/*------------------------------------------------------------------*\ |* Visualization functions *| \*------------------------------------------------------------------*/ void plotFunction(FunctionENUM function) { switch (function) { case FUNCTION1: for (double i = LEFT; i <= RIGHT; i += 0.001) { graphWin.plot(i, f1(i), 1); } break; case FUNCTION2: for (double i = LEFT; i <= RIGHT; i += 0.0001) { graphWin.plot(i, f2(i), 1); } break; case GOLD_FUNCTION: for (int i = 0; i < 19; i++) { graphWin.segment(map(i, 0, 19, 0, RIGHT), map(arrayGold[i], 250, 1700, 0, TOP), map(i + 1, 0, 19, 0, RIGHT), map(arrayGold[i + 1], 250, 1700, 0, TOP)); } break; default: cout << "The given function does not exist"; break; } }
/**************************************************** * Helper functions ****************************************************/ void plotCurrentFunction() { for(double i = LEFTLIMIT; i <= RIGHTLIMIT; i = i + 0.01) { #ifdef USING_FIRST_FUNCTION graphWin.plot(i,f(i),1); #else graphWin.plot(i,g(i),1); #endif } }
void plotAdaptedFunction(double lambda) { for(double i = LEFTLIMIT; i < RIGHTLIMIT; i += 0.01) { graphWin.plot(i, fixedPointAdapterFunction(i, lambda), 1); } }
void drawFunctions() { const float STEP = graphWin.findSmartStepX(); glPointSize(2.0f); //Draw selected (f(x)) for(float x=graphWin.xMin(); x<graphWin.xMax(); x+=STEP) graphWin.plot(x, f(x), 1.0f,0.5f,0.0f); //Draw f(x) = x for(float x=graphWin.xMin(); x<graphWin.xMax(); x+=STEP) graphWin.plot( x, x, 0.5f,0.5f,0.5f); //Draw g(x) for(float x=graphWin.xMin()+STEP; x<graphWin.xMax(); x+=STEP) graphWin.plot(x, g(x), 1.0f,0.5f,1.0f); clear(); printHeader(); std::cout << "x est compris dans l'ensemble [" << graphWin.xMin() << ";" << graphWin.xMax() << "[" << std::endl; std::cout << "y est compris dans l'ensemble [" << graphWin.yMin() << ";" << graphWin.yMax() << "[" << std::endl << std::endl; std::cout << "Information graphique : " << std::endl << "- Fonction choisie (f(x)) en orange" << std::endl << "- Fonction h(x) = x, en gris" << std::endl << "- Fonction g(x) = x + l*f(x), l = 1, en rose" << std::endl << "- Les axes x,y en bleu " << std::endl << "- Les vecteurs unitaires en rouge " << std::endl << "- Les solutions de la fonction en vert" << std::endl << std::endl; vector<long double> solutions = findRoot(); std::cout << "Solutions : " << std::endl; glColor3f(0.0f, 1.0f, 0.0f); glPointSize(10); //Draw solutions for(unsigned int i = 0;i < solutions.size(); ++i) { std::cout << "[" << i << "] -> " << static_cast<double>(solutions[i]) << std::endl; glBegin( GL_POINTS ); glVertex3d(solutions[i], 0, 0.0); glEnd(); } }
void plotSecondDegreeDerivatedFunction(FunctionENUM function, double h) { if (function != GOLD_FUNCTION) { for (double i = LEFT; i <= RIGHT; i += 0.001) { graphWin.plot(i, calculateSecondDegreeDerivative(function, i, h), 1); } } else { for (double i = 0; i < 18; i += 1) { double secondDegreeDerivative = calculateSecondDegreeDerivative(function, i, h); double secondDegreeDerivativePlusOne = calculateSecondDegreeDerivative(function, i + 1, h); graphWin.segment(map(i, 0, 19, 0, RIGHT), map(secondDegreeDerivative, 250, 1700, 0, TOP), map(i + 1, 0, 19, 0, RIGHT), map(secondDegreeDerivativePlusOne, 250, 1700, 0, TOP)); } } }
void plotDerivatedFunction(FunctionENUM function, DerivationMethodENUM derivationMethod, double h) { if (function != GOLD_FUNCTION) { for (double i = LEFT; i <= RIGHT; i += 0.001) { graphWin.plot(i, calculateDerivative(function, i, h, derivationMethod), 1); } } else { double leftLimit = derivationMethod == CENTRAL_DIFFERENCE ? 1 : 0; for (double i = leftLimit; i < 18; i += 1) { double derivative = calculateDerivative(function, i, h, derivationMethod); double derivativePlusOne = calculateDerivative(function, i + 1, h, derivationMethod); graphWin.segment(map(i, 0, 19, 0, RIGHT), map(derivative, 250, 1700, 0, TOP), map(i + 1, 0, 19, 0, RIGHT), map(derivativePlusOne, 250, 1700, 0, TOP)); } } }
void fixedPoint(double epsilon, double lambda, double startingPoint,bool isFirst) { double previousPoint = startingPoint; int loopCounter = 0; while (fabs(fixedPointAdapterFunction(previousPoint) - previousPoint) > epsilon && loopCounter < LOOP_LIMIT) { previousPoint=fixedPointAdapterFunction(previousPoint, lambda); if(numberLine == 2) { plotAdaptedFunction(lambda);//we plot it here to have the proper lamda drawn graphWin.segment(previousPoint, fixedPointAdapterFunction(previousPoint, lambda), fixedPointAdapterFunction(previousPoint, lambda), fixedPointAdapterFunction(previousPoint, lambda)); graphWin.segment(previousPoint, previousPoint, previousPoint, fixedPointAdapterFunction(previousPoint, lambda)); } loopCounter++; } #ifdef USING_FIRST_FUNCTION if(f(previousPoint) <= epsilon) #else if(g(previousPoint) <= epsilon) #endif { graphWin.plot(previousPoint,fixedPointAdapterFunction(previousPoint, lambda),5); cout << "x = " << previousPoint << endl; } else { cout << "x MAUVAIS = " << previousPoint << endl; } double tester = 2.0; if(lambda > tester) { numberLine++; lambda -= tester; fixedPoint(epsilon, lambda,startingPoint); } }
void plotDerivationMethod(FunctionENUM function, double x, double h, DerivationMethodENUM derivativeMethod) { switch (function) { case FUNCTION1: switch (derivativeMethod) { case PROGRESSIVE_DIFFERENCE: for (double delta = 0; delta <= h; delta += h) { graphWin.plot(x + delta, f1(x + delta), 4); graphWin.segment(x + delta, 0, x + delta, f1(x + delta)); graphWin.segment(0, f1(x + delta), x + delta, f1(x + delta)); } //Segment between two points graphWin.segment(x, f1(x), x + h, f1(x + h)); break; case CENTRAL_DIFFERENCE: for (double delta = -h; delta <= h; delta += h) { //Points graphWin.plot(x + delta, f1(x + delta), 4); //Lines from X axe graphWin.segment(x + delta, 0, x + delta, f1(x + delta)); //Lines from Y axe graphWin.segment(0, f1(x + delta), x + delta, f1(x + delta)); } //Segment between two points graphWin.segment(x - h, f1(x - h), x + h, f1(x + h)); break; case FOURTH_DEGREE_POLYNOM: for (double delta = -h; delta <= h; delta += h / 2) { graphWin.segment(x + delta, 0, x + delta, f1(x + delta)); graphWin.plot(x + delta, f1(x + delta), 4); } break; default: break; } break; case FUNCTION2: switch (derivativeMethod) { case PROGRESSIVE_DIFFERENCE: for (double delta = 0; delta <= h; delta += h) { graphWin.plot(x + delta, f2(x + delta), 4); graphWin.segment(x + delta, 0, x + delta, f2(x + delta)); graphWin.segment(0, f2(x + delta), x + delta, f2(x + delta)); } //Segment between two points graphWin.segment(x, f2(x), x + h, f2(x + h)); break; case CENTRAL_DIFFERENCE: for (double delta = -h; delta <= h; delta += h) { //Points graphWin.plot(x + delta, f2(x + delta), 4); //Lines from X axe graphWin.segment(x + delta, 0, x + delta, f2(x + delta)); //Lines from Y axe graphWin.segment(0, f2(x + delta), x + delta, f2(x + delta)); } //Segment between two points graphWin.segment(x - h, f2(x - h), x + h, f2(x + h)); break; case FOURTH_DEGREE_POLYNOM: for (double delta = -h; delta <= h; delta += h / 2) { graphWin.segment(x + delta, 0, x + delta, f2(x + delta)); graphWin.plot(x + delta, f2(x + delta), 4); } break; default: break; } break; default: break; } }