示例#1
0
/***********************************************************************//**
 * @brief Simulate background events from model
 *
 * @param[in] obs Pointer on CTA observation.
 * @param[in] models Models.
 * @param[in] ran Random number generator.
 * @param[in] wrklog Pointer to logger.
 *
 * Simulate background events from models. The events are stored as event
 * list in the observation.
 *
 * This method does nothing if the observation pointer is NULL.
 ***************************************************************************/
void ctobssim::simulate_background(GCTAObservation* obs,
                                   const GModels&   models,
                                   GRan&            ran,
                                   GLog*            wrklog)
{
    // Continue only if observation pointer is valid
    if (obs != NULL) {

        // If no logger is specified then use the default logger
        if (wrklog == NULL) {
            wrklog = &log;
        }

        // Get pointer on event list (circumvent const correctness)
        GCTAEventList* events =
            static_cast<GCTAEventList*>(const_cast<GEvents*>(obs->events()));

        // Loop over all models
        for (int i = 0; i < models.size(); ++i) {

            // Get data model (NULL if not a data model)
            const GModelData* model =
                dynamic_cast<const GModelData*>(models[i]);

            // If we have a data model that applies to the present observation
            // then simulate events
            if (model != NULL &&
                model->is_valid(obs->instrument(), obs->id())) {

                // Get simulated CTA event list. Note that this method
                // includes the deadtime correction.
                GCTAEventList* list =
                     dynamic_cast<GCTAEventList*>(model->mc(*obs, ran));

                // Continue only if we got a CTA event list
                if (list != NULL) {

                    // Reserves space for events
                    events->reserve(list->size()+events->size());

                    // Append events
                    for (int k = 0; k < list->size(); k++) {

                        // Get event pointer
                        GCTAEventAtom* event = (*list)[k];

                        // Use event only if it falls within ROI
                        if (events->roi().contains(*event)) {

                            // Set event identifier
                            event->event_id(m_event_id);
                            m_event_id++;

                            // Append event
                            events->append(*event);

                        } // endif: event was within ROI

                    } // endfor: looped over all events

                    // Dump simulation results
                    if (logNormal()) {
                        *wrklog << gammalib::parformat("MC background events");
                        *wrklog << list->size() << std::endl;
                    }

                    // Free event list
                    delete list;

                } // endif: we had a CTA event list

            } // endif: model was valid

        } // endfor: looped over all models

    } // endif: observation pointer was valid

    // Return
    return;
}
示例#2
0
/***********************************************************************//**
 * @brief Simulate source events from photon list
 *
 * @param[in] obs Pointer on CTA observation.
 * @param[in] models Model list.
 * @param[in] ran Random number generator.
 * @param[in] wrklog Pointer to logger.
 *
 * Simulate source events from a photon list for a given CTA observation.
 * The events are stored in as event list in the observation.
 *
 * This method does nothing if the observation pointer is NULL. It also
 * verifies if the observation has a valid pointing and response.
 ***************************************************************************/
void ctobssim::simulate_source(GCTAObservation* obs, const GModels& models,
                               GRan& ran, GLog* wrklog)
{
    // Continue only if observation pointer is valid
    if (obs != NULL) {

        // If no logger is specified then use the default logger
        if (wrklog == NULL) {
            wrklog = &log;
        }

        // Get CTA response
        const GCTAResponseIrf* rsp =
            dynamic_cast<const GCTAResponseIrf*>(obs->response());
        if (rsp == NULL) {
            std::string msg = "Response is not an IRF response.\n" +
                              obs->response()->print();
            throw GException::invalid_value(G_SIMULATE_SOURCE, msg);
        }

        // Get pointer on event list (circumvent const correctness)
        GCTAEventList* events =
            static_cast<GCTAEventList*>(const_cast<GEvents*>(obs->events()));

        // Extract simulation region.
        GSkyDir dir = events->roi().centre().dir();
        double  rad = events->roi().radius() + g_roi_margin;

        // Dump simulation cone information
        if (logNormal()) {
            *wrklog << gammalib::parformat("Simulation area");
            *wrklog << m_area << " cm2" << std::endl;
            *wrklog << gammalib::parformat("Simulation cone");
            *wrklog << "RA=" << dir.ra_deg() << " deg";
            *wrklog << ", Dec=" << dir.dec_deg() << " deg";
            *wrklog << ", r=" << rad << " deg" << std::endl;
        }

        // Initialise indentation for logging
        int indent = 0;

        // Loop over all Good Time Intervals
        for (int it = 0; it < events->gti().size(); ++it) {

            // Extract time interval
            GTime tmin = events->gti().tstart(it);
            GTime tmax = events->gti().tstop(it);

            // Dump time interval
            if (logNormal()) {
                if (events->gti().size() > 1) {
                    indent++;
                    wrklog->indent(indent);
                }
                *wrklog << gammalib::parformat("Time interval", indent);
                *wrklog << tmin.convert(m_cta_ref);
                *wrklog << " - ";
                *wrklog << tmax.convert(m_cta_ref);
                *wrklog << " s" << std::endl;
            }

            // Loop over all energy boundaries
            for (int ie = 0; ie <  events->ebounds().size(); ++ie) {

                // Extract energy boundaries
                GEnergy emin = events->ebounds().emin(ie);
                GEnergy emax = events->ebounds().emax(ie);

                // Set true photon energy limits for simulation. If observation
                // has energy dispersion then add margin
                GEnergy e_true_min = emin;
                GEnergy e_true_max = emax;
                if (rsp->use_edisp()) {
                    e_true_min = rsp->ebounds(e_true_min).emin();
                    e_true_max = rsp->ebounds(e_true_max).emax();
                }

                // Dump energy range
                if (logNormal()) {
                    if (events->ebounds().size() > 1) {
                        indent++;
                        wrklog->indent(indent);
                    }
                    *wrklog << gammalib::parformat("Photon energy range", indent);
                    *wrklog << e_true_min << " - " << e_true_max << std::endl;
                    *wrklog << gammalib::parformat("Event energy range", indent);
                    *wrklog << emin << " - " << emax << std::endl;
                }

                // Loop over all sky models
                for (int i = 0; i < models.size(); ++i) {

                    // Get sky model (NULL if not a sky model)
                    const GModelSky* model =
                          dynamic_cast<const GModelSky*>(models[i]);

                    // If we have a sky model that applies to the present
                    // observation then simulate events
                    if (model != NULL &&
                        model->is_valid(obs->instrument(), obs->id())) {

                        // Determine duration of a time slice by limiting the
                        // number of simulated photons to m_max_photons.
                        // The photon rate is estimated from the model flux
                        // and used to set the duration of the time slice.
                        double flux     = get_model_flux(model, emin, emax,
                                                         dir, rad);
                        double rate     = flux * m_area;
                        double duration = 1800.0;  // default: 1800 sec
                        if (rate > 0.0) {
                            duration = m_max_photons / rate;
                            if (duration < 1.0) {  // not <1 sec
                                duration = 1.0;
                            }
                            else if (duration > 180000.0) { // not >50 hr
                                duration = 180000.0;
                            }
                        }
                        GTime tslice(duration, "sec");

                        // If photon rate exceeds the maximum photon rate
                        // then throw an exception
                        if (rate > m_max_rate) {
                            std::string modnam = (model->name().length() > 0) ?
                                                 model->name() : "Unknown";
                            std::string msg    = "Photon rate "+
                                                 gammalib::str(rate)+
                                                 " photons/sec for model \""+
                                                 modnam+"\" exceeds maximum"
                                                 " allowed photon rate of "+
                                                 gammalib::str(m_max_rate)+
                                                 " photons/sec. Please check"
                                                 " the model parameters for"
                                                 " model \""+modnam+"\" or"
                                                 " increase the value of the"
                                                 " hidden \"maxrate\""
                                                 " parameter.";
                            throw GException::invalid_value(G_SIMULATE_SOURCE, msg);
                        }

                        // Dump length of time slice and rate
                        if (logExplicit()) {
                            *wrklog << gammalib::parformat("Photon rate", indent);
                            *wrklog << rate << " photons/sec";
                            if (model->name().length() > 0) {
                                *wrklog << " [" << model->name() << "]";
                            }
                            *wrklog << std::endl;
                        }

                        // To reduce memory requirements we split long time
                        // intervals into several slices.
                        GTime tstart = tmin;
                        GTime tstop  = tstart + tslice;

                        // Initialise cumulative photon counters
                        int nphotons = 0;

                        // Loop over time slices
                        while (tstart < tmax) {

                            // Make sure that tstop <= tmax
                            if (tstop > tmax) {
                                tstop = tmax;
                            }

                            // Dump time slice
                            if (logExplicit()) {
                                if (tmax - tmin > tslice) {
                                    indent++;
                                    wrklog->indent(indent);
                                }
                                *wrklog << gammalib::parformat("Time slice", indent);
                                *wrklog << tstart.convert(m_cta_ref);
                                *wrklog << " - ";
                                *wrklog << tstop.convert(m_cta_ref);
                                *wrklog << " s";
                                if (model->name().length() > 0) {
                                    *wrklog << " [" << model->name() << "]";
                                }
                                *wrklog << std::endl;
                            }

                            // Get photons
                            GPhotons photons = model->mc(m_area, dir, rad,
                                                         e_true_min, e_true_max,
                                                         tstart, tstop, ran);

                            // Dump number of simulated photons
                            if (logExplicit()) {
                                *wrklog << gammalib::parformat("MC source photons/slice", indent);
                                *wrklog << photons.size();
                                if (model->name().length() > 0) {
                                    *wrklog << " [" << model->name() << "]";
                                }
                                *wrklog << std::endl;
                            }

                            // Simulate events from photons
                            for (int i = 0; i < photons.size(); ++i) {

                                // Increment photon counter
                                nphotons++;

                                // Simulate event. Note that this method
                                // includes the deadtime correction.
                                GCTAEventAtom* event = rsp->mc(m_area,
                                                               photons[i],
                                                               *obs,
                                                               ran);

                                if (event != NULL) {

                                    // Use event only if it falls within ROI
                                    // energy boundary and time slice
                                    if (events->roi().contains(*event) &&
                                        event->energy() >= emin &&
                                        event->energy() <= emax &&
                                        event->time() >= tstart &&
                                        event->time() <= tstop) {
                                        event->event_id(m_event_id);
                                        events->append(*event);
                                        m_event_id++;
                                    }
                                    delete event;
                                }

                            } // endfor: looped over events

                            // Go to next time slice
                            tstart = tstop;
                            tstop  = tstart + tslice;

                            // Reset indentation
                            if (logExplicit()) {
                                if (tmax - tmin > tslice) {
                                    indent--;
                                    wrklog->indent(indent);
                                }
                            }

                        } // endwhile: looped over time slices

                        // Dump simulation results
                        if (logNormal()) {
                            *wrklog << gammalib::parformat("MC source photons", indent);
                            *wrklog << nphotons;
                            if (model->name().length() > 0) {
                                *wrklog << " [" << model->name() << "]";
                            }
                            *wrklog << std::endl;
                            *wrklog << gammalib::parformat("MC source events", indent);
                            *wrklog << events->size();
                            if (model->name().length() > 0) {
                                *wrklog << " [" << model->name() << "]";
                            }
                            *wrklog << std::endl;

                        }

                    } // endif: model was a sky model

                } // endfor: looped over models

                // Dump simulation results
                if (logNormal()) {
                    *wrklog << gammalib::parformat("MC source events", indent);
                    *wrklog << events->size();
                    *wrklog << " (all source models)";
                    *wrklog << std::endl;
                }

                // Reset indentation
                if (logNormal()) {
                    if (events->ebounds().size() > 1) {
                        indent--;
                        wrklog->indent(indent);

                    }
                }

            } // endfor: looped over all energy boundaries

            // Reset indentation
            if (logNormal()) {
                if (events->gti().size() > 1) {
                    indent--;
                    wrklog->indent(indent);
                }
            }

        } // endfor: looped over all time intervals

        // Reset indentation
        wrklog->indent(0);

    } // endif: observation pointer was valid

    // Return
    return;
}
示例#3
0
/***********************************************************************//**
 * @brief Simulate source events from photon list
 *
 * @param[in] obs Pointer on CTA observation.
 * @param[in] models Model list.
 * @param[in] ran Random number generator.
 * @param[in] wrklog Pointer to logger.
 *
 * Simulate source events from a photon list for a given CTA observation.
 * The events are stored in as event list in the observation.
 *
 * This method does nothing if the observation pointer is NULL. It also
 * verifies if the observation has a valid pointing and response.
 ***************************************************************************/
void ctobssim::simulate_source(GCTAObservation* obs, const GModels& models,
                               GRan& ran, GLog* wrklog)
{
    // Continue only if observation pointer is valid
    if (obs != NULL) {

        // If no logger is specified then use the default logger
        if (wrklog == NULL) {
            wrklog = &log;
        }

        // Get pointer on CTA response. Throw an exception if the response
        // is not defined.
        const GCTAResponse& rsp = obs->response();

        // Make sure that the observation holds a CTA event list. If this
        // is not the case then allocate and attach a CTA event list now.
        if (dynamic_cast<const GCTAEventList*>(obs->events()) == NULL) {
            set_list(obs);
        }

        // Get pointer on event list (circumvent const correctness)
        GCTAEventList* events = static_cast<GCTAEventList*>(const_cast<GEvents*>(obs->events()));

        // Extract simulation region.
        GSkyDir dir = events->roi().centre().dir();
        double  rad = events->roi().radius() + g_roi_margin;

        // Dump simulation cone information
        if (logNormal()) {
            *wrklog << gammalib::parformat("Simulation area");
            *wrklog << m_area << " cm2" << std::endl;
            *wrklog << gammalib::parformat("Simulation cone");
            *wrklog << "RA=" << dir.ra_deg() << " deg";
            *wrklog << ", Dec=" << dir.dec_deg() << " deg";
            *wrklog << ", r=" << rad << " deg" << std::endl;
        }

        // Initialise indentation for logging
        int indent = 0;

        // Loop over all Good Time Intervals
        for (int it = 0; it < events->gti().size(); ++it) {

            // Extract time interval
            GTime tmin = events->gti().tstart(it);
            GTime tmax = events->gti().tstop(it);

            // Dump time interval
            if (logNormal()) {
                if (events->gti().size() > 1) {
                    indent++;
                    wrklog->indent(indent);
                }
                *wrklog << gammalib::parformat("Time interval", indent);
                *wrklog << tmin.convert(m_cta_ref);
                *wrklog << " - ";
                *wrklog << tmax.convert(m_cta_ref);
                *wrklog << " s" << std::endl;
            }

            // Loop over all energy boundaries
            for (int ie = 0; ie <  events->ebounds().size(); ++ie) {

                // Extract energy boundaries
                GEnergy emin = events->ebounds().emin(ie);
                GEnergy emax = events->ebounds().emax(ie);

                // Dump energy range
                if (logNormal()) {
                    if (events->ebounds().size() > 1) {
                        indent++;
                        wrklog->indent(indent);
                    }
                    *wrklog << gammalib::parformat("Energy range", indent);
                    *wrklog << emin << " - " << emax << std::endl;
                }

                // Loop over all sky models
                for (int i = 0; i < models.size(); ++i) {

                    // Get sky model (NULL if not a sky model)
                    const GModelSky* model =
                          dynamic_cast<const GModelSky*>(models[i]);

                    // If we have a sky model that applies to the present
                    // observation then simulate events
                    if (model != NULL &&
                        model->is_valid(obs->instrument(), obs->id())) {

                        // Determine duration of a time slice by limiting the
                        // number of simulated photons to m_max_photons.
                        // The photon rate is estimated from the model flux
                        // and used to set the duration of the time slice.
                        double flux     = model->spectral()->flux(emin, emax);
                        double rate     = flux * m_area;
                        double duration = 1800.0;  // default: 1800 sec
                        if (rate > 0.0) {
                            duration = m_max_photons / rate;
                            if (duration < 1.0) {  // not <1 sec
                                duration = 1.0;
                            }
                            else if (duration > 180000.0) { // not >50 hr
                                duration = 180000.0;
                            }
                        }
                        GTime tslice(duration, "sec");

                        // To reduce memory requirements we split long time
                        // intervals into several slices.
                        GTime tstart = tmin;
                        GTime tstop  = tstart + tslice;

                        // Initialise cumulative photon counters
                        int nphotons = 0;

                        // Loop over time slices
                        while (tstart < tmax) {

                            // Make sure that tstop <= tmax
                            if (tstop > tmax) {
                                tstop = tmax;
                            }

                            // Dump time slice
                            if (logExplicit()) {
                                if (tmax - tmin > tslice) {
                                    indent++;
                                    wrklog->indent(indent);
                                }
                                *wrklog << gammalib::parformat("Time slice", indent);
                                *wrklog << tstart.convert(m_cta_ref);
                                *wrklog << " - ";
                                *wrklog << tstop.convert(m_cta_ref);
                                *wrklog << " s" << std::endl;
                            }

                            // Get photons
                            GPhotons photons = model->mc(m_area, dir, rad,
                                                         emin, emax,
                                                         tstart, tstop, ran);

                            // Dump number of simulated photons
                            if (logExplicit()) {
                                *wrklog << gammalib::parformat("MC source photons/slice", indent);
                                *wrklog << photons.size();
                                if (model->name().length() > 0) {
                                    *wrklog << " [" << model->name() << "]";
                                }
                                *wrklog << std::endl;
                            }

                            // Simulate events from photons
                            for (int i = 0; i < photons.size(); ++i) {

                                // Increment photon counter
                                nphotons++;

                                // Simulate event. Note that this method
                                // includes the deadtime correction.
                                GCTAEventAtom* event = rsp.mc(m_area,
                                                              photons[i],
                                                              *obs,
                                                              ran);
                                if (event != NULL) {

                                    // Use event only if it falls within ROI
                                    if (events->roi().contains(*event)) {
                                        event->event_id(m_event_id);
                                        events->append(*event);
                                        m_event_id++;
                                    }
                                    delete event;
                                }

                            } // endfor: looped over events

                            // Go to next time slice
                            tstart = tstop;
                            tstop  = tstart + tslice;

                            // Reset indentation
                            if (logExplicit()) {
                                if (tmax - tmin > tslice) {
                                    indent--;
                                    wrklog->indent(indent);
                                }
                            }

                        } // endwhile: looped over time slices

                        // Dump simulation results
                        if (logNormal()) {
                            *wrklog << gammalib::parformat("MC source photons", indent);
                            *wrklog << nphotons;
                            if (model->name().length() > 0) {
                                *wrklog << " [" << model->name() << "]";
                            }
                            *wrklog << std::endl;
                            *wrklog << gammalib::parformat("MC source events", indent);
                            *wrklog << events->size();
                            if (model->name().length() > 0) {
                                *wrklog << " [" << model->name() << "]";
                            }
                            *wrklog << std::endl;

                        }

                    } // endif: model was a sky model

                } // endfor: looped over models

                // Dump simulation results
                if (logNormal()) {
                    *wrklog << gammalib::parformat("MC source events", indent);
                    *wrklog << events->size();
                    *wrklog << " (all source models)";
                    *wrklog << std::endl;
                }

                // Reset indentation
                if (logNormal()) {
                    if (events->ebounds().size() > 1) {
                        indent--;
                        wrklog->indent(indent);

                    }
                }

            } // endfor: looped over all energy boundaries

            // Reset indentation
            if (logNormal()) {
                if (events->gti().size() > 1) {
                    indent--;
                    wrklog->indent(indent);
                }
            }

        } // endfor: looped over all time intervals

        // Reset indentation
        wrklog->indent(0);

    } // endif: observation pointer was valid

    // Return
    return;
}