示例#1
0
    static Scalar density(const FluidState &fluidState,
                          const ParameterCache &paramCache,
                          unsigned phaseIdx)
    {
        assert(0 <= phaseIdx  && phaseIdx < numPhases);
        static_assert(std::is_same<Evaluation, Scalar>::value,
                      "The SPE-5 fluid system is currently only implemented for the scalar case.");

        return fluidState.averageMolarMass(phaseIdx)/paramCache.molarVolume(phaseIdx);
    }
示例#2
0
    static Scalar density(const FluidState &fluidState,
                          const ParameterCache &paramCache,
                          int phaseIdx)
    {
        assert(0 <= phaseIdx  && phaseIdx < numPhases);

        Scalar T = fluidState.temperature(phaseIdx);
        Scalar p;
        if (isCompressible(phaseIdx))
            p = fluidState.pressure(phaseIdx);
        else {
            // random value which will hopefully cause things to blow
            // up if it is used in a calculation!
            p = - 1e100;
            Valgrind::SetUndefined(p);
        }


        Scalar sumMoleFrac = 0;
        for (int compIdx = 0; compIdx < numComponents; ++compIdx)
            sumMoleFrac += fluidState.moleFraction(phaseIdx, compIdx);

        if (phaseIdx == lPhaseIdx)
        {
            if (!useComplexRelations)
                // assume pure water
                return H2O::liquidDensity(T, p);
            else
            {
                // See: Ochs 2008 (2.6)
                Scalar rholH2O = H2O::liquidDensity(T, p);
                Scalar clH2O = rholH2O/H2O::molarMass();

                return
                    clH2O
                    * (H2O::molarMass()*fluidState.moleFraction(lPhaseIdx, H2OIdx)
                           +
                           Air::molarMass()*fluidState.moleFraction(lPhaseIdx, AirIdx))
                   / sumMoleFrac;
            }
        }
        else if (phaseIdx == gPhaseIdx)
        {
            if (!useComplexRelations)
                // for the gas phase assume an ideal gas
                return
                    IdealGas::molarDensity(T, p)
                    * fluidState.averageMolarMass(gPhaseIdx)
                    / std::max(1e-5, sumMoleFrac);

            Scalar partialPressureH2O =
                fluidState.moleFraction(gPhaseIdx, H2OIdx)  *
                fluidState.pressure(gPhaseIdx);

            Scalar partialPressureAir =
                fluidState.moleFraction(gPhaseIdx, AirIdx)  *
                fluidState.pressure(gPhaseIdx);

            return
                H2O::gasDensity(T, partialPressureH2O) +
                Air::gasDensity(T, partialPressureAir);
        }
        OPM_THROW(std::logic_error, "Invalid phase index " << phaseIdx);
    }
示例#3
0
    static LhsEval density(const FluidState &fluidState,
                           const ParameterCache &/*paramCache*/,
                           unsigned phaseIdx)
    {
        typedef Opm::MathToolbox<typename FluidState::Scalar> FsToolbox;
        typedef Opm::MathToolbox<LhsEval> LhsToolbox;

        assert(0 <= phaseIdx  && phaseIdx < numPhases);

        const auto& T = FsToolbox::template toLhs<LhsEval>(fluidState.temperature(phaseIdx));
        LhsEval p;
        if (isCompressible(phaseIdx))
            p = FsToolbox::template toLhs<LhsEval>(fluidState.pressure(phaseIdx));
        else {
            // random value which will hopefully cause things to blow
            // up if it is used in a calculation!
            p = - 1e100;
            Valgrind::SetUndefined(p);
        }


        LhsEval sumMoleFrac = 0;
        for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx)
            sumMoleFrac += FsToolbox::template toLhs<LhsEval>(fluidState.moleFraction(phaseIdx, compIdx));

        if (phaseIdx == liquidPhaseIdx)
        {
            if (!useComplexRelations)
                // assume pure water
                return H2O::liquidDensity(T, p);
            else
            {
                // See: Ochs 2008 (2.6)
                const LhsEval& rholH2O = H2O::liquidDensity(T, p);
                const LhsEval& clH2O = rholH2O/H2O::molarMass();

                const auto& xlH2O = FsToolbox::template toLhs<LhsEval>(fluidState.moleFraction(liquidPhaseIdx, H2OIdx));
                const auto& xlAir = FsToolbox::template toLhs<LhsEval>(fluidState.moleFraction(liquidPhaseIdx, AirIdx));

                return clH2O*(H2O::molarMass()*xlH2O + Air::molarMass()*xlAir)/sumMoleFrac;
            }
        }
        else if (phaseIdx == gasPhaseIdx)
        {
            if (!useComplexRelations)
                // for the gas phase assume an ideal gas
                return
                    IdealGas::molarDensity(T, p)
                    * FsToolbox::template toLhs<LhsEval>(fluidState.averageMolarMass(gasPhaseIdx))
                    / LhsToolbox::max(1e-5, sumMoleFrac);

            LhsEval partialPressureH2O =
                FsToolbox::template toLhs<LhsEval>(fluidState.moleFraction(gasPhaseIdx, H2OIdx))
                *FsToolbox::template toLhs<LhsEval>(fluidState.pressure(gasPhaseIdx));

            LhsEval partialPressureAir =
                FsToolbox::template toLhs<LhsEval>(fluidState.moleFraction(gasPhaseIdx, AirIdx))
                *FsToolbox::template toLhs<LhsEval>(fluidState.pressure(gasPhaseIdx));

            return H2O::gasDensity(T, partialPressureH2O) + Air::gasDensity(T, partialPressureAir);
        }
        OPM_THROW(std::logic_error, "Invalid phase index " << phaseIdx);
    }