示例#1
0
static void updateAttributeList(g_global_io &io,GU_Detail *cur_gdp)
{
    fpreal numPt= cur_gdp->getNumPoints();
    GA_Iterator iter(cur_gdp->getPointRange());
    fpreal start_point_num = *iter;

    if ( cur_gdp )
    {
        for (GA_AttributeDict::iterator it = cur_gdp->getAttributeDict(GA_ATTRIB_POINT).begin(GA_SCOPE_PUBLIC); !it.atEnd(); ++it)
        {
            GA_Attribute *attrib = it.attrib();
            UT_String attName( attrib->getName() );
            // std::cout<<"the att name is"<<attName<<std::endl;
            int attSize = attrib->getTupleSize();
            GA_StorageClass     storage= attrib->getStorageClass();
            GA_TypeInfo typeInfo = attrib->getTypeInfo();

            //save mata info



            switch(attSize)
            {
            case 1:                    // per  int or float
                if(storage==GA_STORECLASS_FLOAT)
                {
                    std::cout<<"the att name is "<<attName<< " and the type is float\n";
                    g_particles_io t_io;
                    t_io.GIO_SetCurrentAttributeName(attName);
                    t_io.GIO_SetCurrentAttributeType(g_particles_io::FLT_TYPE);
                    std::vector<float> t_value;  // create empty stack
                    forkTheFLTData(t_value,attrib,numPt,start_point_num);
                    t_io.GIO_setFLTAttributeList(t_value);
                    io.GIO_installParticleHandle(t_io);  // install this attribute into our global IO

                }
                if(storage==GA_STORECLASS_INT)
                {
                    std::cout<<"the att name is "<<attName<< " and the type is int\n";
                    g_particles_io t_io;
                    t_io.GIO_SetCurrentAttributeName(attName);
                    t_io.GIO_SetCurrentAttributeType(g_particles_io::INT_TYPE);
                    std::vector<int> t_value;  // create empty  int stack
                    forkTheINTData(t_value,attrib,numPt,start_point_num);
                    t_io.GIO_setINTAttributeList(t_value);
                    io.GIO_installParticleHandle(t_io);
                }
                break;
            case 3:                   // int vector or float vector
                if(storage==GA_STORECLASS_FLOAT)
                {
                    std::cout<<"the att name is "<<attName<< " and the type is float vector\n";
                    g_particles_io t_io;
                    t_io.GIO_SetCurrentAttributeName(attName);
                    t_io.GIO_SetCurrentAttributeType(g_particles_io::FLT_VEC_TYPE);
                    std::vector<per_float_vector> t_value;  // create empty  int stack
                    forkTheFLTVectorData(t_value,attrib,numPt,start_point_num);
                    t_io.GIO_setFLTVecAttributeList(t_value);
                    io.GIO_installParticleHandle(t_io);

                }
                if(storage==GA_STORECLASS_INT)
                {
                    std::cout<<"the att name is "<<attName<< " and the type is int vector\n";
                    g_particles_io t_io;
                    t_io.GIO_SetCurrentAttributeName(attName);
                    t_io.GIO_SetCurrentAttributeType(g_particles_io::INT_VEC_TYPE);
                    std::vector<per_int_vector> t_value;  // create empty  int stack
                    forkTheINTVectorData(t_value,attrib,numPt,start_point_num);
                    t_io.GIO_setINTVecAttributeList(t_value);
                    io.GIO_installParticleHandle(t_io);
                }
                break;
            case 4:                   // P attrib
            {
                std::cout<<"the att name is "<<attName<< " and the type is float 4 \n";
                g_particles_io t_io;
                t_io.GIO_SetCurrentAttributeName(attName);
                t_io.GIO_SetCurrentAttributeType(g_particles_io::FLT_VEC_TYPE);
                std::vector<per_float_vector> t_value;  // create empty  int stack
                forkTheFLTVectorData(t_value,it.attrib(),numPt,start_point_num);

                t_io.GIO_setFLTVecAttributeList(t_value);
                io.GIO_installParticleHandle(t_io);
            }

            break;
            }

        }
    }
}
OP_ERROR
SOP_Smoke_Source::cookMySop(OP_Context &context)
{
    // We must lock our inputs before we try to access their geometry.
    // OP_AutoLockInputs will automatically unlock our inputs when we return.
    // NOTE: Don't call unlockInputs yourself when using this!
    OP_AutoLockInputs inputs(this);
    if (inputs.lock(context) >= UT_ERROR_ABORT)
        return error();

    fpreal now = context.getTime();

    duplicateSource(0, context);

    // These three lines enable the local variable support.  This allows
    // $CR to get the red colour, for example, as well as supporting
    // any varmap created by the Attribute Create SOP.
    // Note that if you override evalVariableValue for your own
    // local variables (like SOP_Star does) it is essential you
    // still call the SOP_Node::evalVariableValue or you'll not
    // get any of the benefit of the built in local variables.

    // The variable order controls precedence for which attribute will be
    // be bound first if the same named variable shows up in multiple
    // places.  This ordering ensures point attributes get precedence.
    setVariableOrder(3, 2, 0, 1);

    // The setCur* functions track which part of the gdp is currently
    // being processed - it is what is used in the evalVariableValue
    // callback as the current point.  The 0 is for the first input,
    // you can have two inputs so $CR2 would get the second input's
    // value.
    setCurGdh(0, myGdpHandle);

    // Builds the lookup table matching attributes to the local variables.
    setupLocalVars();

    // Here we determine which groups we have to work on.  We only
    //	handle point groups.
    if (error() < UT_ERROR_ABORT && cookInputGroups(context) < UT_ERROR_ABORT &&
        (!myGroup || !myGroup->isEmpty()))
    {
        UT_AutoInterrupt progress("Flattening Points");

        // Handle all position, normal, and vector attributes.
        // It's not entirely clear what to do for quaternion or transform attributes.
        // We bump the data IDs of the attributes to modify in advance,
        // since we're already looping over them, and we want to avoid
        // bumping them all for each point, in case that's slow.
        UT_Array<GA_RWHandleV3> positionattribs(1);
        UT_Array<GA_RWHandleV3> normalattribs;
        UT_Array<GA_RWHandleV3> vectorattribs;
        GA_Attribute *attrib;
        GA_FOR_ALL_POINT_ATTRIBUTES(gdp, attrib)
        {
            // Skip non-transforming attributes
            if (!attrib->needsTransform())
                continue;

            GA_TypeInfo typeinfo = attrib->getTypeInfo();
            if (typeinfo == GA_TYPE_POINT || typeinfo == GA_TYPE_HPOINT)
            {
                GA_RWHandleV3 handle(attrib);
                if (handle.isValid())
                {
                    positionattribs.append(handle);
                    attrib->bumpDataId();
                }
            }
            else if (typeinfo == GA_TYPE_NORMAL)
            {
                GA_RWHandleV3 handle(attrib);
                if (handle.isValid())
                {
                    normalattribs.append(handle);
                    attrib->bumpDataId();
                }
            }
            else if (typeinfo == GA_TYPE_VECTOR)
            {
                GA_RWHandleV3 handle(attrib);
                if (handle.isValid())
                {
                    vectorattribs.append(handle);
                    attrib->bumpDataId();
                }
            }
        }

        // Iterate over points up to GA_PAGE_SIZE at a time using blockAdvance.
        GA_Offset start;
        GA_Offset end;
        for (GA_Iterator it(gdp->getPointRange(myGroup)); it.blockAdvance(start, end);)
        {
            // Check if user requested abort
            if (progress.wasInterrupted())
                break;

            for (GA_Offset ptoff = start; ptoff < end; ++ptoff)
            {
                // This sets the current point that is beint processed to
                // ptoff.  This means that ptoff will be used for any
                // local variable for any parameter evaluation that occurs
                // after this point.
                // NOTE: Local variables and repeated parameter evaluation
                //       is significantly slower and sometimes more complicated
                //       than having a string parameter that specifies the name
                //       of an attribute whose values should be used instead.
                //       That parameter would only need to be evaluated once,
                //       the attribute could be looked up once, and quickly
                //       accessed; however, a separate point attribute would
                //       be needed for each property that varies per point.
                //       Local variable evaluation isn't threadsafe either,
                //       whereas attributes can be read safely from multiple
                //       threads.
                //
                //       Long story short: *Local variables are terrible.*
                myCurPtOff[0] = ptoff;
                float dist = DIST(now);
                UT_Vector3 normal;
                if (!DIRPOP())
                {
                    switch (ORIENT())
                    {
                        case 0 : // XY Plane
                            normal.assign(0, 0, 1);
                            break;
                        case 1 : // YZ Plane
                            normal.assign(1, 0, 0);
                            break;
                        case 2 : // XZ Plane
                            normal.assign(0, 1, 0);
                            break;
                    }
                }
                else
                {
                    normal.assign(NX(now), NY(now), NZ(now));
                    normal.normalize();
                }

                // Project positions onto the plane by subtracting
                // off the normal component.
                for (exint i = 0; i < positionattribs.size(); ++i)
                {
                    UT_Vector3 p = positionattribs(i).get(ptoff);
                    p -= normal * (dot(normal, p) - dist);
                    positionattribs(i).set(ptoff, p);
                }

                // Normals will now all either be normal or -normal.
                for (exint i = 0; i < normalattribs.size(); ++i)
                {
                    UT_Vector3 n = normalattribs(i).get(ptoff);
                    if (dot(normal, n) < 0)
                        n = -normal;
                    else
                        n = normal;
                    normalattribs(i).set(ptoff, n);
                }

                // Project vectors onto the plane through the origin by
                // subtracting off the normal component.
                for (exint i = 0; i < vectorattribs.size(); ++i)
                {
                    UT_Vector3 v = vectorattribs(i).get(ptoff);
                    v -= normal * dot(normal, v);
                    vectorattribs(i).set(ptoff, v);
                }
            }
        }
    }