void crossValidate(GArgReader& args) { // Parse options unsigned int seed = getpid() * (unsigned int)time(NULL); size_t folds = 2; while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else if(args.if_pop("-folds")) folds = args.pop_uint(); else ThrowError("Invalid crossvalidate option: ", args.peek()); } if(folds < 2) ThrowError("There must be at least 2 folds."); // Load the data if(args.size() < 1) ThrowError("No dataset specified."); GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); // Instantiate the recommender GRand prng(seed); GCollaborativeFilter* pModel = InstantiateAlgorithm(prng, args); Holder<GCollaborativeFilter> hModel(pModel); if(args.size() > 0) ThrowError("Superfluous argument: ", args.peek()); // Do cross-validation double mae; double mse = pModel->crossValidate(*pData, folds, &mae); cout << "RMSE=" << sqrt(mse) << ", MSE=" << mse << ", MAE=" << mae << "\n"; }
void GRecommenderLib::transacc(GArgReader& args) { // Parse options unsigned int seed = getpid() * (unsigned int)time(NULL); while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else throw Ex("Invalid crossvalidate option: ", args.peek()); } // Load the data if(args.size() < 1) throw Ex("No training set specified."); GMatrix train; loadData(train, args.pop_string()); if(args.size() < 1) throw Ex("No test set specified."); GMatrix test; loadData(test, args.pop_string()); // Instantiate the recommender GCollaborativeFilter* pModel = InstantiateAlgorithm(args); std::unique_ptr<GCollaborativeFilter> hModel(pModel); if(args.size() > 0) throw Ex("Superfluous argument: ", args.peek()); pModel->rand().setSeed(seed); // Do cross-validation double mae; double mse = pModel->trainAndTest(train, test, &mae); cout << "MSE=" << mse << ", MAE=" << mae << "\n"; }
void precisionRecall(GArgReader& args) { // Parse options unsigned int seed = getpid() * (unsigned int)time(NULL); bool ideal = false; while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else if(args.if_pop("-ideal")) ideal = true; else ThrowError("Invalid option: ", args.peek()); } // Load the data if(args.size() < 1) ThrowError("No dataset specified."); GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); // Instantiate the recommender GRand prng(seed); GCollaborativeFilter* pModel = InstantiateAlgorithm(prng, args); Holder<GCollaborativeFilter> hModel(pModel); if(args.size() > 0) ThrowError("Superfluous argument: ", args.peek()); // Generate precision-recall data GMatrix* pResults = pModel->precisionRecall(*pData, ideal); Holder<GMatrix> hResults(pResults); pResults->deleteColumn(2); // we don't need the false-positive rate column pResults->print(cout); }
void transacc(GArgReader& args) { // Parse options unsigned int seed = getpid() * (unsigned int)time(NULL); while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else ThrowError("Invalid crossvalidate option: ", args.peek()); } // Load the data if(args.size() < 1) ThrowError("No training set specified."); GMatrix* pTrain = loadData(args.pop_string()); Holder<GMatrix> hTrain(pTrain); if(args.size() < 1) ThrowError("No test set specified."); GMatrix* pTest = loadData(args.pop_string()); Holder<GMatrix> hTest(pTest); // Instantiate the recommender GRand prng(seed); GCollaborativeFilter* pModel = InstantiateAlgorithm(prng, args); Holder<GCollaborativeFilter> hModel(pModel); if(args.size() > 0) ThrowError("Superfluous argument: ", args.peek()); // Do cross-validation double mae; double mse = pModel->trainAndTest(*pTrain, *pTest, &mae); cout << "MSE=" << mse << ", MAE=" << mae << "\n"; }
void GRecommenderLib::precisionRecall(GArgReader& args) { // Parse options unsigned int seed = getpid() * (unsigned int)time(NULL); bool ideal = false; while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else if(args.if_pop("-ideal")) ideal = true; else throw Ex("Invalid option: ", args.peek()); } // Load the data if(args.size() < 1) throw Ex("No dataset specified."); GMatrix data; loadData(data, args.pop_string()); // Instantiate the recommender GCollaborativeFilter* pModel = InstantiateAlgorithm(args); std::unique_ptr<GCollaborativeFilter> hModel(pModel); if(args.size() > 0) throw Ex("Superfluous argument: ", args.peek()); pModel->rand().setSeed(seed); // Generate precision-recall data GMatrix* pResults = pModel->precisionRecall(data, ideal); std::unique_ptr<GMatrix> hResults(pResults); pResults->deleteColumns(2, 1); // we don't need the false-positive rate column pResults->print(cout); }
void lle(GArgReader& args) { // Load the file and params GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); unsigned int nSeed = getpid() * (unsigned int)time(NULL); GRand prng(nSeed); GNeighborFinder* pNF = instantiateNeighborFinder(pData, &prng, args); Holder<GNeighborFinder> hNF(pNF); int targetDims = args.pop_uint(); // Parse Options while(args.size() > 0) { if(args.if_pop("-seed")) prng.setSeed(args.pop_uint()); else throw Ex("Invalid option: ", args.peek()); } // Transform the data GLLE transform(pNF->neighborCount(), targetDims, &prng); transform.setNeighborFinder(pNF); GMatrix* pDataAfter = transform.doit(*pData); Holder<GMatrix> hDataAfter(pDataAfter); pDataAfter->print(cout); }
void showError(GArgReader& args, const char* szAppName, const char* szMessage) { cerr << "_________________________________\n"; cerr << szMessage << "\n\n"; args.set_pos(1); const char* szCommand = args.peek(); UsageNode* pUsageTree = makeClusterUsageTree(); std::unique_ptr<UsageNode> hUsageTree(pUsageTree); if(szCommand) { UsageNode* pUsageCommand = pUsageTree->choice(szCommand); if(pUsageCommand) { cerr << "Brief Usage Information:\n\n"; cerr << szAppName << " "; pUsageCommand->print(cerr, 0, 3, 76, 1000, true); } else { cerr << "Brief Usage Information:\n\n"; pUsageTree->print(cerr, 0, 3, 76, 1, false); } } else { pUsageTree->print(cerr, 0, 3, 76, 1, false); cerr << "\nFor more specific usage information, enter as much of the command as you know.\n"; } cerr << "\nTo see full usage information, run:\n " << szAppName << " usage\n\n"; cerr << "For a graphical tool that will help you to build a command, run:\n waffles_wizard\n"; cerr.flush(); }
void breadthFirstUnfolding(GArgReader& args) { // Load the file and params GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); size_t nSeed = getpid() * (unsigned int)time(NULL); GRand prng(nSeed); GNeighborFinder* pNF = instantiateNeighborFinder(pData, &prng, args); Holder<GNeighborFinder> hNF(pNF); int targetDims = args.pop_uint(); // Parse Options size_t reps = 1; Holder<GMatrix> hControlData(NULL); while(args.size() > 0) { if(args.if_pop("-seed")) nSeed = args.pop_uint(); else if(args.if_pop("-reps")) reps = args.pop_uint(); else throw Ex("Invalid option: ", args.peek()); } // Transform the data GBreadthFirstUnfolding transform(reps, pNF->neighborCount(), targetDims); transform.rand().setSeed(nSeed); transform.setNeighborFinder(pNF); GMatrix* pDataAfter = transform.reduce(*pData); Holder<GMatrix> hDataAfter(pDataAfter); pDataAfter->print(cout); }
void showInstantiateNeighborFinderError(const char* szMessage, GArgReader& args) { cerr << "_________________________________\n"; cerr << szMessage << "\n\n"; const char* szNFName = args.peek(); UsageNode* pNFTree = makeNeighborUsageTree(); Holder<UsageNode> hNFTree(pNFTree); if(szNFName) { UsageNode* pUsageAlg = pNFTree->choice(szNFName); if(pUsageAlg) { cerr << "Partial Usage Information:\n\n"; pUsageAlg->print(cerr, 0, 3, 76, 1000, true); } else { cerr << "\"" << szNFName << "\" is not a recognized neighbor-finding techniqie. Try one of these:\n\n"; pNFTree->print(cerr, 0, 3, 76, 1, false); } } else { cerr << "Expected a neighbor-finding technique. Here are some choices:\n"; pNFTree->print(cerr, 0, 3, 76, 1, false); } cerr << "\nTo see full usage information, run:\n waffles_transform usage\n\n"; cerr << "For a graphical tool that will help you to build a command, run:\n waffles_wizard\n"; cerr.flush(); }
void correlation(GArgReader& args) { GMatrix* pA = loadData(args.pop_string()); Holder<GMatrix> hA(pA); int attr1 = args.pop_uint(); int attr2 = args.pop_uint(); // Parse Options bool aboutorigin = false; while(args.size() > 0) { if(args.if_pop("-aboutorigin")) aboutorigin = true; else ThrowError("Invalid option: ", args.peek()); } double m1, m2; if(aboutorigin) { m1 = 0; m2 = 0; } else { m1 = pA->mean(attr1); m2 = pA->mean(attr2); } double corr = pA->linearCorrelationCoefficient(attr1, m1, attr2, m2); cout.precision(14); cout << corr << "\n"; }
void AddIndexAttribute(GArgReader& args) { // Parse args const char* filename = args.pop_string(); double nStartValue = 0.0; double nIncrement = 1.0; while(args.size() > 0) { if(args.if_pop("-start")) nStartValue = args.pop_double(); else if(args.if_pop("-increment")) nIncrement = args.pop_double(); else ThrowError("Invalid option: ", args.peek()); } GMatrix* pData = loadData(filename); Holder<GMatrix> hData(pData); GArffRelation* pIndexRelation = new GArffRelation(); pIndexRelation->addAttribute("index", 0, NULL); sp_relation pIndexRel = pIndexRelation; GMatrix indexes(pIndexRel); indexes.newRows(pData->rows()); for(size_t i = 0; i < pData->rows(); i++) indexes.row(i)[0] = nStartValue + i * nIncrement; GMatrix* pUnified = GMatrix::mergeHoriz(&indexes, pData); Holder<GMatrix> hUnified(pUnified); pUnified->print(cout); }
void isomap(GArgReader& args) { // Load the file and params GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); unsigned int nSeed = getpid() * (unsigned int)time(NULL); GRand prng(nSeed); GNeighborFinder* pNF = instantiateNeighborFinder(pData, &prng, args); Holder<GNeighborFinder> hNF(pNF); int targetDims = args.pop_uint(); // Parse Options bool tolerant = false; while(args.size() > 0) { if(args.if_pop("-seed")) prng.setSeed(args.pop_uint()); else if(args.if_pop("-tolerant")) tolerant = true; else throw Ex("Invalid option: ", args.peek()); } // Transform the data GIsomap transform(pNF->neighborCount(), targetDims, &prng); transform.setNeighborFinder(pNF); if(tolerant) transform.dropDisconnectedPoints(); GMatrix* pDataAfter = transform.reduce(*pData); Holder<GMatrix> hDataAfter(pDataAfter); pDataAfter->print(cout); }
void fillMissingValues(GArgReader& args) { // Load GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); // Parse options unsigned int nSeed = getpid() * (unsigned int)time(NULL); bool random = false; while(args.size() > 0) { if(args.if_pop("-seed")) nSeed = args.pop_uint(); else if(args.if_pop("-random")) random = true; else ThrowError("Invalid option: ", args.peek()); } // Replace missing values and print GRand prng(nSeed); if(random) { for(size_t i = 0; i < pData->relation()->size(); i++) pData->replaceMissingValuesRandomly(i, &prng); } else { for(size_t i = 0; i < pData->relation()->size(); i++) pData->replaceMissingValuesWithBaseline(i); } pData->print(cout); }
void kmeans(GArgReader& args) { // Load the file and params GMatrix data; loadData(data, args.pop_string()); int clusters = args.pop_uint(); // Parse Options unsigned int nSeed = getpid() * (unsigned int)time(NULL); size_t reps = 1; while(args.size() > 0) { if(args.if_pop("-seed")) nSeed = args.pop_uint(); else if(args.if_pop("-reps")) reps = args.pop_uint(); else throw Ex("Invalid option: ", args.peek()); } // Do the clustering GRand prng(nSeed); GKMeans clusterer(clusters, &prng); clusterer.setReps(reps); GMatrix* pOut = clusterer.reduce(data); std::unique_ptr<GMatrix> hOut(pOut); pOut->print(cout); }
void splitClass(GArgReader& args) { const char* filename = args.pop_string(); GMatrix* pData = loadData(filename); Holder<GMatrix> hData(pData); size_t classAttr = args.pop_uint(); bool dropClass = false; while(args.size() > 0) { if(args.if_pop("-dropclass")) dropClass = true; else ThrowError("Invalid option: ", args.peek()); } for(size_t i = 0; i < pData->relation()->valueCount(classAttr); i++) { GMatrix tmp(pData->relation(), pData->heap()); pData->splitByNominalValue(&tmp, classAttr, i); std::ostringstream oss; PathData pd; GFile::parsePath(filename, &pd); string fn; fn.assign(filename + pd.fileStart, pd.extStart - pd.fileStart); oss << fn << "_"; pData->relation()->printAttrValue(oss, classAttr, (double)i); oss << ".arff"; string s = oss.str(); if(dropClass) tmp.deleteColumn(classAttr); tmp.saveArff(s.c_str()); } }
void split(GArgReader& args) { // Load GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); int pats = (int)pData->rows() - args.pop_uint(); if(pats < 0) ThrowError("out of range. The data only has ", to_str(pData->rows()), " rows."); const char* szFilename1 = args.pop_string(); const char* szFilename2 = args.pop_string(); unsigned int nSeed = getpid() * (unsigned int)time(NULL); bool shouldShuffle = false; while(args.size() > 0){ if(args.if_pop("-shuffle")){ shouldShuffle = true; }else if(args.if_pop("-seed")){ nSeed = args.pop_uint(); }else ThrowError("Invalid option: ", args.peek()); } // Shuffle if necessary GRand rng(nSeed); if(shouldShuffle){ pData->shuffle(rng); } // Split GMatrix other(pData->relation()); pData->splitBySize(&other, pats); pData->saveArff(szFilename1); other.saveArff(szFilename2); }
void nominalToCat(GArgReader& args) { // Load the file GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); // Parse Options int maxValues = 12; while(args.size() > 0) { if(args.if_pop("-maxvalues")) maxValues = args.pop_uint(); else ThrowError("Invalid option: ", args.peek()); } // Transform the data GNominalToCat transform(maxValues); transform.train(*pData); GMatrix* pDataNew = transform.transformBatch(*pData); Holder<GMatrix> hDataNew(pDataNew); // Print results pDataNew->print(cout); }
void showInstantiateAlgorithmError(const char* szMessage, GArgReader& args) { cerr << "_________________________________\n"; cerr << szMessage << "\n\n"; const char* szAlgName = args.peek(); UsageNode* pAlgTree = makeCollaborativeFilterUsageTree(); Holder<UsageNode> hAlgTree(pAlgTree); if(szAlgName) { UsageNode* pUsageAlg = pAlgTree->choice(szAlgName); if(pUsageAlg) { cerr << "Partial Usage Information:\n\n"; pUsageAlg->print(cerr, 0, 3, 76, 1000, true); } else { cerr << "\"" << szAlgName << "\" is not a recognized algorithm. Try one of these:\n\n"; pAlgTree->print(cerr, 0, 3, 76, 1, false); } } else { cerr << "Expected an algorithm. Here are some choices:\n"; pAlgTree->print(cerr, 0, 3, 76, 1, false); } cerr << "\nTo see full usage information, run:\n waffles_learn usage\n\n"; cerr << "For a graphical tool that will help you to build a command, run:\n waffles_wizard\n"; cerr.flush(); }
void addNoise(GArgReader& args) { GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); double dev = args.pop_double(); // Parse the options unsigned int seed = getpid() * (unsigned int)time(NULL); int excludeLast = 0; while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else if(args.if_pop("-excludelast")) excludeLast = args.pop_uint(); else ThrowError("Invalid neighbor finder option: ", args.peek()); } GRand prng(seed); size_t cols = pData->cols() - excludeLast; for(size_t r = 0; r < pData->rows(); r++) { double* pRow = pData->row(r); for(size_t c = 0; c < cols; c++) *(pRow++) += dev * prng.normal(); } pData->print(cout); }
void curviness2(GArgReader& args) { GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); GNormalize norm; GMatrix* pDataNormalized = norm.doit(*pData); Holder<GMatrix> hDataNormalized(pDataNormalized); hData.reset(); pData = NULL; // Parse Options size_t maxEigs = 10; unsigned int seed = getpid() * (unsigned int)time(NULL); Holder<GMatrix> hControlData(NULL); while(args.size() > 0) { if(args.if_pop("-seed")) seed = args.pop_uint(); else if(args.if_pop("-maxeigs")) maxEigs = args.pop_uint(); else throw Ex("Invalid option: ", args.peek()); } GRand rand(seed); size_t targetDims = std::min(maxEigs, pDataNormalized->cols()); // Do linear PCA GNeuroPCA np1(targetDims, &rand); np1.setActivation(new GActivationIdentity()); np1.computeEigVals(); GMatrix* pResults1 = np1.doit(*pDataNormalized); Holder<GMatrix> hResults1(pResults1); double* pEigVals1 = np1.eigVals(); for(size_t i = 0; i + 1 < targetDims; i++) pEigVals1[i] = sqrt(pEigVals1[i]) - sqrt(pEigVals1[i + 1]); size_t max1 = GVec::indexOfMax(pEigVals1, targetDims - 1, &rand); double v1 = (double)max1; if(max1 > 0 && max1 + 2 < targetDims) v1 += (pEigVals1[max1 - 1] - pEigVals1[max1 + 1]) / (2.0 * (pEigVals1[max1 - 1] + pEigVals1[max1 + 1] - 2.0 * pEigVals1[max1])); // Do non-linear PCA GNeuroPCA np2(targetDims, &rand); np1.setActivation(new GActivationLogistic()); np2.computeEigVals(); GMatrix* pResults2 = np2.doit(*pDataNormalized); Holder<GMatrix> hResults2(pResults2); double* pEigVals2 = np2.eigVals(); for(size_t i = 0; i + 1 < targetDims; i++) pEigVals2[i] = sqrt(pEigVals2[i]) - sqrt(pEigVals2[i + 1]); size_t max2 = GVec::indexOfMax(pEigVals2, targetDims - 1, &rand); double v2 = (double)max2; if(max2 > 0 && max2 + 2 < targetDims) v2 += (pEigVals2[max2 - 1] - pEigVals2[max2 + 1]) / (2.0 * (pEigVals2[max2 - 1] + pEigVals2[max2 + 1] - 2.0 * pEigVals2[max2])); // Compute the difference in where the eigenvalues fall cout.precision(14); cout << (v1 - v2) << "\n"; }
void ManifoldSculpting(GArgReader& args) { // Load the file and params GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); unsigned int nSeed = getpid() * (unsigned int)time(NULL); GRand prng(nSeed); GNeighborFinder* pNF = instantiateNeighborFinder(pData, &prng, args); Holder<GNeighborFinder> hNF(pNF); size_t targetDims = args.pop_uint(); // Parse Options const char* szPreprocessedData = NULL; double scaleRate = 0.999; while(args.size() > 0) { if(args.if_pop("-seed")) prng.setSeed(args.pop_uint()); else if(args.if_pop("-continue")) szPreprocessedData = args.pop_string(); else if(args.if_pop("-scalerate")) scaleRate = args.pop_double(); else throw Ex("Invalid option: ", args.peek()); } // Load the hint data GMatrix* pDataHint = NULL; Holder<GMatrix> hDataHint(NULL); if(szPreprocessedData) { pDataHint = loadData(szPreprocessedData); hDataHint.reset(pDataHint); if(pDataHint->relation()->size() != targetDims) throw Ex("Wrong number of dims in the hint data"); if(pDataHint->rows() != pData->rows()) throw Ex("Wrong number of patterns in the hint data"); } // Transform the data GManifoldSculpting transform(pNF->neighborCount(), targetDims, &prng); transform.setSquishingRate(scaleRate); if(pDataHint) transform.setPreprocessedData(hDataHint.release()); transform.setNeighborFinder(pNF); GMatrix* pDataAfter = transform.doit(*pData); Holder<GMatrix> hDataAfter(pDataAfter); pDataAfter->print(cout); }
void singularValueDecomposition(GArgReader& args) { // Load GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); // Parse options string ufilename = "u.arff"; string sigmafilename; string vfilename = "v.arff"; int maxIters = 100; while(args.size() > 0) { if(args.if_pop("-ufilename")) ufilename = args.pop_string(); else if(args.if_pop("-sigmafilename")) sigmafilename = args.pop_string(); else if(args.if_pop("-vfilename")) vfilename = args.pop_string(); else if(args.if_pop("-maxiters")) maxIters = args.pop_uint(); else ThrowError("Invalid option: ", args.peek()); } GMatrix* pU; double* pDiag; GMatrix* pV; pData->singularValueDecomposition(&pU, &pDiag, &pV, false, maxIters); Holder<GMatrix> hU(pU); ArrayHolder<double> hDiag(pDiag); Holder<GMatrix> hV(pV); pU->saveArff(ufilename.c_str()); pV->saveArff(vfilename.c_str()); if(sigmafilename.length() > 0) { GMatrix sigma(pU->rows(), pV->rows()); sigma.setAll(0.0); size_t m = std::min(sigma.rows(), (size_t)sigma.cols()); for(size_t i = 0; i < m; i++) sigma.row(i)[i] = pDiag[i]; sigma.saveArff(sigmafilename.c_str()); } else { GVec::print(cout, 14, pDiag, std::min(pU->rows(), pV->rows())); cout << "\n"; } }
void dropRandomValues(GArgReader& args) { GMatrix* pData = loadData(args.pop_string()); double portion = args.pop_double(); // Parse the options unsigned int seed = getpid() * (unsigned int)time(NULL); while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else ThrowError("Invalid option: ", args.peek()); } GRand rand(seed); size_t n = pData->rows() * pData->cols(); size_t k = size_t(portion * n); for(size_t i = 0; i < pData->cols(); i++) { size_t vals = pData->relation()->valueCount(i); if(vals == 0) { for(size_t j = 0; j < pData->rows(); j++) { if(rand.next(n) < k) { pData->row(j)[i] = UNKNOWN_REAL_VALUE; k--; } n--; } } else { for(size_t j = 0; j < pData->rows(); j++) { if(rand.next(n) < k) { pData->row(j)[i] = UNKNOWN_DISCRETE_VALUE; k--; } n--; } } } pData->print(cout); }
void blendEmbeddings(GArgReader& args) { // Load the files and params GMatrix* pDataOrig = loadData(args.pop_string()); Holder<GMatrix> hDataOrig(pDataOrig); unsigned int seed = getpid() * (unsigned int)time(NULL); GRand prng(seed); GNeighborFinder* pNF = instantiateNeighborFinder(pDataOrig, &prng, args); Holder<GNeighborFinder> hNF(pNF); GMatrix* pDataA = loadData(args.pop_string()); Holder<GMatrix> hDataA(pDataA); GMatrix* pDataB = loadData(args.pop_string()); Holder<GMatrix> hDataB(pDataB); if(pDataA->rows() != pDataOrig->rows() || pDataB->rows() != pDataOrig->rows()) throw Ex("mismatching number of rows"); if(pDataA->cols() != pDataB->cols()) throw Ex("mismatching number of cols"); // Parse Options while(args.size() > 0) { if(args.if_pop("-seed")) prng.setSeed(args.pop_uint()); else throw Ex("Invalid option: ", args.peek()); } // Get a neighbor table if(!pNF->isCached()) { GNeighborFinderCacheWrapper* pNF2 = new GNeighborFinderCacheWrapper(hNF.release(), true); hNF.reset(pNF2); pNF = pNF2; } ((GNeighborFinderCacheWrapper*)pNF)->fillCache(); size_t* pNeighborTable = ((GNeighborFinderCacheWrapper*)pNF)->cache(); // Do the blending size_t startPoint = (size_t)prng.next(pDataA->rows()); double* pRatios = new double[pDataA->rows()]; ArrayHolder<double> hRatios(pRatios); GVec::setAll(pRatios, 0.5, pDataA->rows()); GMatrix* pDataC = GManifold::blendEmbeddings(pDataA, pRatios, pDataB, pNF->neighborCount(), pNeighborTable, startPoint); Holder<GMatrix> hDataC(pDataC); pDataC->print(cout); }
void attributeSelector(GArgReader& args) { // Load the data size_t labelDims; std::vector<size_t> originalIndices; GMatrix data; loadDataWithSwitches(data, args, labelDims, originalIndices); // Parse the options unsigned int seed = getpid() * (unsigned int)time(NULL); int targetFeatures = 1; string outFilename = ""; while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else if(args.if_pop("-out")) { targetFeatures = args.pop_uint(); outFilename = args.pop_string(); } else throw Ex("Invalid neighbor finder option: ", args.peek()); } // Do the attribute selection GRand prng(seed); GAttributeSelector as(labelDims, targetFeatures, &prng); if(outFilename.length() > 0) { as.train(data); GMatrix* pDataOut = as.transformBatch(data); Holder<GMatrix> hDataOut(pDataOut); cout << "Reduced data saved to " << outFilename.c_str() << ".\n"; pDataOut->saveArff(outFilename.c_str()); } else as.train(data); cout << "\nAttribute rankings from most salient to least salient. (Attributes are zero-indexed.)\n"; GArffRelation* pRel = (GArffRelation*)data.relation().get(); for(size_t i = 0; i < as.ranks().size(); i++) cout << originalIndices.at(as.ranks()[i]) << " " << pRel->attrName(as.ranks()[i]) << "\n"; }
void Discretize(GArgReader& args) { // Load the file GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); // Parse Options size_t nFirst = 0; size_t nLast = pData->relation()->size() - 1; size_t nBuckets = std::max(2, (int)floor(sqrt((double)pData->rows() + 0.5))); while(args.size() > 0) { if(args.if_pop("-buckets")) nBuckets = args.pop_uint(); else if(args.if_pop("-colrange")) { nFirst = args.pop_uint(); nLast = args.pop_uint(); } else ThrowError("Invalid option: ", args.peek()); } if(nFirst < 0 || nLast >= pData->relation()->size() || nLast < nFirst) ThrowError("column index out of range"); // Discretize the continuous attributes in the specified range for(size_t i = nFirst; i <= nLast; i++) { if(pData->relation()->valueCount(i) != 0) continue; double min, range; pData->minAndRange(i, &min, &range); for(size_t j = 0; j < pData->rows(); j++) { double* pPat = pData->row(j); pPat[i] = (double)std::max((size_t)0, std::min(nBuckets - 1, (size_t)floor(((pPat[i] - min) * nBuckets) / range))); } ((GArffRelation*)pData->relation().get())->setAttrValueCount(i, nBuckets); } // Print results pData->print(cout); }
void multiDimensionalScaling(GArgReader& args) { GRand prng(0); GMatrix* pDistances = loadData(args.pop_string()); int targetDims = args.pop_uint(); // Parse Options bool useSquaredDistances = false; while(args.size() > 0) { if(args.if_pop("-squareddistances")) useSquaredDistances = true; else throw Ex("Invalid option: ", args.peek()); } GMatrix* pResults = GManifold::multiDimensionalScaling(pDistances, targetDims, &prng, useSquaredDistances); Holder<GMatrix> hResults(pResults); pResults->print(cout); }
void Shuffle(GArgReader& args) { // Load GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); // Parse options unsigned int nSeed = getpid() * (unsigned int)time(NULL); while(args.size() > 0) { if(args.if_pop("-seed")) nSeed = args.pop_uint(); else ThrowError("Invalid option: ", args.peek()); } // Shuffle and print GRand prng(nSeed); pData->shuffle(prng); pData->print(cout); }
void transition(GArgReader& args) { // Load the input data GMatrix* pActions = loadData(args.pop_string()); Holder<GMatrix> hActions(pActions); GMatrix* pState = loadData(args.pop_string()); Holder<GMatrix> hState(pState); if(pState->rows() != pActions->rows()) ThrowError("Expected the same number of rows in both datasets"); // Parse options bool delta = false; while(args.size() > 0) { if(args.if_pop("-delta")) delta = true; else ThrowError("Invalid option: ", args.peek()); } // Make the output data size_t actionDims = pActions->cols(); size_t stateDims = pState->cols(); GMixedRelation* pRelation = new GMixedRelation(); sp_relation pRel = pRelation; pRelation->addAttrs(pActions->relation().get()); pRelation->addAttrs(stateDims + stateDims, 0); GMatrix* pTransition = new GMatrix(pRel); pTransition->newRows(pActions->rows() - 1); for(size_t i = 0; i < pActions->rows() - 1; i++) { double* pOut = pTransition->row(i); GVec::copy(pOut, pActions->row(i), actionDims); GVec::copy(pOut + actionDims, pState->row(i), stateDims); GVec::copy(pOut + actionDims + stateDims, pState->row(i + 1), stateDims); if(delta) GVec::subtract(pOut + actionDims + stateDims, pState->row(i), stateDims); } pTransition->print(cout); }
void Import(GArgReader& args) { // Load the file size_t len; const char* filename = args.pop_string(); char* pFile = GFile::loadFile(filename, &len); ArrayHolder<char> hFile(pFile); // Parse Options char separator = ','; bool tolerant = false; bool columnNamesInFirstRow = false; while(args.size() > 0) { if(args.if_pop("-tab")) separator = '\t'; else if(args.if_pop("-space")) separator = ' '; else if(args.if_pop("-whitespace")) separator = '\0'; else if(args.if_pop("-semicolon")) separator = ';'; else if(args.if_pop("-separator")) separator = args.pop_string()[0]; else if(args.if_pop("-tolerant")) tolerant = true; else if(args.if_pop("-columnnames")) columnNamesInFirstRow = true; else ThrowError("Invalid option: ", args.peek()); } // Parse the file GMatrix* pData = GMatrix::parseCsv(pFile, len, separator, columnNamesInFirstRow, tolerant); Holder<GMatrix> hData(pData); ((GArffRelation*)pData->relation().get())->setName(filename); // Print the data pData->print(cout); }