示例#1
0
/***********************************************************************//**
 * @brief Return deadtime correction
 *
 * @return Deadtime correction factor.
 ***************************************************************************/
inline
double GCTACubeExposure::deadc(void) const
{
    return ((m_gti.ontime() > 0.0) ? m_livetime/m_gti.ontime() : 1.0);
}
示例#2
0
/***********************************************************************//**
 * @brief Setup observation container
 *
 * @exception GException::no_cube
 *            No event cube found in CTA observation.
 *
 * This method sets up the observation container for processing. There are
 * two cases:
 *
 * If there are no observations in the actual observation container, the
 * method will check in "infile" parameter. If this parameter is "NONE" or
 * empty, the task parameters will be used to construct a model map.
 * Otherwise, the method first tries to interpret the "infile" parameter as
 * a counts map, and attemps loading of the file in an event cube. If this
 * fails, the method tries to interpret the "infile" parameter as an
 * observation definition XML file. If this also fails, an exception will
 * be thrown.
 *
 * If observations exist already in the observation container, the method
 * will simply keep them.
 *
 * Test if all CTA observations contain counts maps.
 *
 * Finally, if no models exist so far in the observation container, the
 * models will be loaded from the model XML file.
 ***************************************************************************/
void ctmodel::setup_obs(void)
{
    // If there are no observations in the container then try to build some
    if (m_obs.size() == 0) {

        // If no input filename has been specified, then create a model map
        // from the task parameters
        if ((m_infile == "NONE") || (gammalib::strip_whitespace(m_infile) == "")) {

            // Set pointing direction
            GCTAPointing pnt;
            GSkyDir      skydir;
            skydir.radec_deg(m_ra, m_dec);
            pnt.dir(skydir);

            // Setup energy range covered by model
            GEnergy  emin(m_emin, "TeV");
            GEnergy  emax(m_emax, "TeV");
            GEbounds ebds(m_enumbins, emin, emax);

            // Setup time interval covered by model
            GGti  gti;
            GTime tmin(m_tmin);
            GTime tmax(m_tmax);
            gti.append(tmin, tmax);

            // Setup skymap
            GSkymap map = GSkymap(m_proj, m_coordsys,
                                  m_xref, m_yref, -m_binsz, m_binsz,
                                  m_nxpix, m_nypix, m_enumbins);

            // Create model cube from sky map
            GCTAEventCube cube(map, ebds, gti);

            // Allocate CTA observation
            GCTAObservation obs;

            // Set CTA observation attributes
            obs.pointing(pnt);
            obs.ontime(gti.ontime());
            obs.livetime(gti.ontime()*m_deadc);
            obs.deadc(m_deadc);

            // Set event cube in observation
            obs.events(cube);

            // Append CTA observation to container
            m_obs.append(obs);

            // Signal that no XML file should be used for storage
            m_use_xml = false;

        } // endif: created model map from task parameters

        // ... otherwise try to load information from the file
        else {

            // First try to open the file as a counts map
            try {

                // Allocate CTA observation
                GCTAObservation obs;

                // Load counts map in CTA observation
                obs.load_binned(m_infile);

                // Append CTA observation to container
                m_obs.append(obs);

                // Signal that no XML file should be used for storage
                m_use_xml = false;

            }

            // ... otherwise try to open as XML file
            catch (GException::fits_open_error &e) {

                // Load observations from XML file. This will throw
                // an exception if it fails.
                m_obs.load(m_infile);

                // Signal that XML file should be used for storage
                m_use_xml = true;

            }

        } // endelse: loaded information from input file

    } // endif: there was no observation in the container

    // If there are no models associated with the observations then
    // load now the model definition from the XML file
    if (m_obs.models().size() == 0) {
        m_obs.models(GModels(m_srcmdl));
    }

    // Check if all CTA observations contain an event cube and setup response
    // for all observations
    for (int i = 0; i < m_obs.size(); ++i) {

        // Is this observation a CTA observation?
        GCTAObservation* obs = dynamic_cast<GCTAObservation*>(m_obs[i]);

        // Yes ...
        if (obs != NULL) {

            // Throw an exception if this observation does not contain
            // an event cube
            if (dynamic_cast<const GCTAEventCube*>(obs->events()) == NULL) {
                throw GException::no_cube(G_SETUP_OBS);
            }

            // Set response if it isn't set already
            if (obs->response().aeff() == NULL) {

                // Set calibration database. If specified parameter is a
                // directory then use this as the pathname to the calibration
                // database. Otherwise interpret this as the instrument name,
                // the mission being "cta"
                GCaldb caldb;
                if (gammalib::dir_exists(m_caldb)) {
                    caldb.rootdir(m_caldb);
                }
                else {
                    caldb.open("cta", m_caldb);
                }

                // Set reponse
                obs->response(m_irf, caldb);

            } // endif: observation already has a response

        } // endif: observation was a CTA observation

    } // endfor: looped over all observations

    // Return
    return;
}
示例#3
0
/***********************************************************************//**
 * @brief Return ontime
 *
 * @return Ontime (seconds).
 ***************************************************************************/
inline
const double& GCTACubeExposure::ontime(void) const
{
    return (m_gti.ontime());
}
示例#4
0
/***********************************************************************//**
 * @brief Select events
 *
 * @param[in] obs CTA observation.
 * @param[in] filename File name.
 *
 * Select events from a FITS file by making use of the selection possibility
 * of the cfitsio library on loading a file. A selection string is created
 * from the specified criteria that is appended to the filename so that
 * cfitsio will automatically filter the event data. This selection string
 * is then applied when opening the FITS file. The opened FITS file is then
 * saved into a temporary file which is the loaded into the actual CTA
 * observation, overwriting the old CTA observation. The ROI, GTI and EBounds
 * of the CTA event list are then set accordingly to the specified selection.
 * Finally, the temporary file created during this process is removed.
 *
 * Good Time Intervals of the observation will be limited to the time
 * interval [m_tmin, m_tmax]. If m_tmin=m_tmax=0, no time selection is
 * performed.
 *
 * @todo Use INDEF instead of 0.0 for pointing as RA/DEC selection
 ***************************************************************************/
void ctselect::select_events(GCTAObservation* obs, const std::string& filename)
{
    // Allocate selection string
    std::string selection;
    char        cmin[80];
    char        cmax[80];
    char        cra[80];
    char        cdec[80];
    char        crad[80];

    // Set requested selections
    bool select_time = (m_tmin != 0.0 || m_tmax != 0.0);

    // Set RA/DEC selection
    double ra  = m_ra;
    double dec = m_dec;
    if (m_usepnt) {
        const GCTAPointing *pnt = obs->pointing();
        ra = pnt->dir().ra_deg();
        dec = pnt->dir().dec_deg();
    }

    // Set time selection interval. We make sure here that the time selection
    // interval cannot be wider than the GTIs covering the data. This is done
    // using GGti's reduce() method.
    if (select_time) {

        // Reduce GTIs to specified time interval. The complicated cast is
        // necessary here because the gti() method is declared const, so
        // we're not officially allowed to modify the GTIs.
        ((GGti*)(&obs->events()->gti()))->reduce(m_timemin, m_timemax);

    } // endif: time selection was required

    // Save GTI for later usage
    GGti gti = obs->events()->gti();

    // Make time selection
    if (select_time) {
    
        // Extract effective time interval in CTA reference time. We need
        // this reference for filtering.
        double tmin = gti.tstart().convert(m_cta_ref);
        double tmax = gti.tstop().convert(m_cta_ref);

        // Format time with sufficient accuracy and add to selection string
        sprintf(cmin, "%.8f", tmin);
        sprintf(cmax, "%.8f", tmax);
        selection = "TIME >= "+std::string(cmin)+" && TIME <= "+std::string(cmax);
        if (logTerse()) {
            log << parformat("Time range");
            log << tmin << " - " << tmax << " s" << std::endl;
        }
        if (selection.length() > 0) {
            selection += " && ";
        }
    }

    // Make energy selection
    sprintf(cmin, "%.8f", m_emin);
    sprintf(cmax, "%.8f", m_emax);
    selection += "ENERGY >= "+std::string(cmin)+" && ENERGY <= "+std::string(cmax);
    if (logTerse()) {
        log << parformat("Energy range");
        log << m_emin << " - " << m_emax << " TeV" << std::endl;
    }
    if (selection.length() > 0) {
        selection += " && ";
    }

    // Make ROI selection
    sprintf(cra,  "%.6f", ra);
    sprintf(cdec, "%.6f", dec);
    sprintf(crad, "%.6f", m_rad);
    selection += "ANGSEP("+std::string(cra)+"," +
                 std::string(cdec)+",RA,DEC) <= " +
                 std::string(crad);
    if (logTerse()) {
        log << parformat("Acceptance cone centre");
        log << "RA=" << ra << ", DEC=" << dec << " deg" << std::endl;
        log << parformat("Acceptance cone radius");
        log << m_rad << " deg" << std::endl;
    }
    if (logTerse()) {
        log << parformat("cfitsio selection");
        log << selection << std::endl;
    }

    // Add additional expression
    if (strip_whitespace(m_expr).length() > 0) {
        if (selection.length() > 0) {
            selection += " && ";
        }
        selection += "("+strip_whitespace(m_expr)+")";
    }

    // Build input filename including selection expression
    std::string expression = filename;
    if (selection.length() > 0)
        expression += "[EVENTS]["+selection+"]";
    if (logTerse()) {
        log << parformat("FITS filename");
        log << expression << std::endl;
    }

    // Open FITS file
    GFits file(expression);

    // Log selected FITS file
    if (logExplicit()) {
        log << std::endl;
        log.header1("FITS file content after selection");
        log << file << std::endl;
    }

    // Check if we have an EVENTS HDU
    if (!file.hashdu("EVENTS")) {
        std::string message = "No \"EVENTS\" extension found in FITS file "+
                              expression+".";
        throw GException::app_error(G_SELECT_EVENTS, message);
    }

    // Determine number of events in EVENTS HDU
    int nevents = file.table("EVENTS")->nrows();

    // If the selected event list is empty then append an empty event list
    // to the observation. Otherwise load the data from the temporary file.
    if (nevents < 1) {

        // Create empty event list
        GCTAEventList eventlist;

        // Append list to observation
        obs->events(&eventlist);

    }
    else {

        // Get temporary file name
        std::string tmpname = std::tmpnam(NULL);

        // Save FITS file to temporary file
        file.saveto(tmpname, true);

        // Load observation from temporary file
        obs->load_unbinned(tmpname);

        // Remove temporary file
        std::remove(tmpname.c_str());

    }

    // Get CTA event list pointer
    GCTAEventList* list =
        static_cast<GCTAEventList*>(const_cast<GEvents*>(obs->events()));

    // Set ROI
    GCTARoi     roi;
    GCTAInstDir instdir;
    instdir.radec_deg(ra, dec);
    roi.centre(instdir);
    roi.radius(m_rad);
    list->roi(roi);

    // Set GTI
    list->gti(gti);

    // Set energy boundaries
    GEbounds ebounds;
    GEnergy  emin;
    GEnergy  emax;
    emin.TeV(m_emin);
    emax.TeV(m_emax);
    ebounds.append(emin, emax);
    list->ebounds(ebounds);

    // Recompute ontime and livetime.
    GTime meantime = 0.5 * (gti.tstart() + gti.tstop());
    obs->ontime(gti.ontime());
    obs->livetime(gti.ontime() * obs->deadc(meantime));

    // Return
    return;
}