示例#1
0
    bool GeoMatchExpression::matchesSingleElement( const BSONElement& e ) const {
        if ( !e.isABSONObj())
            return false;

        GeometryContainer geometry;
        if ( !geometry.parseFromStorage( e ).isOK() )
                return false;

        // Never match big polygon
        if (geometry.getNativeCRS() == STRICT_SPHERE)
            return false;

        // Project this geometry into the CRS of the query
        if (!geometry.supportsProject(_query->getGeometry().getNativeCRS()))
            return false;

        geometry.projectInto(_query->getGeometry().getNativeCRS());

        if (GeoExpression::WITHIN == _query->getPred()) {
            return _query->getGeometry().contains(geometry);
        }
        else {
            verify(GeoExpression::INTERSECT == _query->getPred());
            return _query->getGeometry().intersects(geometry);
        }
    }
示例#2
0
    bool GeoMatchExpression::matchesSingleElement( const BSONElement& e ) const {
        if ( !e.isABSONObj())
            return false;

        GeometryContainer container;
        if ( !container.parseFrom( e.Obj() ) )
                return false;

        return _query.satisfiesPredicate( container );
    }
示例#3
0
    bool S2SearchUtil::getKeysForObject(const BSONObj& obj, const S2IndexingParams& params,
                                        vector<string>* out) {
        S2RegionCoverer coverer;
        params.configureCoverer(&coverer);

        GeometryContainer geoContainer;
        if (!geoContainer.parseFrom(obj)) { return false; }
        if (!geoContainer.hasS2Region()) { return false; }

        keysFromRegion(&coverer, geoContainer.getRegion(), out);

        return true;
    }
示例#4
0
    bool GeoMatchExpression::matchesSingleElement( const BSONElement& e ) const {
        if ( !e.isABSONObj())
            return false;

        GeometryContainer geometry;
        if ( !geometry.parseFrom( e.Obj() ) )
                return false;

        if (GeoQuery::WITHIN == _query->getPred()) {
            return _query->getGeometry().contains(geometry);
        }
        else {
            verify(GeoQuery::INTERSECT == _query->getPred());
            return _query->getGeometry().intersects(geometry);
        }
    }
示例#5
0
    // This is the actual search.
    bool S2Cursor::advance() {
        if (_numToReturn <= 0) { return false; }
        for (; _btreeCursor->ok(); _btreeCursor->advance()) {
            ++_nscanned;
            if (_seen.end() != _seen.find(_btreeCursor->currLoc())) { continue; }
            _seen.insert(_btreeCursor->currLoc());

            ++_matchTested;
            MatchDetails details;
            bool matched = _matcher->matchesCurrent(_btreeCursor.get(), &details);
            if (!matched) { continue; }

            const BSONObj &indexedObj = _btreeCursor->currLoc().obj();

            ++_geoTested;
            size_t geoFieldsMatched = 0;
            // OK, cool, non-geo match satisfied.  See if the object actually overlaps w/the geo
            // query fields.
            for (size_t i = 0; i < _fields.size(); ++i) {
                BSONElementSet geoFieldElements;
                indexedObj.getFieldsDotted(_fields[i].getField(), geoFieldElements, false);
                if (geoFieldElements.empty()) { continue; }

                bool match = false;

                for (BSONElementSet::iterator oi = geoFieldElements.begin();
                     !match && (oi != geoFieldElements.end()); ++oi) {
                    if (!oi->isABSONObj()) { continue; }
                    const BSONObj &geoObj = oi->Obj();
                    GeometryContainer geoContainer;
                    uassert(16698, "malformed geometry: " + geoObj.toString(),
                            geoContainer.parseFrom(geoObj));
                    match = _fields[i].satisfiesPredicate(geoContainer);
                }

                if (match) { ++geoFieldsMatched; }
            }

            if (geoFieldsMatched == _fields.size()) {
                // We have a winner!  And we point at it.
                --_numToReturn;
                return true;
            }
        }
        return false;
    }
示例#6
0
void S2IndexingParams::configureCoverer(const GeometryContainer& geoContainer,
                                        S2RegionCoverer* coverer) const {
    // Points indexed to the finest level was introduced in version 3
    // For backwards compatibility, only do this if the version is > 2
    if (indexVersion >= S2_INDEX_VERSION_3 && geoContainer.isPoint()) {
        coverer->set_min_level(kPointIndexedLevel);
        coverer->set_max_level(kPointIndexedLevel);
    } else {
        coverer->set_min_level(coarsestIndexedLevel);
        coverer->set_max_level(finestIndexedLevel);
    }

    // This is advisory; the two above are strict.
    coverer->set_max_cells(maxCellsInCovering);
}
示例#7
0
// Fill _results with all of the results in the annulus defined by _innerRadius and
// _outerRadius.  If no results are found, grow the annulus and repeat until success (or
// until the edge of the world).
void S2NearIndexCursor::fillResults() {
    verify(_results.empty());
    if (_innerRadius >= _outerRadius) {
        return;
    }
    if (_innerRadius > _maxDistance) {
        return;
    }

    // We iterate until 1. our search radius is too big or 2. we find results.
    do {
        // Some of these arguments are opaque, look at the definitions of the involved classes.
        FieldRangeSet frs(_descriptor->parentNS().c_str(), makeFRSObject(), false, false);
        shared_ptr<FieldRangeVector> frv(new FieldRangeVector(frs, _specForFRV, 1));
        scoped_ptr<BtreeCursor> cursor(BtreeCursor::make(nsdetails(_descriptor->parentNS()),
                                       _descriptor->getOnDisk(), frv, 0, 1));

        // The cursor may return the same obj more than once for a given
        // FRS, so we make sure to only consider it once in any given annulus.
        //
        // We don't want this outside of the 'do' loop because the covering
        // for an annulus may return an object whose distance to the query
        // point is actually contained in a subsequent annulus.  If we
        // didn't consider every object in a given annulus we might miss
        // the point.
        //
        // We don't use a global 'seen' because we get that by requiring
        // the distance from the query point to the indexed geo to be
        // within our 'current' annulus, and I want to dodge all yield
        // issues if possible.
        unordered_set<DiskLoc, DiskLoc::Hasher> seen;

        LOG(1) << "looking at annulus from " << _innerRadius << " to " << _outerRadius << endl;
        LOG(1) << "Total # returned: " << _stats._numReturned << endl;
        // Do the actual search through this annulus.
        for (; cursor->ok(); cursor->advance()) {
            // Don't bother to look at anything we've returned.
            if (_returned.end() != _returned.find(cursor->currLoc())) {
                ++_stats._returnSkip;
                continue;
            }

            ++_stats._nscanned;
            if (seen.end() != seen.find(cursor->currLoc())) {
                ++_stats._btreeDups;
                continue;
            }

            // Get distance interval from our query point to the cell.
            // If it doesn't overlap with our current shell, toss.
            BSONObj currKey(cursor->currKey());
            BSONObjIterator it(currKey);
            BSONElement geoKey;
            for (int i = 0; i <= _nearFieldIndex; ++i) {
                geoKey = it.next();
            }

            S2Cell keyCell = S2Cell(S2CellId::FromString(geoKey.String()));
            if (!_annulus.MayIntersect(keyCell)) {
                ++_stats._keyGeoSkip;
                continue;
            }

            // We have to add this document to seen *AFTER* the key intersection test.
            // A geometry may have several keys, one of which may be in our search shell and one
            // of which may be outside of it.  We don't want to ignore a document just because
            // one of its covers isn't inside this annulus.
            seen.insert(cursor->currLoc());

            // At this point forward, we will not examine the document again in this annulus.

            const BSONObj& indexedObj = cursor->currLoc().obj();

            // Match against indexed geo fields.
            ++_stats._geoMatchTested;
            size_t geoFieldsMatched = 0;
            // See if the object actually overlaps w/the geo query fields.
            for (size_t i = 0; i < _indexedGeoFields.size(); ++i) {
                BSONElementSet geoFieldElements;
                indexedObj.getFieldsDotted(_indexedGeoFields[i].getField(), geoFieldElements,
                                           false);
                if (geoFieldElements.empty()) {
                    continue;
                }

                bool match = false;

                for (BSONElementSet::iterator oi = geoFieldElements.begin();
                        !match && (oi != geoFieldElements.end()); ++oi) {
                    if (!oi->isABSONObj()) {
                        continue;
                    }
                    const BSONObj &geoObj = oi->Obj();
                    GeometryContainer geoContainer;
                    uassert(16762, "ill-formed geometry: " + geoObj.toString(),
                            geoContainer.parseFrom(geoObj));
                    match = _indexedGeoFields[i].satisfiesPredicate(geoContainer);
                }

                if (match) {
                    ++geoFieldsMatched;
                }
            }

            if (geoFieldsMatched != _indexedGeoFields.size()) {
                continue;
            }

            // Get all the fields with that name from the document.
            BSONElementSet geoFieldElements;
            indexedObj.getFieldsDotted(_nearQuery.field, geoFieldElements, false);
            if (geoFieldElements.empty()) {
                continue;
            }

            ++_stats._inAnnulusTested;
            double minDistance = 1e20;
            // Look at each field in the document and take the min. distance.
            for (BSONElementSet::iterator oi = geoFieldElements.begin();
                    oi != geoFieldElements.end(); ++oi) {
                if (!oi->isABSONObj()) {
                    continue;
                }
                double dist = distanceTo(oi->Obj());
                minDistance = min(dist, minDistance);
            }

            // We could be in an annulus, yield, add new points closer to
            // query point than the last point we returned, then unyield.
            // This would return points out of order.
            if (minDistance < _returnedDistance) {
                continue;
            }

            // If the min. distance satisfies our distance criteria
            if (minDistance >= _innerRadius && minDistance < _outerRadius) {
                // The result is valid.  We have to de-dup ourselves here.
                if (_returned.end() == _returned.find(cursor->currLoc())) {
                    _results.push(Result(cursor->currLoc(), cursor->currKey(),
                                         minDistance));
                }
            }
        }

        if (_results.empty()) {
            LOG(1) << "results empty!\n";
            _radiusIncrement *= 2;
            nextAnnulus();
        } else if (_results.size() < 300) {
            _radiusIncrement *= 2;
        } else if (_results.size() > 600) {
            _radiusIncrement /= 2;
        }
    } while (_results.empty()
             && _innerRadius < _maxDistance
             && _innerRadius < _outerRadius);
    LOG(1) << "Filled shell with " << _results.size() << " results" << endl;
}
示例#8
0
    // Fill _results with the next shell of results.  We may have to search several times to do
    // this.  If _results.empty() after calling fillResults, there are no more possible results.
    void S2NearCursor::fillResults() {
        verify(_results.empty());
        if (_innerRadius >= _outerRadius) { return; }
        if (_innerRadius > _maxDistance) { return; }
        if (0 == _numToReturn) { return; }

        // We iterate until 1. our search radius is too big or 2. we find results.
        do {
            // Some of these arguments are opaque, look at the definitions of the involved classes.
            FieldRangeSet frs(_details->parentNS().c_str(), makeFRSObject(), false, false);
            shared_ptr<FieldRangeVector> frv(new FieldRangeVector(frs, _specForFRV, 1));
            scoped_ptr<BtreeCursor> cursor(BtreeCursor::make(nsdetails(_details->parentNS()),
                                                             *_details, frv, 0, 1));

            // The cursor may return the same obj more than once for a given
            // FRS, so we make sure to only consider it once in any given annulus.
            //
            // We don't want this outside of the 'do' loop because the covering
            // for an annulus may return an object whose distance to the query
            // point is actually contained in a subsequent annulus.  If we
            // didn't consider every object in a given annulus we might miss
            // the point.
            //
            // We don't use a global 'seen' because we get that by requiring
            // the distance from the query point to the indexed geo to be
            // within our 'current' annulus, and I want to dodge all yield
            // issues if possible.
            set<DiskLoc> seen;

            LOG(1) << "looking at annulus from " << _innerRadius << " to " << _outerRadius << endl;
            // Do the actual search through this annulus.
            for (; cursor->ok(); cursor->advance()) {
                ++_nscanned;
                if (seen.end() != seen.find(cursor->currLoc())) { continue; }
                seen.insert(cursor->currLoc());

                // Match against non-indexed fields.
                ++_matchTested;
                MatchDetails details;
                bool matched = _matcher->matchesCurrent(cursor.get(), &details);
                if (!matched) { continue; }

                const BSONObj& indexedObj = cursor->currLoc().obj();

                ++_geoTested;
                // Match against indexed geo fields.
                size_t geoFieldsMatched = 0;
                // OK, cool, non-geo match satisfied.  See if the object actually overlaps w/the geo
                // query fields.
                for (size_t i = 0; i < _indexedGeoFields.size(); ++i) {
                    BSONElementSet geoFieldElements;
                    indexedObj.getFieldsDotted(_indexedGeoFields[i].getField(), geoFieldElements,
                                               false);
                    if (geoFieldElements.empty()) { continue; }

                    bool match = false;

                    for (BSONElementSet::iterator oi = geoFieldElements.begin();
                            !match && (oi != geoFieldElements.end()); ++oi) {
                        if (!oi->isABSONObj()) { continue; }
                        const BSONObj &geoObj = oi->Obj();
                        GeometryContainer geoContainer;
                        uassert(16699, "ill-formed geometry: " + geoObj.toString(),
                                geoContainer.parseFrom(geoObj));
                        match = _indexedGeoFields[i].satisfiesPredicate(geoContainer);
                    }

                    if (match) { ++geoFieldsMatched; }
                }

                if (geoFieldsMatched != _indexedGeoFields.size()) { continue; }

                // Finally, see if the item is in our search annulus.
                size_t geoFieldsInRange = 0;
                double minMatchingDistance = 1e20;

                // Get all the fields with that name from the document.
                BSONElementSet geoFieldElements;
                indexedObj.getFieldsDotted(_nearQuery.field, geoFieldElements, false);
                if (geoFieldElements.empty()) { continue; }

                // For each field with that name in the document...
                for (BSONElementSet::iterator oi = geoFieldElements.begin();
                        oi != geoFieldElements.end(); ++oi) {
                    if (!oi->isABSONObj()) { continue; }
                    double dist = distanceTo(oi->Obj());
                    // If it satisfies our distance criteria...
                    if (dist >= _innerRadius && dist <= _outerRadius) {
                        // Success!  For this field.
                        ++geoFieldsInRange;
                        minMatchingDistance = min(dist, minMatchingDistance);
                    }
                }
                // If all the geo query fields had something in range
                if (geoFieldsInRange > 0) {
                    // The result is valid.  We have to de-dup ourselves here.
                    if (_returned.end() == _returned.find(cursor->currLoc())) {
                        _results.push(Result(cursor->currLoc(), cursor->currKey(),
                                             minMatchingDistance));
                    }
                }
            }

            if (_results.empty()) {
                _radiusIncrement *= 2;
                nextAnnulus();
            }
        } while (_results.empty()
                 && _innerRadius < _maxDistance
                 && _innerRadius < _outerRadius);
    }