportStepIdx , *grid->c_grid(), props->permeability());
            // @@@ HACK: we should really make a new well state and
            // properly transfer old well state to it every report step,
            // since number of wells may change etc.
            if (reportStepIdx == 0) {
                well_state.init(wells.c_wells(), *state);
            }

            // Create and run simulator.
            SimulatorIncompTwophase simulator(param,
                                              *grid->c_grid(),
                                              *props,
                                              rock_comp->isActive() ? rock_comp.get() : 0,
                                              wells,
                                              src,
                                              bcs.c_bcs(),
                                              linsolver,
                                              grav);
            if (reportStepIdx == 0) {
                warnIfUnusedParams(param);
            }
            SimulatorReport epoch_rep = simulator.run(simtimer, *state, well_state);
            if (output) {
                epoch_rep.reportParam(epoch_os);
            }
            // Update total timing report and remember step number.
            rep += epoch_rep;
            step = simtimer.currentStepNum();
        }
    }

    std::cout << "\n\n================    End of simulation     ===============\n\n";
    rep.report(std::cout);

    if (output) {
      std::string filename = output_dir + "/walltime.param";
      std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out);
      rep.reportParam(tot_os);
    }

}
catch (const std::exception &e) {
    std::cerr << "Program threw an exception: " << e.what() << "\n";
    throw;
}
// ----------------- Main program -----------------
int
main(int argc, char** argv)
{
    using namespace Opm;

    std::cout << "\n================    Test program for incompressible two-phase flow with polymer    ===============\n\n";
    parameter::ParameterGroup param(argc, argv, false);
    std::cout << "---------------    Reading parameters     ---------------" << std::endl;

    // If we have a "deck_filename", grid and props will be read from that.
    bool use_deck = param.has("deck_filename");
    boost::scoped_ptr<EclipseGridParser> deck;
    boost::scoped_ptr<GridManager> grid;
    boost::scoped_ptr<IncompPropertiesInterface> props;
    boost::scoped_ptr<RockCompressibility> rock_comp;
    PolymerState state;
    Opm::PolymerProperties poly_props;
    // bool check_well_controls = false;
    // int max_well_control_iterations = 0;
    double gravity[3] = { 0.0 };
    if (use_deck) {
        std::string deck_filename = param.get<std::string>("deck_filename");
        deck.reset(new EclipseGridParser(deck_filename));
        // Grid init
        grid.reset(new GridManager(*deck));
        // Rock and fluid init
        props.reset(new IncompPropertiesFromDeck(*deck, *grid->c_grid()));
        // check_well_controls = param.getDefault("check_well_controls", false);
        // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10);
        // Rock compressibility.
        rock_comp.reset(new RockCompressibility(*deck));
        // Gravity.
        gravity[2] = deck->hasField("NOGRAV") ? 0.0 : unit::gravity;
        // Init state variables (saturation and pressure).
        if (param.has("init_saturation")) {
            initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
        } else {
            initStateFromDeck(*grid->c_grid(), *props, *deck, gravity[2], state);
        }
        // Init polymer properties.
        poly_props.readFromDeck(*deck);
    } else {
        // Grid init.
        const int nx = param.getDefault("nx", 100);
        const int ny = param.getDefault("ny", 100);
        const int nz = param.getDefault("nz", 1);
        const double dx = param.getDefault("dx", 1.0);
        const double dy = param.getDefault("dy", 1.0);
        const double dz = param.getDefault("dz", 1.0);
        grid.reset(new GridManager(nx, ny, nz, dx, dy, dz));
        // Rock and fluid init.
        props.reset(new IncompPropertiesBasic(param, grid->c_grid()->dimensions, grid->c_grid()->number_of_cells));
        // Rock compressibility.
        rock_comp.reset(new RockCompressibility(param));
        // Gravity.
        gravity[2] = param.getDefault("gravity", 0.0);
        // Init state variables (saturation and pressure).
        initStateBasic(*grid->c_grid(), *props, param, gravity[2], state);
        // Init Polymer state
        if (param.has("poly_init")) {
            double poly_init = param.getDefault("poly_init", 0.0);
            for (int cell = 0; cell < grid->c_grid()->number_of_cells; ++cell) {
                double smin[2], smax[2];
                props->satRange(1, &cell, smin, smax);
                if (state.saturation()[2*cell] > 0.5*(smin[0] + smax[0])) {
                    state.concentration()[cell] = poly_init;
                    state.maxconcentration()[cell] = poly_init;
                } else {
                    state.saturation()[2*cell + 0] = 0.;
                    state.saturation()[2*cell + 1] = 1.;
                    state.concentration()[cell] = 0.;
                    state.maxconcentration()[cell] = 0.;
                }
            }
        }
        // Init polymer properties.
        // Setting defaults to provide a simple example case.
        double c_max = param.getDefault("c_max_limit", 5.0);
        double mix_param = param.getDefault("mix_param", 1.0);
        double rock_density = param.getDefault("rock_density", 1000.0);
        double dead_pore_vol = param.getDefault("dead_pore_vol", 0.15);
        double res_factor = param.getDefault("res_factor", 1.) ; // res_factor = 1 gives no change in permeability
        double c_max_ads = param.getDefault("c_max_ads", 1.);
        int ads_index = param.getDefault<int>("ads_index", Opm::PolymerProperties::NoDesorption);
        std::vector<double> c_vals_visc(2, -1e100);
        c_vals_visc[0] = 0.0;
        c_vals_visc[1] = 7.0;
        std::vector<double> visc_mult_vals(2, -1e100);
        visc_mult_vals[0] = 1.0;
        // poly_props.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0);
        visc_mult_vals[1] = 20.0;
        std::vector<double> c_vals_ads(3, -1e100);
        c_vals_ads[0] = 0.0;
        c_vals_ads[1] = 2.0;
        c_vals_ads[2] = 8.0;
        std::vector<double> ads_vals(3, -1e100);
        ads_vals[0] = 0.0;
        ads_vals[1] = 0.0015;
        ads_vals[2] = 0.0025;
        // ads_vals[1] = 0.0;
        // ads_vals[2] = 0.0;
        poly_props.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads,
                       static_cast<Opm::PolymerProperties::AdsorptionBehaviour>(ads_index),
                       c_vals_visc,  visc_mult_vals, c_vals_ads, ads_vals);
    }

    // Warn if gravity but no density difference.
    bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0);
    if (use_gravity) {
        if (props->density()[0] == props->density()[1]) {
            std::cout << "**** Warning: nonzero gravity, but zero density difference." << std::endl;
        }
    }
    const double *grav = use_gravity ? &gravity[0] : 0;

    // Initialising src
    int num_cells = grid->c_grid()->number_of_cells;
    std::vector<double> src(num_cells, 0.0);
    if (use_deck) {
        // Do nothing, wells will be the driving force, not source terms.
    } else {
        // Compute pore volumes, in order to enable specifying injection rate
        // terms of total pore volume.
        std::vector<double> porevol;
        if (rock_comp->isActive()) {
            computePorevolume(*grid->c_grid(), props->porosity(), *rock_comp, state.pressure(), porevol);
        } else {
            computePorevolume(*grid->c_grid(), props->porosity(), porevol);
        }
        const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
        const double default_injection = use_gravity ? 0.0 : 0.1;
        const double flow_per_sec = param.getDefault<double>("injected_porevolumes_per_day", default_injection)
            *tot_porevol_init/unit::day;
        src[0] = flow_per_sec;
        src[num_cells - 1] = -flow_per_sec;
    }

    // Boundary conditions.
    FlowBCManager bcs;
    if (param.getDefault("use_pside", false)) {
        int pside = param.get<int>("pside");
        double pside_pressure = param.get<double>("pside_pressure");
        bcs.pressureSide(*grid->c_grid(), FlowBCManager::Side(pside), pside_pressure);
    }

    // Linear solver.
    LinearSolverFactory linsolver(param);

    // Write parameters used for later reference.
    bool output = param.getDefault("output", true);
    if (output) {
      std::string output_dir =
        param.getDefault("output_dir", std::string("output"));
      boost::filesystem::path fpath(output_dir);
      try {
        create_directories(fpath);
      }
      catch (...) {
        THROW("Creating directories failed: " << fpath);
      }
      param.writeParam(output_dir + "/simulation.param");
    }


    std::cout << "\n\n================    Starting main simulation loop     ===============\n"
              << "                        (number of epochs: "
              << (use_deck ? deck->numberOfEpochs() : 1) << ")\n\n" << std::flush;

    SimulatorReport rep;
    if (!use_deck) {
        // Simple simulation without a deck.
        SimulatorPolymer simulator(param,
                                   *grid->c_grid(),
                                   *props,
                                   poly_props,
                                   rock_comp->isActive() ? rock_comp.get() : 0,
                                   0, // wells
                                   src,
                                   bcs.c_bcs(),
                                   linsolver,
                                   grav);
        SimulatorTimer simtimer;
        simtimer.init(param);
        warnIfUnusedParams(param);
        WellState well_state;
        well_state.init(0, state);
        rep = simulator.run(simtimer, state, well_state);
    } else {
        // With a deck, we may have more epochs etc.
        WellState well_state;
        int step = 0;
        SimulatorTimer simtimer;
        // Use timer for last epoch to obtain total time.
        deck->setCurrentEpoch(deck->numberOfEpochs() - 1);
        simtimer.init(*deck);
        const double total_time = simtimer.totalTime();
        for (int epoch = 0; epoch < deck->numberOfEpochs(); ++epoch) {
            // Set epoch index.
            deck->setCurrentEpoch(epoch);

            // Update the timer.
            if (deck->hasField("TSTEP")) {
                simtimer.init(*deck);
            } else {
                if (epoch != 0) {
                    THROW("No TSTEP in deck for epoch " << epoch);
                }
                simtimer.init(param);
            }
            simtimer.setCurrentStepNum(step);
            simtimer.setTotalTime(total_time);

            // Report on start of epoch.
            std::cout << "\n\n--------------    Starting epoch " << epoch << "    --------------"
                      << "\n                  (number of steps: "
                      << simtimer.numSteps() - step << ")\n\n" << std::flush;

            // Create new wells, well_state
            WellsManager wells(*deck, *grid->c_grid(), props->permeability());
            // @@@ HACK: we should really make a new well state and
            // properly transfer old well state to it every epoch,
            // since number of wells may change etc.
            if (epoch == 0) {
                well_state.init(wells.c_wells(), state);
            }

            // Create and run simulator.
            SimulatorPolymer simulator(param,
                                       *grid->c_grid(),
                                       *props,
                                       poly_props,
                                       rock_comp->isActive() ? rock_comp.get() : 0,
                                       wells.c_wells(),
                                       src,
                                       bcs.c_bcs(),
                                       linsolver,
                                       grav);
            if (epoch == 0) {
                warnIfUnusedParams(param);
            }
            SimulatorReport epoch_rep = simulator.run(simtimer, state, well_state);

            // Update total timing report and remember step number.
            rep += epoch_rep;
            step = simtimer.currentStepNum();
        }
    }

    std::cout << "\n\n================    End of simulation     ===============\n\n";
    rep.report(std::cout);
}