示例#1
0
/// Create a submatrix. A submatrix is a view into the parent matrix.
/// Lifetime of a submatrix cannot exceed the lifetime of the parent.
/// @param M :: The parent matrix.
/// @param row :: The first row in the submatrix.
/// @param col :: The first column in the submatrix.
/// @param nRows :: The number of rows in the submatrix.
/// @param nCols :: The number of columns in the submatrix.
GSLMatrix::GSLMatrix(const GSLMatrix &M, size_t row, size_t col, size_t nRows,
                     size_t nCols) {
  if (row + nRows > M.size1() || col + nCols > M.size2()) {
    throw std::runtime_error("Submatrix exceeds matrix size.");
  }
  auto view = gsl_matrix_const_submatrix(M.gsl(), row, col, nRows, nCols);
  m_matrix = gsl_matrix_alloc(nRows, nCols);
  gsl_matrix_memcpy(m_matrix, &view.matrix);
}
示例#2
0
/// Calculate the eigensystem of a symmetric matrix
/// @param eigenValues :: Output variable that receives the eigenvalues of this
/// matrix.
/// @param eigenVectors :: Output variable that receives the eigenvectors of
/// this matrix.
void GSLMatrix::eigenSystem(GSLVector &eigenValues, GSLMatrix &eigenVectors) {
  size_t n = size1();
  if (n != size2()) {
    throw std::runtime_error("Matrix eigenSystem: the matrix must be square.");
  }
  eigenValues.resize(n);
  eigenVectors.resize(n, n);
  auto workspace = gsl_eigen_symmv_alloc(n);
  gsl_eigen_symmv(gsl(), eigenValues.gsl(), eigenVectors.gsl(), workspace);
  gsl_eigen_symmv_free(workspace);
}
示例#3
0
/**
  * Calculates covariance matrix for fitting function's active parameters.
  */
void CostFuncFitting::calActiveCovarianceMatrix(GSLMatrix &covar,
                                                double epsrel) {
  // construct the jacobian
  GSLJacobian J(m_function, m_values->size());
  size_t na = this->nParams(); // number of active parameters
  assert(J.getJ()->size2 == na);
  covar.resize(na, na);

  // calculate the derivatives
  m_function->functionDeriv(*m_domain, J);

  // let the GSL to compute the covariance matrix
  gsl_multifit_covar(J.getJ(), epsrel, covar.gsl());
}
示例#4
0
文件: Fit.cpp 项目: nimgould/mantid
/** Executes the algorithm
*
*  @throw runtime_error Thrown if algorithm cannot execute
*/
void Fit::execConcrete() {

  std::string ties = getPropertyValue("Ties");
  if (!ties.empty()) {
    m_function->addTies(ties);
  }
  std::string contstraints = getPropertyValue("Constraints");
  if (!contstraints.empty()) {
    m_function->addConstraints(contstraints);
  }

  // prepare the function for a fit
  m_function->setUpForFit();

  API::FunctionDomain_sptr domain;
  API::FunctionValues_sptr values;
  m_domainCreator->createDomain(domain, values);

  // do something with the function which may depend on workspace
  m_domainCreator->initFunction(m_function);

  // get the minimizer
  std::string minimizerName = getPropertyValue("Minimizer");
  API::IFuncMinimizer_sptr minimizer =
      API::FuncMinimizerFactory::Instance().createMinimizer(minimizerName);

  // Try to retrieve optional properties
  int intMaxIterations = getProperty("MaxIterations");
  const size_t maxIterations = static_cast<size_t>(intMaxIterations);

  // get the cost function which must be a CostFuncFitting
  boost::shared_ptr<CostFuncFitting> costFunc =
      boost::dynamic_pointer_cast<CostFuncFitting>(
          API::CostFunctionFactory::Instance().create(
              getPropertyValue("CostFunction")));

  costFunc->setFittingFunction(m_function, domain, values);
  minimizer->initialize(costFunc, maxIterations);

  const int64_t nsteps = maxIterations * m_function->estimateNoProgressCalls();
  API::Progress prog(this, 0.0, 1.0, nsteps);
  m_function->setProgressReporter(&prog);

  // do the fitting until success or iteration limit is reached
  size_t iter = 0;
  bool success = false;
  std::string errorString;
  g_log.debug("Starting minimizer iteration\n");
  while (iter < maxIterations) {
    g_log.debug() << "Starting iteration " << iter << "\n";
    m_function->iterationStarting();
    if (!minimizer->iterate(iter)) {
      errorString = minimizer->getError();
      g_log.debug() << "Iteration stopped. Minimizer status string="
                    << errorString << "\n";

      success = errorString.empty() || errorString == "success";
      if (success) {
        errorString = "success";
      }
      break;
    }
    prog.report();
    m_function->iterationFinished();
    ++iter;
  }
  g_log.debug() << "Number of minimizer iterations=" << iter << "\n";

  minimizer->finalize();

  if (iter >= maxIterations) {
    if (!errorString.empty()) {
      errorString += '\n';
    }
    errorString += "Failed to converge after " +
                   boost::lexical_cast<std::string>(maxIterations) +
                   " iterations.";
  }

  // return the status flag
  setPropertyValue("OutputStatus", errorString);

  // degrees of freedom
  size_t dof = domain->size() - costFunc->nParams();
  if (dof == 0)
    dof = 1;
  double rawcostfuncval = minimizer->costFunctionVal();
  double finalCostFuncVal = rawcostfuncval / double(dof);

  setProperty("OutputChi2overDoF", finalCostFuncVal);

  // fit ended, creating output

  // get the workspace
  API::Workspace_const_sptr ws = getProperty("InputWorkspace");

  bool doCreateOutput = getProperty("CreateOutput");
  std::string baseName = getPropertyValue("Output");
  if (!baseName.empty()) {
    doCreateOutput = true;
  }
  bool doCalcErrors = getProperty("CalcErrors");
  if (doCreateOutput) {
    doCalcErrors = true;
  }
  if (costFunc->nParams() == 0) {
    doCalcErrors = false;
  }

  GSLMatrix covar;
  if (doCalcErrors) {
    // Calculate the covariance matrix and the errors.
    costFunc->calCovarianceMatrix(covar);
    costFunc->calFittingErrors(covar, rawcostfuncval);
  }

  if (doCreateOutput) {
    copyMinimizerOutput(*minimizer);

    if (baseName.empty()) {
      baseName = ws->name();
      if (baseName.empty()) {
        baseName = "Output";
      }
    }
    baseName += "_";

    declareProperty(
        new API::WorkspaceProperty<API::ITableWorkspace>(
            "OutputNormalisedCovarianceMatrix", "", Kernel::Direction::Output),
        "The name of the TableWorkspace in which to store the final covariance "
        "matrix");
    setPropertyValue("OutputNormalisedCovarianceMatrix",
                     baseName + "NormalisedCovarianceMatrix");

    Mantid::API::ITableWorkspace_sptr covariance =
        Mantid::API::WorkspaceFactory::Instance().createTable("TableWorkspace");
    covariance->addColumn("str", "Name");
    // set plot type to Label = 6
    covariance->getColumn(covariance->columnCount() - 1)->setPlotType(6);
    // std::vector<std::string> paramThatAreFitted; // used for populating 1st
    // "name" column
    for (size_t i = 0; i < m_function->nParams(); i++) {
      if (m_function->isActive(i)) {
        covariance->addColumn("double", m_function->parameterName(i));
        // paramThatAreFitted.push_back(m_function->parameterName(i));
      }
    }

    size_t np = m_function->nParams();
    size_t ia = 0;
    for (size_t i = 0; i < np; i++) {
      if (m_function->isFixed(i))
        continue;
      Mantid::API::TableRow row = covariance->appendRow();
      row << m_function->parameterName(i);
      size_t ja = 0;
      for (size_t j = 0; j < np; j++) {
        if (m_function->isFixed(j))
          continue;
        if (j == i)
          row << 100.0;
        else {
          if (!covar.gsl()) {
            throw std::runtime_error(
                "There was an error while allocating the (GSL) covariance "
                "matrix "
                "which is needed to produce fitting error results.");
          }
          row << 100.0 * covar.get(ia, ja) /
                     sqrt(covar.get(ia, ia) * covar.get(ja, ja));
        }
        ++ja;
      }
      ++ia;
    }

    setProperty("OutputNormalisedCovarianceMatrix", covariance);

    // create output parameter table workspace to store final fit parameters
    // including error estimates if derivative of fitting function defined

    declareProperty(new API::WorkspaceProperty<API::ITableWorkspace>(
                        "OutputParameters", "", Kernel::Direction::Output),
                    "The name of the TableWorkspace in which to store the "
                    "final fit parameters");

    setPropertyValue("OutputParameters", baseName + "Parameters");

    Mantid::API::ITableWorkspace_sptr result =
        Mantid::API::WorkspaceFactory::Instance().createTable("TableWorkspace");
    result->addColumn("str", "Name");
    // set plot type to Label = 6
    result->getColumn(result->columnCount() - 1)->setPlotType(6);
    result->addColumn("double", "Value");
    result->addColumn("double", "Error");
    // yErr = 5
    result->getColumn(result->columnCount() - 1)->setPlotType(5);

    for (size_t i = 0; i < m_function->nParams(); i++) {
      Mantid::API::TableRow row = result->appendRow();
      row << m_function->parameterName(i) << m_function->getParameter(i)
          << m_function->getError(i);
    }
    // Add chi-squared value at the end of parameter table
    Mantid::API::TableRow row = result->appendRow();
#if 1
    std::string costfuncname = getPropertyValue("CostFunction");
    if (costfuncname == "Rwp")
      row << "Cost function value" << rawcostfuncval;
    else
      row << "Cost function value" << finalCostFuncVal;
    setProperty("OutputParameters", result);
#else
    row << "Cost function value" << finalCostFuncVal;
    Mantid::API::TableRow row2 = result->appendRow();
    std::string name(getPropertyValue("CostFunction"));
    name += " value";
    row2 << name << rawcostfuncval;
#endif

    setProperty("OutputParameters", result);

    bool outputParametersOnly = getProperty("OutputParametersOnly");

    if (!outputParametersOnly) {
      const bool unrollComposites = getProperty("OutputCompositeMembers");
      bool convolveMembers = existsProperty("ConvolveMembers");
      if (convolveMembers) {
        convolveMembers = getProperty("ConvolveMembers");
      }
      m_domainCreator->separateCompositeMembersInOutput(unrollComposites,
                                                        convolveMembers);
      m_domainCreator->createOutputWorkspace(baseName, m_function, domain,
                                             values);
    }
  }

  progress(1.0);
}
示例#5
0
/// Copy constructor
/// @param M :: The other matrix.
GSLMatrix::GSLMatrix(const GSLMatrix &M) {
  m_matrix = gsl_matrix_alloc(M.size1(), M.size2());
  gsl_matrix_memcpy(m_matrix, M.gsl());
}