示例#1
0
static void llvm_init(){
    ExecutionEngine *ee = tcg_llvm_ctx->getExecutionEngine();
    FunctionPassManager *fpm = tcg_llvm_ctx->getFunctionPassManager();
    Module *mod = tcg_llvm_ctx->getModule();
    LLVMContext &ctx = mod->getContext();

    // Link logging function in with JIT
    Function *logFunc;
    std::vector<Type*> argTypes;
    // DynValBuffer*
    argTypes.push_back(IntegerType::get(ctx, 8*sizeof(uintptr_t)));
    // DynValEntryType
    argTypes.push_back(IntegerType::get(ctx, 8*sizeof(DynValEntryType)));
    // LogOp
    argTypes.push_back(IntegerType::get(ctx, 8*sizeof(LogOp)));
    // Dynamic value
    argTypes.push_back(IntegerType::get(ctx, 8*sizeof(uintptr_t)));
    logFunc = Function::Create(
            FunctionType::get(Type::getVoidTy(ctx), argTypes, false),
            Function::ExternalLinkage, "log_dynval", mod);
    logFunc->addFnAttr(Attribute::AlwaysInline);
    ee->addGlobalMapping(logFunc, (void*) &log_dynval);
    
    // Create instrumentation pass and add to function pass manager
    llvm::FunctionPass *instfp = createPandaInstrFunctionPass(mod);
    fpm->add(instfp);
    PIFP = static_cast<PandaInstrFunctionPass*>(instfp);
}
示例#2
0
bool PassBuilder::parseFunctionPass(FunctionPassManager &FPM,
                                    const PipelineElement &E,
                                    bool VerifyEachPass, bool DebugLogging) {
  auto &Name = E.Name;
  auto &InnerPipeline = E.InnerPipeline;

  // First handle complex passes like the pass managers which carry pipelines.
  if (!InnerPipeline.empty()) {
    if (Name == "function") {
      FunctionPassManager NestedFPM(DebugLogging);
      if (!parseFunctionPassPipeline(NestedFPM, InnerPipeline, VerifyEachPass,
                                     DebugLogging))
        return false;
      // Add the nested pass manager with the appropriate adaptor.
      FPM.addPass(std::move(NestedFPM));
      return true;
    }
    if (Name == "loop") {
      LoopPassManager LPM(DebugLogging);
      if (!parseLoopPassPipeline(LPM, InnerPipeline, VerifyEachPass,
                                 DebugLogging))
        return false;
      // Add the nested pass manager with the appropriate adaptor.
      FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
      return true;
    }
    if (auto Count = parseRepeatPassName(Name)) {
      FunctionPassManager NestedFPM(DebugLogging);
      if (!parseFunctionPassPipeline(NestedFPM, InnerPipeline, VerifyEachPass,
                                     DebugLogging))
        return false;
      FPM.addPass(createRepeatedPass(*Count, std::move(NestedFPM)));
      return true;
    }
    // Normal passes can't have pipelines.
    return false;
  }

  // Now expand the basic registered passes from the .inc file.
#define FUNCTION_PASS(NAME, CREATE_PASS)                                       \
  if (Name == NAME) {                                                          \
    FPM.addPass(CREATE_PASS);                                                  \
    return true;                                                               \
  }
#define FUNCTION_ANALYSIS(NAME, CREATE_PASS)                                   \
  if (Name == "require<" NAME ">") {                                           \
    FPM.addPass(                                                               \
        RequireAnalysisPass<                                                   \
            std::remove_reference<decltype(CREATE_PASS)>::type, Function>());  \
    return true;                                                               \
  }                                                                            \
  if (Name == "invalidate<" NAME ">") {                                        \
    FPM.addPass(InvalidateAnalysisPass<                                        \
                std::remove_reference<decltype(CREATE_PASS)>::type>());        \
    return true;                                                               \
  }
#include "PassRegistry.def"

  return false;
}
/// Optimize merged modules using various IPO passes
bool LTOCodeGenerator::generateAssemblyCode(raw_ostream& out,
                                            std::string& errMsg)
{
    if ( this->determineTarget(errMsg) ) 
        return true;

    // mark which symbols can not be internalized 
    this->applyScopeRestrictions();

    Module* mergedModule = _linker.getModule();

    // if options were requested, set them
    if ( !_codegenOptions.empty() )
        cl::ParseCommandLineOptions(_codegenOptions.size(), 
                                    const_cast<char **>(&_codegenOptions[0]));

    // Instantiate the pass manager to organize the passes.
    PassManager passes;

    // Start off with a verification pass.
    passes.add(createVerifierPass());

    // Add an appropriate TargetData instance for this module...
    passes.add(new TargetData(*_target->getTargetData()));
    
    createStandardLTOPasses(&passes, /*Internalize=*/ false, !DisableInline,
                            /*VerifyEach=*/ false);

    // Make sure everything is still good.
    passes.add(createVerifierPass());

    FunctionPassManager* codeGenPasses = new FunctionPassManager(mergedModule);

    codeGenPasses->add(new TargetData(*_target->getTargetData()));

    formatted_raw_ostream Out(out);

    if (_target->addPassesToEmitFile(*codeGenPasses, Out,
                                     TargetMachine::CGFT_AssemblyFile,
                                     CodeGenOpt::Aggressive)) {
      errMsg = "target file type not supported";
      return true;
    }

    // Run our queue of passes all at once now, efficiently.
    passes.run(*mergedModule);

    // Run the code generator, and write assembly file
    codeGenPasses->doInitialization();

    for (Module::iterator
           it = mergedModule->begin(), e = mergedModule->end(); it != e; ++it)
      if (!it->isDeclaration())
        codeGenPasses->run(*it);

    codeGenPasses->doFinalization();

    return false; // success
}
示例#4
0
// Unfortunately, the LLVM C API doesn't provide an easy way of iterating over
// all the functions in a module, so we do that manually here. You'll find
// similar code in clang's BackendUtil.cpp file.
extern "C" void
LLVMRustRunFunctionPassManager(LLVMPassManagerRef PM, LLVMModuleRef M) {
    FunctionPassManager *P = unwrap<FunctionPassManager>(PM);
    P->doInitialization();
    for (Module::iterator I = unwrap(M)->begin(),
         E = unwrap(M)->end(); I != E; ++I)
        if (!I->isDeclaration())
            P->run(*I);
    P->doFinalization();
}
示例#5
0
static bool parseFunctionPassName(FunctionPassManager &FPM, StringRef Name) {
  if (Name == "no-op-function") {
    FPM.addPass(NoOpFunctionPass());
    return true;
  }
  if (Name == "print") {
    FPM.addPass(PrintFunctionPass(dbgs()));
    return true;
  }
  return false;
}
示例#6
0
void
optimize(cpu_t *cpu)
{
	FunctionPassManager pm = FunctionPassManager(cpu->mod);

	pm.add(createPromoteMemoryToRegisterPass());
	pm.add(createInstructionCombiningPass());
	pm.add(createConstantPropagationPass());
	pm.add(createDeadCodeEliminationPass());
	pm.run(*cpu->cur_func);
}
示例#7
0
bool PassBuilder::parseFunctionPassPipeline(FunctionPassManager &FPM,
                                            StringRef &PipelineText,
                                            bool VerifyEachPass,
                                            bool DebugLogging) {
  for (;;) {
    // Parse nested pass managers by recursing.
    if (PipelineText.startswith("function(")) {
      FunctionPassManager NestedFPM(DebugLogging);

      // Parse the inner pipeline inte the nested manager.
      PipelineText = PipelineText.substr(strlen("function("));
      if (!parseFunctionPassPipeline(NestedFPM, PipelineText, VerifyEachPass,
                                     DebugLogging) ||
          PipelineText.empty())
        return false;
      assert(PipelineText[0] == ')');
      PipelineText = PipelineText.substr(1);

      // Add the nested pass manager with the appropriate adaptor.
      FPM.addPass(std::move(NestedFPM));
    } else if (PipelineText.startswith("loop(")) {
      LoopPassManager NestedLPM(DebugLogging);

      // Parse the inner pipeline inte the nested manager.
      PipelineText = PipelineText.substr(strlen("loop("));
      if (!parseLoopPassPipeline(NestedLPM, PipelineText, VerifyEachPass,
                                 DebugLogging) ||
          PipelineText.empty())
        return false;
      assert(PipelineText[0] == ')');
      PipelineText = PipelineText.substr(1);

      // Add the nested pass manager with the appropriate adaptor.
      FPM.addPass(createFunctionToLoopPassAdaptor(std::move(NestedLPM)));
    } else {
      // Otherwise try to parse a pass name.
      size_t End = PipelineText.find_first_of(",)");
      if (!parseFunctionPassName(FPM, PipelineText.substr(0, End)))
        return false;
      if (VerifyEachPass)
        FPM.addPass(VerifierPass());

      PipelineText = PipelineText.substr(End);
    }

    if (PipelineText.empty() || PipelineText[0] == ')')
      return true;

    assert(PipelineText[0] == ',');
    PipelineText = PipelineText.substr(1);
  }
}
示例#8
0
文件: toy.cpp 项目: 1995hnagamin/llvm
ExecutionEngine *MCJITHelper::compileModule(Module *M) {
  if (M == OpenModule)
    closeCurrentModule();

  std::string ErrStr;
  ExecutionEngine *NewEngine = EngineBuilder(M)
                                            .setErrorStr(&ErrStr)
                                            .setMCJITMemoryManager(new HelpingMemoryManager(this))
                                            .create();
  if (!NewEngine) {
    fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
    exit(1);
  }

  // Create a function pass manager for this engine
  FunctionPassManager *FPM = new FunctionPassManager(M);

  // Set up the optimizer pipeline.  Start with registering info about how the
  // target lays out data structures.
  FPM->add(new DataLayout(*NewEngine->getDataLayout()));
  // Provide basic AliasAnalysis support for GVN.
  FPM->add(createBasicAliasAnalysisPass());
  // Promote allocas to registers.
  FPM->add(createPromoteMemoryToRegisterPass());
  // Do simple "peephole" optimizations and bit-twiddling optzns.
  FPM->add(createInstructionCombiningPass());
  // Reassociate expressions.
  FPM->add(createReassociatePass());
  // Eliminate Common SubExpressions.
  FPM->add(createGVNPass());
  // Simplify the control flow graph (deleting unreachable blocks, etc).
  FPM->add(createCFGSimplificationPass());
  FPM->doInitialization();

  // For each function in the module
  Module::iterator it;
  Module::iterator end = M->end();
  for (it = M->begin(); it != end; ++it) {
    // Run the FPM on this function
    FPM->run(*it);
  }

  // We don't need this anymore
  delete FPM;

  // Store this engine
  EngineMap[M] = NewEngine;
  NewEngine->finalizeObject();

  return NewEngine;
}
示例#9
0
/// AddOptimizationPasses - This routine adds optimization passes
/// based on selected optimization level, OptLevel. This routine
/// duplicates llvm-gcc behaviour.
///
/// OptLevel - Optimization Level
static void AddOptimizationPasses(PassManagerBase &MPM,FunctionPassManager &FPM,
                                  unsigned OptLevel, unsigned SizeLevel) {
  FPM.add(createVerifierPass());                  // Verify that input is correct

  PassManagerBuilder Builder;
  Builder.OptLevel = OptLevel;
  Builder.SizeLevel = SizeLevel;

  if (DisableInline) {
    // No inlining pass
  } else if (OptLevel > 1) {
    unsigned Threshold = 225;
    if (SizeLevel == 1)      // -Os
      Threshold = 75;
    else if (SizeLevel == 2) // -Oz
      Threshold = 25;
    if (OptLevel > 2)
      Threshold = 275;
    Builder.Inliner = createFunctionInliningPass(Threshold);
  } else {
    Builder.Inliner = createAlwaysInlinerPass();
  }
  Builder.DisableUnitAtATime = !UnitAtATime;
  Builder.DisableUnrollLoops = OptLevel == 0;
  Builder.DisableSimplifyLibCalls = DisableSimplifyLibCalls;
  
  Builder.populateFunctionPassManager(FPM);
  Builder.populateModulePassManager(MPM);
}
/// This routine adds optimization passes based on selected optimization level,
/// OptLevel.
///
/// OptLevel - Optimization Level
static void AddOptimizationPasses(PassManagerBase &MPM,FunctionPassManager &FPM,
                                  unsigned OptLevel, unsigned SizeLevel) {
  FPM.add(createVerifierPass());          // Verify that input is correct
  MPM.add(createDebugInfoVerifierPass()); // Verify that debug info is correct

  PassManagerBuilder Builder;
  Builder.OptLevel = OptLevel;
  Builder.SizeLevel = SizeLevel;

  if (DisableInline) {
    // No inlining pass
  } else if (OptLevel > 1) {
    Builder.Inliner = createFunctionInliningPass(OptLevel, SizeLevel);
  } else {
    Builder.Inliner = createAlwaysInlinerPass();
  }
  Builder.DisableUnitAtATime = !UnitAtATime;
  Builder.DisableUnrollLoops = (DisableLoopUnrolling.getNumOccurrences() > 0) ?
                               DisableLoopUnrolling : OptLevel == 0;

  // This is final, unless there is a #pragma vectorize enable
  if (DisableLoopVectorization)
    Builder.LoopVectorize = false;
  // If option wasn't forced via cmd line (-vectorize-loops, -loop-vectorize)
  else if (!Builder.LoopVectorize)
    Builder.LoopVectorize = OptLevel > 1 && SizeLevel < 2;

  // When #pragma vectorize is on for SLP, do the same as above
  Builder.SLPVectorize =
      DisableSLPVectorization ? false : OptLevel > 1 && SizeLevel < 2;

  Builder.populateFunctionPassManager(FPM);
  Builder.populateModulePassManager(MPM);
}
示例#11
0
bool PassBuilder::parseFunctionPassPipeline(FunctionPassManager &FPM,
                                            ArrayRef<PipelineElement> Pipeline,
                                            bool VerifyEachPass,
                                            bool DebugLogging) {
  for (const auto &Element : Pipeline) {
    if (!parseFunctionPass(FPM, Element, VerifyEachPass, DebugLogging))
      return false;
    if (VerifyEachPass)
      FPM.addPass(VerifierPass());
  }
  return true;
}
示例#12
0
Function &OptimizeForRuntime(Function &F) {
#ifdef DEBUG
  static PassManagerBuilder Builder = getDebugBuilder();
#else
  static PassManagerBuilder Builder = getBuilder();
#endif
  Module *M = F.getParent();
  opt::GenerateOutput = true;
  polly::opt::PollyParallel = true;

  FunctionPassManager PM = FunctionPassManager(M);

  Builder.populateFunctionPassManager(PM);
  PM.doInitialization();
  PM.run(F);
  PM.doFinalization();

  if (opt::havePapi()) {
    PassManager MPM;
    Builder.populateModulePassManager(MPM);
    MPM.add(polli::createTraceMarkerPass());
    MPM.run(*M);
  }

  if (opt::haveLikwid()) {
    PassManager MPM;
    Builder.populateModulePassManager(MPM);
    MPM.add(polli::createLikwidMarkerPass());
    MPM.run(*M);
  }

  DEBUG(
  StoreModule(*M, M->getModuleIdentifier() + ".after.polly.ll")
  );
  opt::GenerateOutput = false;

  return F;
}
示例#13
0
/**
 * Adds a set of optimization passes to the given module/function pass
 * managers based on the given optimization and size reduction levels.
 *
 * The selection mirrors Clang behavior and is based on LLVM's
 * PassManagerBuilder.
 */
static void addOptimizationPasses(PassManagerBase &mpm, FunctionPassManager &fpm,
                                  unsigned optLevel, unsigned sizeLevel) {
    fpm.add(createVerifierPass());                  // Verify that input is correct

    PassManagerBuilder builder;
    builder.OptLevel = optLevel;
    builder.SizeLevel = sizeLevel;

    if (willInline()) {
        unsigned threshold = 225;
        if (sizeLevel == 1)      // -Os
            threshold = 75;
        else if (sizeLevel == 2) // -Oz
            threshold = 25;
        if (optLevel > 2)
            threshold = 275;
        builder.Inliner = createFunctionInliningPass(threshold);
    } else {
        builder.Inliner = createAlwaysInlinerPass();
    }
    builder.DisableSimplifyLibCalls = disableSimplifyLibCalls;
    builder.DisableUnitAtATime = !unitAtATime;
    builder.DisableUnrollLoops = optLevel == 0;
    /* builder.Vectorize is set in ctor from command line switch */

    if (!disableLangSpecificPasses) {
        if (!disableSimplifyDruntimeCalls)
            builder.addExtension(PassManagerBuilder::EP_LoopOptimizerEnd, addSimplifyDRuntimeCallsPass);

#if USE_METADATA
        if (!disableGCToStack)
            builder.addExtension(PassManagerBuilder::EP_LoopOptimizerEnd, addGarbageCollect2StackPass);
#endif // USE_METADATA
    }

#if LDC_LLVM_VER >= 301
    // EP_OptimizerLast does not exist in LLVM 3.0, add it manually below.
    builder.addExtension(PassManagerBuilder::EP_OptimizerLast, addStripExternalsPass);
#endif

    builder.populateFunctionPassManager(fpm);
    builder.populateModulePassManager(mpm);

#if LDC_LLVM_VER < 301
    addStripExternalsPass(builder, mpm);
#endif
}
示例#14
0
FunctionPassManager* Builder::getStandardOptimizer() {
    FunctionPassManager* optimizer = new FunctionPassManager(this->_mod);

    // Set up the optimizer pipeline.  Start with registering info about how the
    // target lays out data structures.
    if (this->_jit) {
        optimizer->add(new DataLayoutPass(*this->_jit->getDataLayout()));
    }
    // Provide basic AliasAnalysis support for GVN.
    optimizer->add(createBasicAliasAnalysisPass());
    // Do simple "peephole" optimizations and bit-twiddling optzns.
    optimizer->add(createInstructionCombiningPass());
    // Reassociate expressions.
    optimizer->add(createReassociatePass());
    // Eliminate Common SubExpressions.
    optimizer->add(createGVNPass());
    // Simplify the control flow graph (deleting unreachable blocks, etc).
    optimizer->add(createCFGSimplificationPass());

    optimizer->doInitialization();
    return optimizer;
}
示例#15
0
void
optimize(cpu_t *cpu)
{
	dyncom_engine_t* de = cpu->dyncom_engine;
	FunctionPassManager pm = FunctionPassManager(de->mod);

	std::string data_layout = de->exec_engine->getTargetData()->getStringRepresentation();
	TargetData *TD = new TargetData(data_layout);
	pm.add(TD);
	pm.add(createPromoteMemoryToRegisterPass());
	pm.add(createInstructionCombiningPass());
	pm.add(createConstantPropagationPass());
	pm.add(createDeadCodeEliminationPass());
	pm.run(*de->cur_func);
}
示例#16
0
void PassManagerBuilder::populateFunctionPassManager(FunctionPassManager &FPM) {
  addExtensionsToPM(EP_EarlyAsPossible, FPM);

  // Add LibraryInfo if we have some.
  if (LibraryInfo) FPM.add(new TargetLibraryInfo(*LibraryInfo));

  if (OptLevel == 0) return;

  addInitialAliasAnalysisPasses(FPM);

  FPM.add(createCFGSimplificationPass());
  if (UseNewSROA)
    FPM.add(createSROAPass());
  else
    FPM.add(createScalarReplAggregatesPass());
  FPM.add(createEarlyCSEPass());
  FPM.add(createLowerExpectIntrinsicPass());
}
示例#17
0
文件: toy.cpp 项目: 0x00evil/llvm
void *MCJITHelper::getPointerToFunction(Function* F) {
  // See if an existing instance of MCJIT has this function.
  EngineVector::iterator begin = Engines.begin();
  EngineVector::iterator end = Engines.end();
  EngineVector::iterator it;
  for (it = begin; it != end; ++it) {
    void *P = (*it)->getPointerToFunction(F);
    if (P)
      return P;
  }

  // If we didn't find the function, see if we can generate it.
  if (OpenModule) {
    std::string ErrStr;
    ExecutionEngine *NewEngine = EngineBuilder(OpenModule)
                                              .setErrorStr(&ErrStr)
                                              .setMCJITMemoryManager(new HelpingMemoryManager(this))
                                              .create();
    if (!NewEngine) {
      fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
      exit(1);
    }

    // Create a function pass manager for this engine
    FunctionPassManager *FPM = new FunctionPassManager(OpenModule);

    // Set up the optimizer pipeline.  Start with registering info about how the
    // target lays out data structures.
    FPM->add(new DataLayout(*NewEngine->getDataLayout()));
    // Provide basic AliasAnalysis support for GVN.
    FPM->add(createBasicAliasAnalysisPass());
    // Promote allocas to registers.
    FPM->add(createPromoteMemoryToRegisterPass());
    // Do simple "peephole" optimizations and bit-twiddling optzns.
    FPM->add(createInstructionCombiningPass());
    // Reassociate expressions.
    FPM->add(createReassociatePass());
    // Eliminate Common SubExpressions.
    FPM->add(createGVNPass());
    // Simplify the control flow graph (deleting unreachable blocks, etc).
    FPM->add(createCFGSimplificationPass());
    FPM->doInitialization();

    // For each function in the module
    Module::iterator it;
    Module::iterator end = OpenModule->end();
    for (it = OpenModule->begin(); it != end; ++it) {
      // Run the FPM on this function
      FPM->run(*it);
    }

    // We don't need this anymore
    delete FPM;

    OpenModule = NULL;
    Engines.push_back(NewEngine);
    NewEngine->finalizeObject();
    return NewEngine->getPointerToFunction(F);
  }
  return NULL;
}
示例#18
0
文件: toy.cpp 项目: shepmaster/llvm
ExecutionEngine *MCJITHelper::compileModule(Module *M) {
    assert(EngineMap.find(M) == EngineMap.end());

    if (M == CurrentModule)
        closeCurrentModule();

    std::string ErrStr;
    ExecutionEngine *EE = EngineBuilder(M)
                          .setErrorStr(&ErrStr)
                          .setMCJITMemoryManager(new HelpingMemoryManager(this))
                          .create();
    if (!EE) {
        fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
        exit(1);
    }

    if (UseObjectCache)
        EE->setObjectCache(&OurObjectCache);
    // Get the ModuleID so we can identify IR input files
    const std::string ModuleID = M->getModuleIdentifier();

    // If we've flagged this as an IR file, it doesn't need function passes run.
    if (0 != ModuleID.compare(0, 3, "IR:")) {
        FunctionPassManager *FPM = 0;

        // Create a FPM for this module
        FPM = new FunctionPassManager(M);

        // Set up the optimizer pipeline.  Start with registering info about how the
        // target lays out data structures.
        FPM->add(new DataLayout(*EE->getDataLayout()));
        // Provide basic AliasAnalysis support for GVN.
        FPM->add(createBasicAliasAnalysisPass());
        // Promote allocas to registers.
        FPM->add(createPromoteMemoryToRegisterPass());
        // Do simple "peephole" optimizations and bit-twiddling optzns.
        FPM->add(createInstructionCombiningPass());
        // Reassociate expressions.
        FPM->add(createReassociatePass());
        // Eliminate Common SubExpressions.
        FPM->add(createGVNPass());
        // Simplify the control flow graph (deleting unreachable blocks, etc).
        FPM->add(createCFGSimplificationPass());

        FPM->doInitialization();

        // For each function in the module
        Module::iterator it;
        Module::iterator end = M->end();
        for (it = M->begin(); it != end; ++it) {
            // Run the FPM on this function
            FPM->run(*it);
        }

        delete FPM;
    }

    EE->finalizeObject();

    // Store this engine
    EngineMap[M] = EE;

    return EE;
}
示例#19
0
文件: BackendPass.cpp 项目: 8l/cling
  void BackendPass::CreatePasses(const clang::LangOptions& LangOpts,
                                 const clang::CodeGenOptions& CodeGenOpts) {
    // See clang/lib/CodeGen/BackendUtil.cpp EmitAssemblyHelper::CreatePasses()
    unsigned OptLevel = CodeGenOpts.OptimizationLevel;
    CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining();

    // Handle disabling of LLVM optimization, where we want to preserve the
    // internal module before any optimization.
    if (CodeGenOpts.DisableLLVMOpts) {
      OptLevel = 0;
      Inlining = CodeGenOpts.NoInlining;
    }

    PassManagerBuilderWithOpts PMBuilder(LangOpts, CodeGenOpts);
    PMBuilder.OptLevel = OptLevel;
    PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
    PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB;
    PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
    PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;

    PMBuilder.DisableUnitAtATime = !CodeGenOpts.UnitAtATime;
    PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
    PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;

#if 0
    if (!CodeGenOpts.SampleProfileFile.empty())
      PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
                             addSampleProfileLoaderPass);
#endif

    // In ObjC ARC mode, add the main ARC optimization passes.
    if (LangOpts.ObjCAutoRefCount) {
      PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
                             addObjCARCExpandPass);
      PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
                             addObjCARCAPElimPass);
      PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
                             addObjCARCOptPass);
    }

    if (LangOpts.Sanitize.LocalBounds) {
      PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
                             addBoundsCheckingPass);
      PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                             addBoundsCheckingPass);
    }

    if (LangOpts.Sanitize.Address) {
      PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                             addAddressSanitizerPasses);
      PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                             addAddressSanitizerPasses);
    }

    if (LangOpts.Sanitize.Memory) {
      PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                             addMemorySanitizerPass);
      PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                             addMemorySanitizerPass);
    }

    if (LangOpts.Sanitize.Thread) {
      PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                             addThreadSanitizerPass);
      PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                             addThreadSanitizerPass);
    }

    if (LangOpts.Sanitize.DataFlow) {
      PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                             addDataFlowSanitizerPass);
      PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                             addDataFlowSanitizerPass);
    }

    // Figure out TargetLibraryInfo.
    Triple TargetTriple(m_Module->getTargetTriple());
    PMBuilder.LibraryInfo = new TargetLibraryInfo(TargetTriple);
    if (!CodeGenOpts.SimplifyLibCalls)
      PMBuilder.LibraryInfo->disableAllFunctions();

    switch (Inlining) {
    case CodeGenOptions::NoInlining: break;
    case CodeGenOptions::NormalInlining: {
      // FIXME: Derive these constants in a principled fashion.
      unsigned Threshold = 225;
      if (CodeGenOpts.OptimizeSize == 1)      // -Os
        Threshold = 75;
      else if (CodeGenOpts.OptimizeSize == 2) // -Oz
        Threshold = 25;
      else if (OptLevel > 2)
        Threshold = 275;
      // Creates a SimpleInliner that requests InsertLifetime.
      PMBuilder.Inliner
        = new InlinerKeepDeadFunc(createFunctionInliningPass(Threshold));
      break;
    }
    case CodeGenOptions::OnlyAlwaysInlining:
      // Respect always_inline.
      if (OptLevel == 0)
        // Do not insert lifetime intrinsics at -O0.
        PMBuilder.Inliner
          = new InlinerKeepDeadFunc(createAlwaysInlinerPass(false));
      else
        PMBuilder.Inliner
          = new InlinerKeepDeadFunc(createAlwaysInlinerPass());
      break;
    }

    // Set up the per-function pass manager.
    FunctionPassManager *FPM = getPerFunctionPasses();
    if (CodeGenOpts.VerifyModule)
      FPM->add(createVerifierPass());
    PMBuilder.populateFunctionPassManager(*FPM);

    // The Inliner is a module pass; register it.
    PMBuilder.populateModulePassManager(*getPerModulePasses());
  }
//===----------------------------------------------------------------------===//
// main for opt
//
int main(int argc, char **argv) {
  sys::PrintStackTraceOnErrorSignal();
  llvm::PrettyStackTraceProgram X(argc, argv);
  
  // Enable debug stream buffering.
  EnableDebugBuffering = true;

  llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
  LLVMContext &Context = getGlobalContext();
  
  cl::ParseCommandLineOptions(argc, argv,
    "llvm .bc -> .bc modular optimizer and analysis printer\n");

  // Allocate a full target machine description only if necessary.
  // FIXME: The choice of target should be controllable on the command line.
  std::auto_ptr<TargetMachine> target;

  SMDiagnostic Err;

  // Load the input module...
  std::auto_ptr<Module> M;
  M.reset(ParseIRFile(InputFilename, Err, Context));

  if (M.get() == 0) {
    Err.Print(argv[0], errs());
    return 1;
  }

  // Figure out what stream we are supposed to write to...
  // FIXME: outs() is not binary!
  raw_ostream *Out = &outs();  // Default to printing to stdout...
  if (OutputFilename != "-") {
    if (NoOutput || AnalyzeOnly) {
      errs() << "WARNING: The -o (output filename) option is ignored when\n"
                "the --disable-output or --analyze options are used.\n";
    } else {
      // Make sure that the Output file gets unlinked from the disk if we get a
      // SIGINT
      sys::RemoveFileOnSignal(sys::Path(OutputFilename));

      std::string ErrorInfo;
      Out = new raw_fd_ostream(OutputFilename.c_str(), ErrorInfo,
                               raw_fd_ostream::F_Binary);
      if (!ErrorInfo.empty()) {
        errs() << ErrorInfo << '\n';
        delete Out;
        return 1;
      }
    }
  }

  // If the output is set to be emitted to standard out, and standard out is a
  // console, print out a warning message and refuse to do it.  We don't
  // impress anyone by spewing tons of binary goo to a terminal.
  if (!Force && !NoOutput && !AnalyzeOnly && !OutputAssembly)
    if (CheckBitcodeOutputToConsole(*Out, !Quiet))
      NoOutput = true;

  // Create a PassManager to hold and optimize the collection of passes we are
  // about to build...
  //
  PassManager Passes;

  // Add an appropriate TargetData instance for this module...
  TargetData *TD = 0;
  const std::string &ModuleDataLayout = M.get()->getDataLayout();
  if (!ModuleDataLayout.empty())
    TD = new TargetData(ModuleDataLayout);
  else if (!DefaultDataLayout.empty())
    TD = new TargetData(DefaultDataLayout);

  if (TD)
    Passes.add(TD);

  FunctionPassManager *FPasses = NULL;
  if (OptLevelO1 || OptLevelO2 || OptLevelO3) {
    FPasses = new FunctionPassManager(M.get());
    if (TD)
      FPasses->add(new TargetData(*TD));
  }

  // If the -strip-debug command line option was specified, add it.  If
  // -std-compile-opts was also specified, it will handle StripDebug.
  if (StripDebug && !StandardCompileOpts)
    addPass(Passes, createStripSymbolsPass(true));

  // Create a new optimization pass for each one specified on the command line
  for (unsigned i = 0; i < PassList.size(); ++i) {
    // Check to see if -std-compile-opts was specified before this option.  If
    // so, handle it.
    if (StandardCompileOpts &&
        StandardCompileOpts.getPosition() < PassList.getPosition(i)) {
      AddStandardCompilePasses(Passes);
      StandardCompileOpts = false;
    }

    if (StandardLinkOpts &&
        StandardLinkOpts.getPosition() < PassList.getPosition(i)) {
      AddStandardLinkPasses(Passes);
      StandardLinkOpts = false;
    }

    if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 1);
      OptLevelO1 = false;
    }

    if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 2);
      OptLevelO2 = false;
    }

    if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) {
      AddOptimizationPasses(Passes, *FPasses, 3);
      OptLevelO3 = false;
    }

    const PassInfo *PassInf = PassList[i];
    Pass *P = 0;
    if (PassInf->getNormalCtor())
      P = PassInf->getNormalCtor()();
    else
      errs() << argv[0] << ": cannot create pass: "******"\n";
    if (P) {
      PassKind Kind = P->getPassKind();
      addPass(Passes, P);

      if (AnalyzeOnly) {
        switch (Kind) {
        case PT_BasicBlock:
          Passes.add(new BasicBlockPassPrinter(PassInf));
          break;
        case PT_Loop:
          Passes.add(new LoopPassPrinter(PassInf));
          break;
        case PT_Function:
          Passes.add(new FunctionPassPrinter(PassInf));
          break;
        case PT_CallGraphSCC:
          Passes.add(new CallGraphSCCPassPrinter(PassInf));
          break;
        default:
          Passes.add(new ModulePassPrinter(PassInf));
          break;
        }
      }
    }

    if (PrintEachXForm)
      Passes.add(createPrintModulePass(&errs()));
  }

  // If -std-compile-opts was specified at the end of the pass list, add them.
  if (StandardCompileOpts) {
    AddStandardCompilePasses(Passes);
    StandardCompileOpts = false;
  }

  if (StandardLinkOpts) {
    AddStandardLinkPasses(Passes);
    StandardLinkOpts = false;
  }

  if (OptLevelO1)
    AddOptimizationPasses(Passes, *FPasses, 1);

  if (OptLevelO2)
    AddOptimizationPasses(Passes, *FPasses, 2);

  if (OptLevelO3)
    AddOptimizationPasses(Passes, *FPasses, 3);

  if (OptLevelO1 || OptLevelO2 || OptLevelO3) {
    FPasses->doInitialization();
    for (Module::iterator I = M.get()->begin(), E = M.get()->end();
         I != E; ++I)
      FPasses->run(*I);
  }

  // Check that the module is well formed on completion of optimization
  if (!NoVerify && !VerifyEach)
    Passes.add(createVerifierPass());

  // Write bitcode or assembly out to disk or outs() as the last step...
  if (!NoOutput && !AnalyzeOnly) {
    if (OutputAssembly)
      Passes.add(createPrintModulePass(Out));
    else
      Passes.add(createBitcodeWriterPass(*Out));
  }

  // Now that we have all of the passes ready, run them.
  Passes.run(*M.get());

  // Delete the raw_fd_ostream.
  if (Out != &outs())
    delete Out;
  return 0;
}
示例#21
0
文件: BackendUtil.cpp 项目: jrk/clang
void EmitAssemblyHelper::CreatePasses() {
  unsigned OptLevel = CodeGenOpts.OptimizationLevel;
  CodeGenOptions::InliningMethod Inlining = CodeGenOpts.Inlining;

  // Handle disabling of LLVM optimization, where we want to preserve the
  // internal module before any optimization.
  if (CodeGenOpts.DisableLLVMOpts) {
    OptLevel = 0;
    Inlining = CodeGenOpts.NoInlining;
  }
  
  PassManagerBuilder PMBuilder;
  PMBuilder.OptLevel = OptLevel;
  PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;

  PMBuilder.DisableSimplifyLibCalls = !CodeGenOpts.SimplifyLibCalls;
  PMBuilder.DisableUnitAtATime = !CodeGenOpts.UnitAtATime;
  PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;

  // In ObjC ARC mode, add the main ARC optimization passes.
  if (LangOpts.ObjCAutoRefCount) {
    PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
                           addObjCARCExpandPass);
    PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
                           addObjCARCOptPass);
  }

  if (LangOpts.AddressSanitizer) {
    PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
                           addAddressSanitizerPass);
    PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                           addAddressSanitizerPass);
  }
  
  // Figure out TargetLibraryInfo.
  Triple TargetTriple(TheModule->getTargetTriple());
  PMBuilder.LibraryInfo = new TargetLibraryInfo(TargetTriple);
  if (!CodeGenOpts.SimplifyLibCalls)
    PMBuilder.LibraryInfo->disableAllFunctions();
  
  switch (Inlining) {
  case CodeGenOptions::NoInlining: break;
  case CodeGenOptions::NormalInlining: {
    // FIXME: Derive these constants in a principled fashion.
    unsigned Threshold = 225;
    if (CodeGenOpts.OptimizeSize == 1)      // -Os
      Threshold = 75;
    else if (CodeGenOpts.OptimizeSize == 2) // -Oz
      Threshold = 25;
    else if (OptLevel > 2)
      Threshold = 275;
    PMBuilder.Inliner = createFunctionInliningPass(Threshold);
    break;
  }
  case CodeGenOptions::OnlyAlwaysInlining:
    // Respect always_inline.
    PMBuilder.Inliner = createAlwaysInlinerPass();
    break;
  }

 
  // Set up the per-function pass manager.
  FunctionPassManager *FPM = getPerFunctionPasses();
  if (CodeGenOpts.VerifyModule)
    FPM->add(createVerifierPass());
  PMBuilder.populateFunctionPassManager(*FPM);

  // Set up the per-module pass manager.
  PassManager *MPM = getPerModulePasses();

  if (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) {
    MPM->add(createGCOVProfilerPass(CodeGenOpts.EmitGcovNotes,
                                    CodeGenOpts.EmitGcovArcs,
                                    TargetTriple.isMacOSX()));

    if (!CodeGenOpts.DebugInfo)
      MPM->add(createStripSymbolsPass(true));
  }
  
  
  PMBuilder.populateModulePassManager(*MPM);
}
示例#22
0
void EmitAssemblyHelper::CreatePasses(TargetMachine *TM) {
  unsigned OptLevel = CodeGenOpts.OptimizationLevel;
  CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining();

  // Handle disabling of LLVM optimization, where we want to preserve the
  // internal module before any optimization.
  if (CodeGenOpts.DisableLLVMOpts) {
    OptLevel = 0;
    Inlining = CodeGenOpts.NoInlining;
  }

  PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts);
  PMBuilder.OptLevel = OptLevel;
  PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
  PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB;
  PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
  PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;

  PMBuilder.DisableUnitAtATime = !CodeGenOpts.UnitAtATime;
  PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;

  // In ObjC ARC mode, add the main ARC optimization passes.
  if (LangOpts.ObjCAutoRefCount) {
    PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
                           addObjCARCExpandPass);
    PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
                           addObjCARCAPElimPass);
    PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
                           addObjCARCOptPass);
  }

  if (LangOpts.Sanitize.Bounds) {
    PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
                           addBoundsCheckingPass);
    PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                           addBoundsCheckingPass);
  }

  if (LangOpts.Sanitize.Address) {
    PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                           addAddressSanitizerPasses);
    PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                           addAddressSanitizerPasses);
  }

  if (LangOpts.Sanitize.Memory) {
    PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                           addMemorySanitizerPass);
    PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                           addMemorySanitizerPass);
  }

  if (LangOpts.Sanitize.Thread) {
    PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                           addThreadSanitizerPass);
    PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                           addThreadSanitizerPass);
  }

  // This should depend on duetto, non on byte addressable
  if (!TM->getDataLayout()->isByteAddressable())
    PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
                           addDuettoNativeRewriterPass);

  // Figure out TargetLibraryInfo.
  Triple TargetTriple(TheModule->getTargetTriple());
  PMBuilder.LibraryInfo = new TargetLibraryInfo(TargetTriple);
  if (!CodeGenOpts.SimplifyLibCalls)
    PMBuilder.LibraryInfo->disableAllFunctions();
  
  switch (Inlining) {
  case CodeGenOptions::NoInlining: break;
  case CodeGenOptions::NormalInlining: {
    // FIXME: Derive these constants in a principled fashion.
    unsigned Threshold = 225;
    if (CodeGenOpts.OptimizeSize == 1)      // -Os
      Threshold = 75;
    else if (CodeGenOpts.OptimizeSize == 2) // -Oz
      Threshold = 25;
    else if (OptLevel > 2)
      Threshold = 275;
    PMBuilder.Inliner = createFunctionInliningPass(Threshold);
    break;
  }
  case CodeGenOptions::OnlyAlwaysInlining:
    // Respect always_inline.
    if (OptLevel == 0)
      // Do not insert lifetime intrinsics at -O0.
      PMBuilder.Inliner = createAlwaysInlinerPass(false);
    else
      PMBuilder.Inliner = createAlwaysInlinerPass();
    break;
  }

  // Set up the per-function pass manager.
  FunctionPassManager *FPM = getPerFunctionPasses(TM);
  if (CodeGenOpts.VerifyModule)
    FPM->add(createVerifierPass());
  PMBuilder.populateFunctionPassManager(*FPM);

  // Set up the per-module pass manager.
  PassManager *MPM = getPerModulePasses(TM);

  if (!CodeGenOpts.DisableGCov &&
      (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) {
    // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
    // LLVM's -default-gcov-version flag is set to something invalid.
    GCOVOptions Options;
    Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
    Options.EmitData = CodeGenOpts.EmitGcovArcs;
    memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4);
    Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum;
    Options.NoRedZone = CodeGenOpts.DisableRedZone;
    Options.FunctionNamesInData =
        !CodeGenOpts.CoverageNoFunctionNamesInData;
    MPM->add(createGCOVProfilerPass(Options));
    if (CodeGenOpts.getDebugInfo() == CodeGenOptions::NoDebugInfo)
      MPM->add(createStripSymbolsPass(true));
  }

  PMBuilder.populateModulePassManager(*MPM);
}
示例#23
0
void EmitAssemblyHelper::CreatePasses() {
    unsigned OptLevel = CodeGenOpts.OptimizationLevel;
    CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining();

    // Handle disabling of LLVM optimization, where we want to preserve the
    // internal module before any optimization.
    if (CodeGenOpts.DisableLLVMOpts) {
        OptLevel = 0;
        Inlining = CodeGenOpts.NoInlining;
    }

    PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts);
    PMBuilder.OptLevel = OptLevel;
    PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
    PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB;
    PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
    PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;

    PMBuilder.DisableTailCalls = CodeGenOpts.DisableTailCalls;
    PMBuilder.DisableUnitAtATime = !CodeGenOpts.UnitAtATime;
    PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
    PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
    PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;

    PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
                           addAddDiscriminatorsPass);

    if (!CodeGenOpts.SampleProfileFile.empty())
        PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
                               addSampleProfileLoaderPass);

    // In ObjC ARC mode, add the main ARC optimization passes.
    if (LangOpts.ObjCAutoRefCount) {
        PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
                               addObjCARCExpandPass);
        PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
                               addObjCARCAPElimPass);
        PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
                               addObjCARCOptPass);
    }


    if (!CodeGenOpts.FsSemanticConfFile.empty())
        PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
                               addFsSemanticPass);

    if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
        PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
                               addBoundsCheckingPass);
        PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                               addBoundsCheckingPass);
    }

    if (CodeGenOpts.SanitizeCoverage) {
        PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                               addSanitizerCoveragePass);
        PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                               addSanitizerCoveragePass);
    }

    if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
        PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                               addAddressSanitizerPasses);
        PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                               addAddressSanitizerPasses);
    }

    if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
        PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                               addMemorySanitizerPass);
        PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                               addMemorySanitizerPass);
    }

    if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
        PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                               addThreadSanitizerPass);
        PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                               addThreadSanitizerPass);
    }

    if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
        PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                               addDataFlowSanitizerPass);
        PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                               addDataFlowSanitizerPass);
    }

    // Figure out TargetLibraryInfo.
    Triple TargetTriple(TheModule->getTargetTriple());
    PMBuilder.LibraryInfo = createTLI(TargetTriple, CodeGenOpts);

    switch (Inlining) {
    case CodeGenOptions::NoInlining:
        break;
    case CodeGenOptions::NormalInlining: {
        PMBuilder.Inliner =
            createFunctionInliningPass(OptLevel, CodeGenOpts.OptimizeSize);
        break;
    }
    case CodeGenOptions::OnlyAlwaysInlining:
        // Respect always_inline.
        if (OptLevel == 0)
            // Do not insert lifetime intrinsics at -O0.
            PMBuilder.Inliner = createAlwaysInlinerPass(false);
        else
            PMBuilder.Inliner = createAlwaysInlinerPass();
        break;
    }

    // Set up the per-function pass manager.
    FunctionPassManager *FPM = getPerFunctionPasses();
    if (CodeGenOpts.VerifyModule)
        FPM->add(createVerifierPass());
    PMBuilder.populateFunctionPassManager(*FPM);

    // Set up the per-module pass manager.
    PassManager *MPM = getPerModulePasses();
    if (CodeGenOpts.VerifyModule)
        MPM->add(createDebugInfoVerifierPass());

    if (!CodeGenOpts.DisableGCov &&
            (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) {
        // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
        // LLVM's -default-gcov-version flag is set to something invalid.
        GCOVOptions Options;
        Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
        Options.EmitData = CodeGenOpts.EmitGcovArcs;
        memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4);
        Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum;
        Options.NoRedZone = CodeGenOpts.DisableRedZone;
        Options.FunctionNamesInData =
            !CodeGenOpts.CoverageNoFunctionNamesInData;
        MPM->add(createGCOVProfilerPass(Options));
        if (CodeGenOpts.getDebugInfo() == CodeGenOptions::NoDebugInfo)
            MPM->add(createStripSymbolsPass(true));
    }

    PMBuilder.populateModulePassManager(*MPM);
}
static int compileInternal(const char *input, int optimize, int optsize,
                           const char *argv0,
                           raw_fd_ostream *fd, CompilerInstance &Clang)
{
  std::string ErrMsg;
  LLVMContext &Context = getGlobalContext();
  std::auto_ptr<Module> M;

  MemoryBuffer *Buffer = MemoryBuffer::getFileOrSTDIN(input, &ErrMsg);
  if (!Buffer) {
    errs() << "Could not open temp input file '" << input << "'\n";
    return 2;
  }
  M.reset(ParseBitcodeFile(Buffer, Context, &ErrMsg));
  delete Buffer;
  if (M.get() == 0) {
    errs() << "Cannot parse temp input file '" << input << "'" << ErrMsg << "\n";
    return 2;
  }

  // FIXME: Remove TargetData!
  //XXX  M->setTargetTriple("");
  //XXX  M->setDataLayout("");

  // TODO: let clang handle these
  PassManager Passes;
  FunctionPassManager *FPasses = NULL;
  if (optimize) {
    FPasses = new FunctionPassManager(M.get());
//    FPasses->add(new TargetData(M.get()));//XXX
    createStandardFunctionPasses(FPasses, optimize);
  }
//  Passes.add(new TargetData(M.get()));//XXX
  unsigned threshold = optsize ? 75 : optimize > 2 ? 275 : 225;
  createStandardModulePasses(&Passes, optimize,
                             optsize,
                             true,
                             optimize > 1 && !optsize,
                             false,
                             false,
                             optimize > 1 ?
                             createFunctionInliningPass(threshold) :
                             createAlwaysInlinerPass());
  if (optimize) {
    FPasses->doInitialization();
    for (Module::iterator I = M.get()->begin(), E = M.get()->end();
         I != E; ++I)
      FPasses->run(*I);
    Passes.add(createVerifierPass());
    Passes.run(*M.get());
  }

  std::string Err2;
  //TODO: directly construct our target
  const Target *TheTarget =
    TargetRegistry::lookupTarget("clambc-generic-generic", Err2);
  if (TheTarget == 0) {
    errs() << argv0 << ": error auto-selecting target for module '"
      << Err2 << "'.  Please use the -march option to explicitly "
      << "pick a target.\n";
    return 1;
  }
  std::auto_ptr<TargetMachine> 
    Target(TheTarget->createTargetMachine("clambc-generic-generic", ""));
  //TODO: send it to the -o specified on cmdline
  // Figure out where we are going to send the output...
  formatted_raw_ostream *Out2 =
    new formatted_raw_ostream(*fd, formatted_raw_ostream::DELETE_STREAM);
  if (Out2 == 0) return 2;

  CodeGenOpt::Level OLvl = CodeGenOpt::Default;
  switch (optimize) {
  case 0: OLvl = CodeGenOpt::None; break;
  case 3: OLvl = CodeGenOpt::Aggressive; break;
  default: break;
  }

  PassManager PM;
  PM.add(new TargetData(M.get()));//XXX
  if (Target->addPassesToEmitWholeFile(PM, *Out2, TargetMachine::CGFT_AssemblyFile, OLvl)) {
      errs() << argv0<< ": target does not support generation of this"
             << " file type!\n";
      if (Out2 != &fouts()) delete Out2;
      // And the Out file is empty and useless, so remove it now.
//      sys::Path(OutputFilename).eraseFromDisk();
      return 2;
  }
  PM.run(*M.get());
  delete Out2;
  return 0;
}
示例#25
0
文件: optimizer.cpp 项目: Axure/ldc
static void addOptimizationPasses(PassManagerBase &mpm, FunctionPassManager &fpm,
#endif
                                  unsigned optLevel, unsigned sizeLevel) {
    fpm.add(createVerifierPass());                  // Verify that input is correct

    PassManagerBuilder builder;
    builder.OptLevel = optLevel;
    builder.SizeLevel = sizeLevel;

    if (willInline()) {
        unsigned threshold = 225;
        if (sizeLevel == 1)      // -Os
            threshold = 75;
        else if (sizeLevel == 2) // -Oz
            threshold = 25;
        if (optLevel > 2)
            threshold = 275;
        builder.Inliner = createFunctionInliningPass(threshold);
    } else {
        builder.Inliner = createAlwaysInlinerPass();
    }
#if LDC_LLVM_VER < 304
    builder.DisableSimplifyLibCalls = disableSimplifyLibCalls;
#endif
    builder.DisableUnitAtATime = !unitAtATime;
    builder.DisableUnrollLoops = optLevel == 0;

#if LDC_LLVM_VER >= 304
    builder.DisableUnrollLoops = (disableLoopUnrolling.getNumOccurrences() > 0) ?
                                  disableLoopUnrolling : optLevel == 0;

    // This is final, unless there is a #pragma vectorize enable
    if (disableLoopVectorization)
        builder.LoopVectorize = false;
    // If option wasn't forced via cmd line (-vectorize-loops, -loop-vectorize)
    else if (!builder.LoopVectorize)
      builder.LoopVectorize = optLevel > 1 && sizeLevel < 2;

    // When #pragma vectorize is on for SLP, do the same as above
    builder.SLPVectorize =
        disableSLPVectorization ? false : optLevel > 1 && sizeLevel < 2;
#else
    /* builder.Vectorize is set in ctor from command line switch */
#endif

#if LDC_LLVM_VER >= 303
    if (opts::sanitize == opts::AddressSanitizer) {
        builder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                             addAddressSanitizerPasses);
        builder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                             addAddressSanitizerPasses);
    }

    if (opts::sanitize == opts::MemorySanitizer) {
        builder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                             addMemorySanitizerPass);
        builder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                             addMemorySanitizerPass);
    }

    if (opts::sanitize == opts::ThreadSanitizer) {
        builder.addExtension(PassManagerBuilder::EP_OptimizerLast,
                             addThreadSanitizerPass);
        builder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
                             addThreadSanitizerPass);
    }
#endif

    if (!disableLangSpecificPasses) {
        if (!disableSimplifyDruntimeCalls)
            builder.addExtension(PassManagerBuilder::EP_LoopOptimizerEnd, addSimplifyDRuntimeCallsPass);

        if (!disableGCToStack)
            builder.addExtension(PassManagerBuilder::EP_LoopOptimizerEnd, addGarbageCollect2StackPass);
    }

    // EP_OptimizerLast does not exist in LLVM 3.0, add it manually below.
    builder.addExtension(PassManagerBuilder::EP_OptimizerLast, addStripExternalsPass);

    builder.populateFunctionPassManager(fpm);
    builder.populateModulePassManager(mpm);
}
示例#26
0
/// Optimize merged modules using various IPO passes
bool LTOCodeGenerator::generateObjectFile(raw_ostream &out,
                                          std::string &errMsg) {
  if ( this->determineTarget(errMsg) )
    return true;

  Module* mergedModule = _linker.getModule();

  // if options were requested, set them
  if ( !_codegenOptions.empty() )
    cl::ParseCommandLineOptions(_codegenOptions.size(),
                                const_cast<char **>(&_codegenOptions[0]));

  // mark which symbols can not be internalized
  this->applyScopeRestrictions();

  // Instantiate the pass manager to organize the passes.
  PassManager passes;

  // Start off with a verification pass.
  passes.add(createVerifierPass());

  // Add an appropriate TargetData instance for this module...
  passes.add(new TargetData(*_target->getTargetData()));

  // Enabling internalize here would use its AllButMain variant. It
  // keeps only main if it exists and does nothing for libraries. Instead
  // we create the pass ourselves with the symbol list provided by the linker.
  PassManagerBuilder().populateLTOPassManager(passes, /*Internalize=*/false,
                                              !DisableInline,
                                              DisableGVNLoadPRE);

  // Make sure everything is still good.
  passes.add(createVerifierPass());

  FunctionPassManager *codeGenPasses = new FunctionPassManager(mergedModule);

  codeGenPasses->add(new TargetData(*_target->getTargetData()));

  formatted_raw_ostream Out(out);

  if (_target->addPassesToEmitFile(*codeGenPasses, Out,
                                   TargetMachine::CGFT_ObjectFile)) {
    errMsg = "target file type not supported";
    return true;
  }
    bool UsingSAFECode = false;
    // Add the SAFECode optimization/finalization passes.
    // Note that we only run these passes (which require DSA) if we detect
    // that run-time checks have been added to the code.
    for (unsigned index = 0; index < numChecks; ++index) {
      if (mergedModule->getFunction(RuntimeChecks[index].name)) {
        UsingSAFECode = true;
        break;
      }
    }

    if (UsingSAFECode) {
      passes.add(new TargetData(*_target->getTargetData()));
      passes.add(createSAFECodeMSCInfoPass());
      passes.add(createExactCheckOptPass());

      passes.add(new ScalarEvolution());
      passes.add(createLocalArrayBoundsAnalysisPass());
      passes.add(createOptimizeFastMemoryChecksPass());
      passes.add(createOptimizeIdenticalLSChecksPass());
      passes.add(new DominatorTree());
      passes.add(new ScalarEvolution());
      passes.add(createOptimizeImpliedFastLSChecksPass());

      if (mergedModule->getFunction("main")) {
        passes.add(new CompleteChecks());
      }

#ifdef POOLALLOC
      LowerSafecodeIntrinsic::IntrinsicMappingEntry *MapStart, *MapEnd;
      MapStart = RuntimeDebug;
      MapEnd = &RuntimeDebug[sizeof(RuntimeDebug) / sizeof(RuntimeDebug[0])];

      // Add the automatic pool allocation passes
      passes.add(new OptimizeSafeLoadStore());
      passes.add(new PA::AllNodesHeuristic());
      //passes.add(new PoolAllocate());
      passes.add(new PoolAllocateSimple());
      // SAFECode's debug runtime needs to replace some of the poolalloc
      // intrinsics; LowerSafecodeIntrinsic handles the replacement.
      passes.add(new LowerSafecodeIntrinsic(MapStart, MapEnd));
#endif

      // Run our queue of passes all at once now, efficiently.
      passes.run(*mergedModule);

#ifdef POOLALLOC
      if (const char *OutFileName = getenv("PA_BITCODE_FILE")) {
        // Write out the pool allocated bitcode file for debugging purposes.
        std::cerr << "Writing out poolalloc bitcode file to " << OutFileName;
        std::cerr << std::endl;

        std::string error;
        tool_output_file PAFile(OutFileName, error, raw_fd_ostream::F_Binary);

        if (!error.empty()) {
          std::cerr << "Error writing out poolalloc bitcode file: " << error;
          std::cerr << std::endl;
        } else {
          WriteBitcodeToFile(mergedModule, PAFile.os());
          PAFile.os().close();
          PAFile.keep();
        }
      }
#endif
    }

    // Run the code generator, and write assembly file
    codeGenPasses->doInitialization();
  // Run our queue of passes all at once now, efficiently.
  passes.run(*mergedModule);

  // Run the code generator, and write assembly file
  codeGenPasses->doInitialization();

  for (Module::iterator
         it = mergedModule->begin(), e = mergedModule->end(); it != e; ++it)
    if (!it->isDeclaration())
      codeGenPasses->run(*it);

  codeGenPasses->doFinalization();
  delete codeGenPasses;

  return false; // success
}
示例#27
0
/// Optimize merged modules using various IPO passes
bool LTOCodeGenerator::generateAssemblyCode(std::ostream& out, std::string& errMsg)
{
    if (  this->determineTarget(errMsg) ) 
        return true;

    // mark which symbols can not be internalized 
    this->applyScopeRestrictions();

    Module* mergedModule = _linker.getModule();

     // If target supports exception handling then enable it now.
    if ( _target->getTargetAsmInfo()->doesSupportExceptionHandling() )
        llvm::ExceptionHandling = true;

    // set codegen model
    switch( _codeModel ) {
        case LTO_CODEGEN_PIC_MODEL_STATIC:
            _target->setRelocationModel(Reloc::Static);
            break;
        case LTO_CODEGEN_PIC_MODEL_DYNAMIC:
            _target->setRelocationModel(Reloc::PIC_);
            break;
        case LTO_CODEGEN_PIC_MODEL_DYNAMIC_NO_PIC:
            _target->setRelocationModel(Reloc::DynamicNoPIC);
            break;
    }

    // Instantiate the pass manager to organize the passes.
    PassManager passes;

    // Start off with a verification pass.
    passes.add(createVerifierPass());

    // Add an appropriate TargetData instance for this module...
    passes.add(new TargetData(*_target->getTargetData()));
    
    // Now that we internalized some globals, see if we can hack on them!
    passes.add(createGlobalOptimizerPass());

    // Linking modules together can lead to duplicated global constants, only
    // keep one copy of each constant...
    passes.add(createConstantMergePass());

    // If the -s command line option was specified, strip the symbols out of the
    // resulting program to make it smaller.  -s is a GLD option that we are
    // supporting.
    passes.add(createStripSymbolsPass());
    
    // Propagate constants at call sites into the functions they call.
    passes.add(createIPConstantPropagationPass());

    // Remove unused arguments from functions...
    passes.add(createDeadArgEliminationPass());

    passes.add(createFunctionInliningPass()); // Inline small functions

    passes.add(createPruneEHPass());            // Remove dead EH info

    passes.add(createGlobalDCEPass());          // Remove dead functions

    // If we didn't decide to inline a function, check to see if we can
    // transform it to pass arguments by value instead of by reference.
    passes.add(createArgumentPromotionPass());

    // The IPO passes may leave cruft around.  Clean up after them.
    passes.add(createInstructionCombiningPass());
    passes.add(createJumpThreadingPass());        // Thread jumps.
    passes.add(createScalarReplAggregatesPass()); // Break up allocas

    // Run a few AA driven optimizations here and now, to cleanup the code.
    passes.add(createGlobalsModRefPass());      // IP alias analysis

    passes.add(createLICMPass());               // Hoist loop invariants
    passes.add(createGVNPass());               // Remove common subexprs
    passes.add(createMemCpyOptPass());  // Remove dead memcpy's
    passes.add(createDeadStoreEliminationPass()); // Nuke dead stores

    // Cleanup and simplify the code after the scalar optimizations.
    passes.add(createInstructionCombiningPass());

    passes.add(createJumpThreadingPass());        // Thread jumps.

    // Delete basic blocks, which optimization passes may have killed...
    passes.add(createCFGSimplificationPass());

    // Now that we have optimized the program, discard unreachable functions...
    passes.add(createGlobalDCEPass());

    // Make sure everything is still good.
    passes.add(createVerifierPass());

    FunctionPassManager* codeGenPasses =
            new FunctionPassManager(new ExistingModuleProvider(mergedModule));

    codeGenPasses->add(new TargetData(*_target->getTargetData()));

    MachineCodeEmitter* mce = NULL;

    switch (_target->addPassesToEmitFile(*codeGenPasses, out,
                                      TargetMachine::AssemblyFile, true)) {
        case FileModel::MachOFile:
            mce = AddMachOWriter(*codeGenPasses, out, *_target);
            break;
        case FileModel::ElfFile:
            mce = AddELFWriter(*codeGenPasses, out, *_target);
            break;
        case FileModel::AsmFile:
            break;
        case FileModel::Error:
        case FileModel::None:
            errMsg = "target file type not supported";
            return true;
    }

    if (_target->addPassesToEmitFileFinish(*codeGenPasses, mce, true)) {
        errMsg = "target does not support generation of this file type";
        return true;
    }

    // Run our queue of passes all at once now, efficiently.
    passes.run(*mergedModule);

    // Run the code generator, and write assembly file
    codeGenPasses->doInitialization();
    for (Module::iterator it = mergedModule->begin(),
                e = mergedModule->end(); it != e; ++it) {
        if (!it->isDeclaration())
            codeGenPasses->run(*it);
    }
    codeGenPasses->doFinalization();

    return false; // success
}
示例#28
0
int main(int argc, char **argv){
    cl::ParseCommandLineOptions(argc, argv, "llvm_trace_test\n");

    char directory[250];
    strncpy(directory, LogDir.c_str(), 250);
    int len = strlen(directory);
    if (len > 230){
        printf("Directory name too long\n");
        exit(1);
    }

    LLVMContext &Context = getGlobalContext();

    // Load the bitcode...
    SMDiagnostic Err;
    Module *Mod = ParseIRFile(strncat(directory, "/llvm-mod.bc", 12), Err,
        Context);
    if (!Mod) {
        Err.print(argv[0], errs());
        exit(1);
    }

    // Load dynamic log
    directory[len] = '\0';
    dlog = fopen(strncat(directory, "/llvm-memlog.log", 16), "r");
    if (!dlog){
        printf("Could not find log of dynamic values in specified directory\n");
        exit(1);
    }

    // Load function log
    directory[len] = '\0';
    flog = fopen(strncat(directory, "/llvm-functions.log", 19), "r");
    if (!flog){
        printf("Could not find log of LLVM functions in specified directory\n");
        exit(1);
    }

    // Initialize test function pass
    FunctionPassManager *FPasses = new FunctionPassManager(Mod);
    FunctionPass *fp = static_cast<FunctionPass*>(createTestFunctionPass());
    FPasses->add(fp);
    FPasses->doInitialization();

    char funcline[500];
    Function *F;

    // Check trace
    while (true){
        strncpy(funcline, "\0", 1);
        char *s = fgets(funcline, sizeof(funcline), flog);

        if (feof(flog)){
            break; // Done processing trace
        }

        // System call information - ignore for test
        if (!strncmp(funcline, "taint", 5)){
            continue;
        }

        funcline[strlen(funcline)-1] = '\0'; // remove newline
        F = Mod->getFunction(funcline);
        if (F == NULL){
            fprintf(stderr, "Error: unknown function, %s\n", funcline);
            exit(1);
        }

        //printf("%s\n", F->getName().str().c_str());
        FPasses->run(*F); // Call runOnFunction()
    }
    fclose(flog);
    fclose(dlog);
    printf("Trace and dynamic log are aligned.\n");
    return 0;
}
示例#29
0
MonoEERef
mono_llvm_create_ee (LLVMModuleProviderRef MP, AllocCodeMemoryCb *alloc_cb, FunctionEmittedCb *emitted_cb, ExceptionTableCb *exception_cb, DlSymCb *dlsym_cb, LLVMExecutionEngineRef *ee)
{
  std::string Error;
  MonoEE *mono_ee;

  init_llvm ();

  mono_ee = new MonoEE ();

  MonoJITMemoryManager *mono_mm = new MonoJITMemoryManager ();
  mono_mm->alloc_cb = alloc_cb;
  mono_mm->dlsym_cb = dlsym_cb;
  mono_mm->exception_cb = exception_cb;
  mono_ee->mm = mono_mm;

  /*
   * The Default code model doesn't seem to work on amd64,
   * test_0_fields_with_big_offsets (among others) crashes, because LLVM tries to call
   * memset using a normal pcrel code which is in 32bit memory, while memset isn't.
   */

  TargetOptions opts;
  opts.JITExceptionHandling = 1;

  StringRef cpu_name = sys::getHostCPUName ();

  // EngineBuilder no longer has a copy assignment operator (?)
  std::unique_ptr<Module> Owner(unwrap(MP));
  EngineBuilder b (std::move(Owner));
  ExecutionEngine *EE = b.setJITMemoryManager (mono_mm).setTargetOptions (opts).setAllocateGVsWithCode (true).setMCPU (cpu_name).create ();

  g_assert (EE);
  mono_ee->EE = EE;

  MonoJITEventListener *listener = new MonoJITEventListener (emitted_cb);
  EE->RegisterJITEventListener (listener);
  mono_ee->listener = listener;

  FunctionPassManager *fpm = new FunctionPassManager (unwrap (MP));
  mono_ee->fpm = fpm;

  fpm->add(new DataLayoutPass(*EE->getDataLayout()));

  if (PassList.size() > 0) {
	  /* Use the passes specified by the env variable */
	  /* Only the passes in force_pass_linking () can be used */
	  for (unsigned i = 0; i < PassList.size(); ++i) {
		  const PassInfo *PassInf = PassList[i];
		  Pass *P = 0;

		  if (PassInf->getNormalCtor())
			  P = PassInf->getNormalCtor()();
		  fpm->add (P);
	  }
  } else {
	  /* Use the same passes used by 'opt' by default, without the ipo passes */
	  const char *opts = "-simplifycfg -domtree -domfrontier -scalarrepl -instcombine -simplifycfg -domtree -domfrontier -scalarrepl -instcombine -simplifycfg -instcombine -simplifycfg -reassociate -domtree -loops -loop-simplify -domfrontier -loop-simplify -lcssa -loop-rotate -licm -lcssa -loop-unswitch -instcombine -scalar-evolution -loop-simplify -lcssa -iv-users -indvars -loop-deletion -loop-simplify -lcssa -loop-unroll -instcombine -memdep -gvn -memdep -memcpyopt -sccp -instcombine -domtree -memdep -dse -adce -gvn -simplifycfg";
	  char **args;
	  int i;

	  args = g_strsplit (opts, " ", 1000);
	  for (i = 0; args [i]; i++)
		  ;
	  llvm::cl::ParseCommandLineOptions (i, args, "");
	  g_strfreev (args);

	  for (unsigned i = 0; i < PassList.size(); ++i) {
		  const PassInfo *PassInf = PassList[i];
		  Pass *P = 0;

		  if (PassInf->getNormalCtor())
			  P = PassInf->getNormalCtor()();
		  g_assert (P->getPassKind () == llvm::PT_Function || P->getPassKind () == llvm::PT_Loop);
		  fpm->add (P);
	  }

	  /*
	  fpm->add(createInstructionCombiningPass());
	  fpm->add(createReassociatePass());
	  fpm->add(createGVNPass());
	  fpm->add(createCFGSimplificationPass());
	  */
  }

  *ee = wrap (EE);

  return mono_ee;
}
示例#30
0
文件: lto.cpp 项目: marnen/rubinius
/// Optimize module M using various IPO passes. Use exportList to 
/// internalize selected symbols. Target platform is selected
/// based on information available to module M. No new target
/// features are selected. 
enum LTOStatus 
LTO::optimize(Module *M, std::ostream &Out,
              std::vector<const char *> &exportList)
{
  // Instantiate the pass manager to organize the passes.
  PassManager Passes;
  
  // Collect Target info
  getTarget(M);

  if (!Target)
    return LTO_NO_TARGET;

  // If target supports exception handling then enable it now.
  if (Target->getTargetAsmInfo()->doesSupportExceptionHandling())
    ExceptionHandling = true;

  // Start off with a verification pass.
  Passes.add(createVerifierPass());
  
  // Add an appropriate TargetData instance for this module...
  Passes.add(new TargetData(*Target->getTargetData()));
  
  // Internalize symbols if export list is nonemty
  if (!exportList.empty())
    Passes.add(createInternalizePass(exportList));

  // Now that we internalized some globals, see if we can hack on them!
  Passes.add(createGlobalOptimizerPass());
  
  // Linking modules together can lead to duplicated global constants, only
  // keep one copy of each constant...
  Passes.add(createConstantMergePass());
  
  // If the -s command line option was specified, strip the symbols out of the
  // resulting program to make it smaller.  -s is a GLD option that we are
  // supporting.
  Passes.add(createStripSymbolsPass());
  
  // Propagate constants at call sites into the functions they call.
  Passes.add(createIPConstantPropagationPass());
  
  // Remove unused arguments from functions...
  Passes.add(createDeadArgEliminationPass());
  
  Passes.add(createFunctionInliningPass()); // Inline small functions
  
  Passes.add(createPruneEHPass());            // Remove dead EH info

  Passes.add(createGlobalDCEPass());          // Remove dead functions

  // If we didn't decide to inline a function, check to see if we can
  // transform it to pass arguments by value instead of by reference.
  Passes.add(createArgumentPromotionPass());

  // The IPO passes may leave cruft around.  Clean up after them.
  Passes.add(createInstructionCombiningPass());
  
  Passes.add(createScalarReplAggregatesPass()); // Break up allocas
  
  // Run a few AA driven optimizations here and now, to cleanup the code.
  Passes.add(createGlobalsModRefPass());      // IP alias analysis
  
  Passes.add(createLICMPass());               // Hoist loop invariants
  Passes.add(createGVNPass());               // Remove common subexprs
  Passed.add(createMemCpyOptPass());  // Remove dead memcpy's
  Passes.add(createDeadStoreEliminationPass()); // Nuke dead stores

  // Cleanup and simplify the code after the scalar optimizations.
  Passes.add(createInstructionCombiningPass());
 
  // Delete basic blocks, which optimization passes may have killed...
  Passes.add(createCFGSimplificationPass());
  
  // Now that we have optimized the program, discard unreachable functions...
  Passes.add(createGlobalDCEPass());
  
  // Make sure everything is still good.
  Passes.add(createVerifierPass());

  FunctionPassManager *CodeGenPasses =
    new FunctionPassManager(new ExistingModuleProvider(M));

  CodeGenPasses->add(new TargetData(*Target->getTargetData()));

  MachineCodeEmitter *MCE = 0;

  switch (Target->addPassesToEmitFile(*CodeGenPasses, Out,
                                      TargetMachine::AssemblyFile, true)) {
  default:
  case FileModel::Error:
    return LTO_WRITE_FAILURE;
  case FileModel::AsmFile:
    break;
  case FileModel::MachOFile:
    MCE = AddMachOWriter(*CodeGenPasses, Out, *Target);
    break;
  case FileModel::ElfFile:
    MCE = AddELFWriter(*CodeGenPasses, Out, *Target);
    break;
  }

  if (Target->addPassesToEmitFileFinish(*CodeGenPasses, MCE, true))
    return LTO_WRITE_FAILURE;

  // Run our queue of passes all at once now, efficiently.
  Passes.run(*M);

  // Run the code generator, if present.
  CodeGenPasses->doInitialization();
  for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
    if (!I->isDeclaration())
      CodeGenPasses->run(*I);
  }
  CodeGenPasses->doFinalization();

  return LTO_OPT_SUCCESS;
}