// adjust the keys of node, which is used during the final phase of the BulkLoad algorithm void MT::AdjKeys (GiSTnode *node) { if (node->Path().IsRoot()) { return; } GiSTpath parentPath = node->Path(); parentPath.MakeParent (); GiSTnode *parentNode = ReadNode (parentPath); GiSTentry *parentEntry = parentNode->SearchPtr(node->Path().Page()); // parent entry assert (parentEntry != NULL); GiSTentry *unionEntry = node->Union(); unionEntry->SetPtr(node->Path().Page()); ((MTkey *) unionEntry->Key())->distance = ((MTkey *) parentEntry->Key())->distance; // necessary to keep track of the distance from the parent if (!parentEntry->IsEqual(*unionEntry)) { // replace this entry parentNode->DeleteEntry(parentEntry->Position()); parentNode->Insert(*unionEntry); WriteNode (parentNode); AdjKeys (parentNode); } delete unionEntry; delete parentEntry; delete parentNode; }
void MTnode::InvalidateEntry (BOOL bNew) { GiSTpath path = Path (); if (path.Level() > 1) { // len>=3 MTnode *parentNode = ((MT *)Tree())->ParentNode((MTnode *)this); for (int i=0; i<parentNode->NumEntries(); i++) { // search the entry in the parent's node MTentry *entry = (MTentry *) (*parentNode)[i].Ptr(); if (entry->Ptr() == path.Page()) { if (bNew) { entry->Key()->distance = -MaxDist(); } entry->Key()->splitted = TRUE; break; } } path.MakeParent (); MTnode *grandNode = ((MT *)Tree())->ParentNode(parentNode); for (int i=0; i<grandNode->NumEntries(); i++) { // search the entry in the grandparent's node MTentry *entry = (MTentry *) (*grandNode)[i].Ptr(); if (entry->Ptr() == path.Page()) { entry->SetMaxRadius(-1); break; } } ((MT *)Tree())->WriteNode(parentNode); // write parent node (in inconsistent state) ((MT *)Tree())->WriteNode(grandNode); // write grandparent node (to invalidate the parent's entry) delete parentNode; delete grandNode; } }
MTnode * MT::ParentNode (MTnode *node) { GiSTpath path = node->Path(); path.MakeParent (); return (MTnode *) ReadNode (path); // parentNode should be destroyed by the caller }
// perform a check of the nodes of the tree void CommandCheck() { GiSTpath path; path.MakeRoot(); gist->CheckNode(path, NULL); }
void MTcursor::FetchNode () { if (queue.IsEmpty()) { return; } MTrecord *record = queue.RemoveFirst (); MTnode *node = (MTnode *) tree.ReadNode (record->Path()); // retrieve next node to be examined delete record; // search the first children to be examined for (int i=0; i<node->NumEntries(); i++) { // for each entry in the current node MTentry *entry = (MTentry *) (*node)[i].Ptr(); double dist = pred->distance(entry->object()); if (!entry->IsLeaf()) { // insert the child node in the priority queue GiSTpath path = node->Path(); path.MakeChild (entry->Ptr()); queue.Insert (new MTrecord (path, MAX(dist - entry->MaxRadius(), 0), dist)); } else { // insert the entry in the result list MTentry *newEntry = (MTentry *) entry->Copy(); newEntry->SetMinRadius(0); newEntry->SetMaxRadius(dist); // we insert the actual distance from the query object as the key radius results.Insert (newEntry); } } delete node; // delete examined node }
void GiST::Print(ostream& os) const { GiSTpath path; path.MakeRoot(); DumpNode(os, path); }
MTcursor::MTcursor (const MT& tree, const MTpred& pred): tree (tree), queue (comparedst), results (compareentry) { GiSTpath path; path.MakeRoot (); queue.Insert (new MTrecord (path, 0, MAXDOUBLE)); this->pred = (MTpred *) pred.Copy (); }
void MT::CollectStats () { GiSTpath path; path.MakeRoot (); GiSTnode *node = ReadNode (path); if (!node->IsLeaf()) { int maxLevel = node->Level(); double *radii = new double[maxLevel]; int *pages = new int[maxLevel]; for (int i=0; i<maxLevel; i++) { pages[i] = 0; radii[i] = 0; } TruePredicate truePredicate; GiSTlist<GiSTentry*> list = node->Search(truePredicate); // retrieve all the entries in this node double overlap = ((MTnode *)node)->Overlap(); double totalOverlap = overlap; delete node; while (!list.IsEmpty()) { GiSTentry *entry = list.RemoveFront (); path.MakeChild (entry->Ptr()); node = ReadNode (path); overlap = ((MTnode *)node)->Overlap(); totalOverlap += overlap; pages[node->Level()]++; radii[node->Level()] += ((MTkey *) entry->Key())->MaxRadius(); GiSTlist<GiSTentry*> newlist; if (!node->IsLeaf()) { newlist = node->Search(truePredicate); // recurse to next level } while (!newlist.IsEmpty()) { list.Append (newlist.RemoveFront ()); } path.MakeParent (); delete entry; delete node; } // output the results cout << "Level:\tPages:\tAverage_Radius:"<<endl; int totalPages = 1; // for the root for (int i=maxLevel-1; i>=0; i--) { totalPages += pages[i]; cout << i << ":\t" << pages[i] << "\t" << radii[i]/pages[i] << endl; } cout << "TotalPages:\t" << totalPages << endl; cout << "LeafPages:\t" << pages[0] << endl; cout << "TotalOverlap:\t" << (float)totalOverlap << endl; delete []radii; delete []pages; } else { delete node; } }
// print a dump of each node of the tree void CommandDump() { GiSTpath path; path.MakeRoot(); #ifdef PRINTING_OBJECTS gist->DumpNode(std::cout, path); #endif }
MTcursor::MTcursor(const MT& tree, const MTpred& query): queue(comparedst), results(compareentry), tree(tree) { GiSTpath path; dst *d; path.MakeRoot(); d=new dst(path, 0, MAXDOUBLE); this->query=(MTpred *)query.Copy(); queue.Insert(d); }
// return root level+1 (the height of the tree) // this is used in the "splitting" phase of the BulkLoad algorithm int MT::TreeHeight () const { GiSTpath path; path.MakeRoot (); GiSTnode *root = ReadNode (path); int i = root->Level(); delete root; return (i+1); }
GiSTlist<MTentry *> MT::RangeSearch (const MTquery& query, int *pages) { GiSTpath path; path.MakeRoot (); MTnode *root = (MTnode *) ReadNode (path); GiSTlist<MTentry *> list = root->RangeSearch(query, pages); delete root; return list; }
void CommandDump(const char *table, GiSTpage page) { int i; if ((i = GetTable(table)) == NOT_FOUND) { cout << "No such table is open.\n"; return; } GiSTpath path; path.MakeRoot(); tables[i].gist->DumpNode(cout, path); }
GiSTnode* GiST::ChooseSubtree(GiSTpage page, const GiSTentry &entry, int level) { GiSTnode *node; GiSTpath path; for(;;) { path.MakeChild(page); node=ReadNode(path); if(level==node->Level()||node->IsLeaf()) break; page=node->SearchMinPenalty(entry); delete node; } return node; }
// split this M-tree into a list of trees having height level, which is used in the "splitting" phase of the BulkLoad algorithm // nCreated is the number of created subtrees, // level is the split level for the tree, // children is the list of the parents of each subtree, // name is the root for the subtrees names // the return value is the list of splitted subtrees's names GiSTlist<char *> * MT::SplitTree (int *nCreated, int level, GiSTlist<MTentry *> *parentEntries, const char *name) { GiSTlist<MTnode *> *oldList = new GiSTlist<MTnode *>; // upper level nodes MTnode *node = new MTnode; // this is because the first operation on node is a delete GiSTpath path; path.MakeRoot (); oldList->Append((MTnode *) ReadNode(path)); // insert the root do { // build the roots list GiSTlist<MTnode *> *newList = new GiSTlist<MTnode *>; // lower level nodes while (!oldList->IsEmpty()) { delete node; // delete the old node created by ReadNode node = oldList->RemoveFront(); // retrieve next node to be examined path = node->Path(); for (int i=0; i<node->NumEntries(); i++) { // append all its children to the new list path.MakeChild ((*node)[i].Ptr()->Ptr()); newList->Append((MTnode *)ReadNode(path)); path.MakeParent (); } } delete oldList; oldList = newList; } while (node->Level() > level); // stop if we're at the split level delete node; GiSTlist<char *> *newTreeNames = new GiSTlist<char *>; // this is the results list while (!oldList->IsEmpty()) { // now append each sub-tree to its root char newName[50]; sprintf (newName, "%s.%i", name, ++(*nCreated)); unlink (newName); // if this M-tree already exists, delete it MT *newTree = new MT; newTree->Create(newName); // create a new M-tree path.MakeRoot (); MTnode *rootNode = (MTnode *) newTree->ReadNode(path); // read the root of the new tree node = oldList->RemoveFront(); newTree->Append(rootNode, (MTnode *)node->Copy()); // append the current node to the root of new tree parentEntries->Append(node->ParentEntry()); // insert the original parent entry into the list newTreeNames->Append(strdup(newName)); // insert the new M-tree name into the list delete node; delete rootNode; delete newTree; } delete oldList; return newTreeNames; }
// append the subtree rooted at from to the node to, which is used in the "append" phase of the BulkLoad algorithm void MT::Append (MTnode *to, MTnode *from) { GiSTlist<MTnode *> *oldList = new GiSTlist<MTnode *>; // upper level nodes to append oldList->Append(from); GiSTlist<GiSTpath> pathList; pathList.Append (to->Path()); MTnode *node = new MTnode, *newNode = NULL; MT *fromTree = (MT *) from->Tree(); do { GiSTlist<MTnode *> *newList = new GiSTlist<MTnode *>; // lower level nodes to append while (!oldList->IsEmpty()) { delete node; node = oldList->RemoveFront(); GiSTpath path = pathList.RemoveFront (); newNode = (MTnode *) ReadNode (path); // node to be appended for (int i=0; i<node->NumEntries(); i++) { MTentry *entry = (MTentry *) (*node)[i].Ptr()->Copy(); if (node->Level() > 0) { // if node isn't a leaf, we've to allocate its children GiSTpath nodePath = node->Path(); nodePath.MakeChild (entry->Ptr()); newList->Append((MTnode *) fromTree->ReadNode(nodePath)); entry->SetPtr(Store()->Allocate()); // allocate its child in the inserted tree path.MakeChild (entry->Ptr()); MTnode *childNode = (MTnode *) CreateNode (); childNode->Path() = path; childNode->SetTree(this); WriteNode (childNode); // write the empty node delete childNode; pathList.Append (path); path.MakeParent (); } newNode->Insert(*entry); delete entry; } newNode->SetLevel(node->Level()); WriteNode (newNode); // write the node delete newNode; } delete oldList; oldList = newList; } while (node->Level() > 0); // until we reach the leaves' level delete node; delete oldList; }
void GiST::ShortenTree() { GiSTpath path; // Shorten the tree if necessary (This should only be done if root actually changed!) path.MakeRoot(); GiSTnode *root=ReadNode(path); if(!root->IsLeaf()&&root->NumEntries()==1) { path.MakeChild((*root)[0]->Ptr()); GiSTnode *child=ReadNode(path); store->Deallocate(path.Page()); child->SetSibling(0); child->Path().MakeRoot(); WriteNode(child); delete child; } delete root; }
void GiST::DumpNode (ostream& os, GiSTpath path) const { GiSTnode *node = ReadNode(path); node->Print(os); if (!node->IsLeaf()) { TruePredicate truePredicate; GiSTlist<GiSTentry*> list = node->Search(truePredicate); while (!list.IsEmpty()) { GiSTentry *e = list.RemoveFront(); path.MakeChild(e->Ptr()); DumpNode (os, path); path.MakeParent(); delete e; } } delete node; }
GiSTentry * MTnode::Union () const { Object *objTemp = NULL; if (!obj) { // retrieve the node's parent object MTentry *parentEntry = ParentEntry (); ((MTnode *)this)->obj = (objTemp = new Object(parentEntry->object())); delete parentEntry; } GiSTpath path = ((MTnode *)this)->Path(); MTentry *unionEntry = new MTentry; unionEntry->InitKey(); if (path.Level() > 1) { // len>=3 MTentry *parentEntry = ParentEntry (); if (parentEntry) { // copy the entry unionEntry->Key()->distance = parentEntry->Key()->distance; if (parentEntry->Key()->splitted) { unionEntry->Key()->splitted = TRUE; } delete parentEntry; } if (unionEntry->Key()->distance == -MaxDist()) { // compute the distance from the parent MTnode *parentNode = ((MT *)Tree())->ParentNode((MTnode *)this); MTentry *grandEntry = parentNode->ParentEntry(); unionEntry->Key()->distance = obj->distance(grandEntry->object()); unionEntry->Key()->splitted = TRUE; delete grandEntry; delete parentNode; } } unionEntry->SetObject(*obj); unionEntry->SetMaxRadius(0); unionEntry->SetMinRadius(MAXDOUBLE); mMRadius (unionEntry); // compute the radii if (objTemp) { delete objTemp; } ((MTnode *)this)->obj = NULL; return unionEntry; }
BOOL MT::CheckNode (GiSTpath path, MTentry *parentEntry) { MTnode *node = (MTnode *) ReadNode (path); BOOL ret = TRUE; for (int i=0; i<node->NumEntries() && ret; i++) { MTentry *nextEntry = (MTentry *) (*node)[i].Ptr(); if (parentEntry!=NULL && (nextEntry->Key()->distance+nextEntry->MaxRadius() > parentEntry->MaxRadius() || nextEntry->Key()->distance != nextEntry->object().distance(parentEntry->object()))) { cout << "Error with entry " << nextEntry << "in " << node; ret = FALSE; } if (!node->IsLeaf()) { path.MakeChild (nextEntry->Ptr()); ret &= CheckNode (path, nextEntry); path.MakeParent (); } } delete node; return ret; }
int main() { MXTree *tree = new MXTree; tree->Create(MXTreePath.c_str()); assert(tree->IsOpen()); tree->Open(MXTreePath.c_str()); time_t time_start, time_end; time(&time_start); ifstream fin(path.c_str()); for (int i=0; i<amount; i++) { Object *obj = Read(fin); tree->Insert(MTentry(MTkey(*obj, 0, 0), i)); delete obj; Progress(i, amount); } fin.close(); time(&time_end); cout<<difftime(time_end, time_start)<<endl; GiSTpath path; path.MakeRoot(); //tree->DumpNode(cout, path); tree->CheckNode(path, NULL); tree->CollectStats(); delete tree; //unlink(MXTreePath.c_str()); //unlink(BitMapPath.c_str()); cout << "Computed dists = " << compdists << endl; cout << "IO reads = " << IOread << endl; cout << "IO writes = " << IOwrite << endl; return 0; }
GiSTlist<MTentry *> MTnode::RangeSearch (const MTquery &query) { GiSTlist<MTentry *> results; if (IsLeaf()) { for (int i=0; i<NumEntries(); i++) { MTentry *entry = (MTentry *) (*this)[i].Ptr()->Copy(); MTquery *newQuery = (MTquery *) query.Copy(); if (newQuery->Consistent(*entry)) { // object qualifies entry->SetMaxRadius(newQuery->Grade()); results.Append (entry); } else { delete entry; } delete newQuery; } } else { for (int i=0; i<NumEntries(); i++) { MTentry *entry = (MTentry *) (*this)[i].Ptr(); MTquery *newQuery = (MTquery *) query.Copy(); if (newQuery->Consistent(*entry)) { // sub-tree included GiSTpath childPath = Path (); childPath.MakeChild (entry->Ptr()); MTnode *childNode = (MTnode *) ((MT *)Tree())->ReadNode(childPath); GiSTlist<MTentry *> childResults = childNode->RangeSearch(*newQuery); // recurse the search while (!childResults.IsEmpty()) { results.Append (childResults.RemoveFront()); } delete childNode; } delete newQuery; } } return results; }
// load this M-tree with n data using the BulkLoad algorithm [CP98] // data is an array of n entries // padFactor is the maximum node utilization (use 1) // name is the name of the tree void MT::BulkLoad (MTentry **data, int n, double padFactor, const char *name) { int size = 0; if (EntrySize()) { size = n * (sizeof(GiSTpage) + EntrySize()); // (only valid if we've fixed size entries) } else { for (int i=0; i<n; i++) { size += sizeof(GiSTlte) + sizeof(GiSTpage) + data[i]->CompressedLength(); } } int totSize = size + GIST_PAGE_HEADER_SIZE + sizeof(GiSTlte); if (totSize > Store()->PageSize()) { // we need to split the entries into several sub-trees int numEntries = (int)(Store()->PageSize()*padFactor*n) / totSize; int s = (int) MAX (MIN (numEntries, ceil(((float)n)/numEntries)), numEntries*MIN_UTIL); // initial number of samples int nSamples, *samples = new int[s], *sizes = NULL, *ns = NULL, iter = 0, MAXITER = s * s; GiSTlist<double *> *distm = (GiSTlist<double *> *) calloc (s, sizeof(GiSTlist<double *>)); // relative distances between samples int MINSIZE = (int) (Store()->PageSize()*MIN_UTIL), addEntrySize = EntrySize() ? sizeof(GiSTpage) : sizeof(GiSTlte)+sizeof(GiSTpage); GiSTlist<int> *lists = NULL; // set for each sample set GiSTlist<double> *dists = NULL; // set for distance between each sample and its members BOOL *bSampled = new BOOL[n]; // is this entry in the samples set? // sampling phase do { iter++; if (iter > 1) { // this is a new sampling phase while (!lists[0].IsEmpty()) { lists[0].RemoveFront (); dists[0].RemoveFront (); } delete []lists; delete []dists; delete []sizes; delete []ns; while (!distm[0].IsEmpty()) { delete []distm[0].RemoveFront(); // empty the distance list } for (int i=1; i<s; i++) { distm[i].front = distm[i].rear = NULL; } } if (iter >= MAXITER) { cout << "Too many loops in BulkLoad!"<<endl<<"Please select a lower minimum node utilization or a bigger node size."<<endl; exit(1); } for (int i=0; i<n; i++) { bSampled[i] = FALSE; } nSamples = 0; // pick s samples to create parents while (nSamples < s) { int i; do { i = PickRandom (0, n); } while (bSampled[i]); bSampled[i] = TRUE; samples[nSamples++] = i; } lists = new GiSTlist<int>[s]; dists = new GiSTlist<double>[s]; sizes = new int[s]; ns = new int[s]; for (int i=0; i<s; i++) { sizes[i] = GIST_PAGE_HEADER_SIZE + sizeof(GiSTlte); ns[i] = 1; distm[i].Prepend (new double[s]); } // compute the relative distances between samples for (int i=0; i<s; i++) { for (int j=0; j<i; j++) { distm[j].front->entry[i] = distm[i].front->entry[j] = data[samples[j]]->object().distance(data[samples[i]]->object()); } distm[i].front->entry[i] = 0; } // assign each entry to its nearest parent for (int i=0; i<n; i++) { if (bSampled[i]) { int j = 0; for (; samples[j]!=i; j++); // find this entry in the samples set and return position in it lists[j].Prepend (i); // insert the entry in the right sample dists[j].Prepend (0); // distance between sample and data[i] sizes[j] += addEntrySize + data[i]->CompressedLength(); } else { // here we optimize the distance computations (like we do in the insert algorithm) double *dist = new double[s]; // distance between this non-sample and samples dist[0] = data[samples[0]]->object().distance(data[i]->object()); int minIndex = 0; for (int j=1; j<s; j++) { // seek the nearest sample dist[j] = -MaxDist(); if (fabs (data[samples[j]]->Key()->distance - data[i]->Key()->distance) >= dist[minIndex]) { // pruning continue; } BOOL flag = TRUE; for (int k=0; k<j && flag; k++) { // pruning (other samples) if (dist[k] < 0) { continue; } else { flag = fabs (dist[k] - distm[j].front->entry[k]) < dist[minIndex]; } } if (!flag) { continue; } dist[j] = data[samples[j]]->object().distance(data[i]->object()); // have to compute this distance if (dist[j] < dist[minIndex]) { minIndex = j; } } lists[minIndex].Append (i); // insert the entry in the right sample dists[minIndex].Append (dist[minIndex]); // distance between sample and data[i] sizes[minIndex] += addEntrySize + data[i]->CompressedLength(); ns[minIndex]++; sizes[minIndex] >= MINSIZE ? delete []dist : distm[minIndex].Append (dist); // correspond with lists } } // redistribute underfilled parents int i; while (sizes[i = FindMin (sizes, nSamples)] < MINSIZE) { GiSTlist<int> list = lists[i]; // each sample set while (!dists[i].IsEmpty()) { // clear distance between each sample and its members dists[i].RemoveFront (); } // substitute this set with last set for (int j=0; j<nSamples; j++) { for (GiSTlistnode<double *> *node=distm[j].front; node; node=node->next) { node->entry[i] = node->entry[nSamples-1]; } } GiSTlist<double *> dlist = distm[i]; // relative distances between sample[i] and other samples, reposition by myself distm[i] = distm[nSamples-1]; lists[i] = lists[nSamples-1]; dists[i] = dists[nSamples-1]; samples[i] = samples[nSamples-1]; sizes[i] = sizes[nSamples-1]; ns[i] = ns[nSamples-1]; nSamples--; while (!list.IsEmpty()) { // assign each entry to its nearest parent double *dist = dlist.RemoveFront (); // relative distances between sample[i] (old) and other samples (old) int minIndex = -1; for (int j=0; j<nSamples && minIndex<0; j++) { // search for a computed distance if (dist[j] > 0) { minIndex = j; } } int k = list.RemoveFront (); if (minIndex < 0) { // no distance was computed (i.e. all distances were pruned) dist[0] = data[samples[0]]->object().distance(data[k]->object()); minIndex = 0; } for (int j=0; j<nSamples; j++) { if (j == minIndex) { continue; } if (dist[j] < 0) { // distance wasn't computed if (fabs (data[samples[j]]->Key()->distance - data[k]->Key()->distance) >= dist[minIndex]) { continue; // pruning } BOOL flag = TRUE; for (int i=0; i<j && flag; i++) { // pruning (other samples) if (dist[i] < 0) { continue; } else { flag = fabs (dist[i] - distm[j].front->entry[i]) < dist[minIndex]; } } if (!flag) { continue; } dist[j] = data[samples[j]]->object().distance(data[k]->object()); // have to compute this distance } if (dist[j] < dist[minIndex]) { minIndex = j; } } lists[minIndex].Append (k); dists[minIndex].Append (dist[minIndex]); sizes[minIndex] += addEntrySize + data[k]->CompressedLength(); ns[minIndex]++; sizes[minIndex] >= MINSIZE ? delete []dist : distm[minIndex].Append (dist); // correspond with lists } assert (dlist.IsEmpty()); // so is the list } } while (nSamples == 1); // if there's only one child, repeat the sampling phase MTentry ***array = new MTentry **[nSamples]; // array of the entries for each sub-tree for (int i=0; i<nSamples; i++) { // convert the lists into arrays array[i] = new MTentry *[ns[i]]; for (int j=0; j<ns[i]; j++) { array[i][j] = (MTentry *) data[lists[i].RemoveFront ()]->Copy(); array[i][j]->Key()->distance = dists[i].RemoveFront (); } assert (lists[i].IsEmpty()); assert (dists[i].IsEmpty()); } delete []lists; delete []dists; delete []sizes; delete []bSampled; for (int i=0; i<nSamples; i++) { while (!distm[i].IsEmpty()) { delete [](distm[i].RemoveFront()); } } free (distm); // build an M-tree under each parent int nInit = nSamples; MT *subtree = new MT; GiSTlist<char *> subtreeNames; // list of the subtrees names GiSTlist<MTentry *> topEntries; // list of the parent entries of each subtree int nCreated = 0, minHeight = MAXINT; char newName[50]; for (int i=0; i<nInit; i++) { sprintf (newName, "%s.%i", name, ++nCreated); unlink (newName); subtree->Create(newName); // create the new subtree subtree->BulkLoad(array[i], ns[i], padFactor, newName); // build the subtree GiSTpath path; path.MakeRoot (); MTnode *subtreeRoot = (MTnode *) subtree->ReadNode(path); if (subtreeRoot->IsUnderFull(*Store())) { // if the subtree root node is underfilled, we have to split the tree GiSTlist<MTentry *> *parentEntries = new GiSTlist<MTentry *>; GiSTlist<char *> *newTreeNames = subtree->SplitTree(&nCreated, subtree->TreeHeight()-1, parentEntries, name); // split the tree nSamples--; while (!newTreeNames->IsEmpty()) { // insert all the new trees in the subtrees list subtreeNames.Append (newTreeNames->RemoveFront()); MTentry *entry = parentEntries->RemoveFront(); for (int j=0; j<n; j++) { if (data[j]->object() == entry->object()) { // append the parent entry to the list topEntries.Append (data[j]); break; } } delete entry; nSamples++; } delete newTreeNames; delete parentEntries; minHeight = MIN (minHeight, subtree->TreeHeight()-1); } else { subtreeNames.Append (strdup(newName)); topEntries.Append (data[samples[i]]); minHeight = MIN (minHeight, subtree->TreeHeight()); } delete subtreeRoot; subtree->Close(); delete subtree->Store(); // it was created in subtree->Create() } delete []samples; for (int i=0; i<nInit; i++) { for (int j=0; j<ns[i]; j++) { delete array[i][j]; } delete []array[i]; } delete []array; delete []ns; // fix the subtree height GiSTlist<char *> subtreeNames2; // list of the subtrees names GiSTlist<MTentry *> topEntries2; // list of the parent entries of each subtree while (!topEntries.IsEmpty()) { // insert the trees in the list (splitting trees if necessary) MTentry *parentEntry = topEntries.RemoveFront (); char *tmp = subtreeNames.RemoveFront (); strcpy (newName, tmp); delete []tmp; subtree->Open(newName); if (subtree->TreeHeight() > minHeight) { // we have to split the tree to reduce its height nSamples--; GiSTlist<MTentry *> *parentEntries = new GiSTlist<MTentry *>; GiSTlist<char *> *newTreeNames = subtree->SplitTree(&nCreated, minHeight, parentEntries, name); // split the tree while (!newTreeNames->IsEmpty()) { // insert all the new trees in the subtrees list subtreeNames2.Append (newTreeNames->RemoveFront()); MTentry *entry = parentEntries->RemoveFront(); for (int j=0; j<n; j++) { if (data[j]->object() == entry->object()) { // append the parent entry to the parents list topEntries2.Append (data[j]); break;; } } delete entry; nSamples++; } delete newTreeNames; delete parentEntries; } else { // simply insert the tree and its parent entry to the lists subtreeNames2.Append (strdup(newName)); topEntries2.Append (parentEntry); } subtree->Close(); delete subtree->Store(); // it was created in tree->Open() } // build the super tree upon the parents MTentry **topEntrArr = new MTentry *[nSamples]; // array of the parent entries for each subtree char **subNameArr = new char *[nSamples]; // array of the subtrees names for (int i=0; i<nSamples; i++) { // convert the lists into arrays topEntrArr[i] = topEntries2.RemoveFront (); subNameArr[i] = subtreeNames2.RemoveFront (); } assert (topEntries2.IsEmpty()); assert (subtreeNames2.IsEmpty()); sprintf (newName, "%s.0", name); BulkLoad (topEntrArr, nSamples, padFactor, newName); // attach each subtree to the leaves of the super tree GiSTpath path; path.MakeRoot (); MTnode *node = (MTnode *) ReadNode (path); GiSTlist<MTnode *> *oldList = new GiSTlist<MTnode *>; // upper level nodes oldList->Append(node); int level = node->Level(); while (level > 0) { // build the leaves list for super tree GiSTlist<MTnode *> *newList = new GiSTlist<MTnode *>; // lower level nodes while (!oldList->IsEmpty()) { node = oldList->RemoveFront(); path = node->Path(); node->SetLevel(node->Level() + minHeight); // update level of the upper nodes of the super tree WriteNode (node); for (int i=0; i<node->NumEntries(); i++) { MTentry *entry = (MTentry *) (*node)[i].Ptr(); path.MakeChild (entry->Ptr()); newList->Append((MTnode *)ReadNode(path)); path.MakeParent (); } delete node; } delete oldList; oldList = newList; level--; } while (!oldList->IsEmpty()) { // attach each subtree to its leaf node = oldList->RemoveFront(); // retrieve next leaf (root of subtree) node->SetLevel(minHeight); // update level of the root of the subtree path = node->Path(); for (int i=0; i<node->NumEntries(); i++) { MTentry *entry = (MTentry *) (*node)[i].Ptr(); path.MakeChild(Store()->Allocate()); MTnode *newNode = (MTnode *) CreateNode (); newNode->Path() = path; entry->SetPtr(path.Page()); path.MakeParent (); int j = 0; for (; entry->object() != topEntrArr[j]->object(); j++); // search the position to append subtree->Open(subNameArr[j]); GiSTpath rootPath; rootPath.MakeRoot (); Append (newNode, (MTnode *)subtree->ReadNode(rootPath)); // append this subtree to the super tree subtree->Close(); delete subtree->Store(); // it was created in tree->Open() delete newNode; } WriteNode (node); delete node; } subtree->Open(subNameArr[0]); // in order to destroy the object tree delete subtree; for (int i=0; i<nSamples; i++) { delete []subNameArr[i]; } delete []subNameArr; delete []topEntrArr; // update radii of the upper nodes of the result M-tree path.MakeRoot (); node = (MTnode *) ReadNode (path); oldList->Append(node); level = node->Level(); while (level >= minHeight) { // build the list of the nodes which radii should be recomputed GiSTlist<MTnode *> *newList = new GiSTlist<MTnode *>; while (!oldList->IsEmpty()) { node = oldList->RemoveFront(); path = node->Path(); for (int i=0; i<node->NumEntries(); i++) { path.MakeChild ((*node)[i].Ptr()->Ptr()); newList->Append((MTnode *)ReadNode(path)); path.MakeParent (); } delete node; } delete oldList; oldList = newList; level--; } while (!oldList->IsEmpty()) { // adjust the radii of the nodes MTnode *node = oldList->RemoveFront(); AdjKeys (node); delete node; } delete oldList; for (int i=0; i<=nCreated; i++) { // delete all temporary subtrees sprintf (newName, "%s.%i", name, i); unlink (newName); } } else { // we can insert all the entries in a single node GiSTpath path; path.MakeRoot (); GiSTnode *node = ReadNode (path); for (int i=0; i<n; i++) { node->Insert(*(data[i])); } assert (!node->IsOverFull(*Store())); WriteNode (node); delete node; } }
void MXTree::Split(GiSTnode **node, const GiSTentry& entry) { double radii[2], dist, *dists = new double[(*node)->NumEntries()*2]; int pageNums[2], cands[2]; vector<vector<int>> vec(2); ((MXTnode *)(*node))->TestPromotion(radii, &dist, pageNums, cands, dists, vec); if (Trade((*node)->Path().IsRoot(), radii, dist, pageNums, ((MXTnode *)(*node))->GetPageNum()+1, (*node)->NumEntries())) { // don't split now delete[] dists; GiSTpath oldPath = (*node)->Path(); int startPage = ((*node)->Path().IsRoot() ? rootPage : (*node)->Path().Page()); int pageNum = ((MXTnode *)(*node))->GetPageNum(); ((MXTfile *)store)->Deallocate(startPage, pageNum); startPage = ((MXTfile *)store)->Allocate(++pageNum); (*node)->Path().MakeSibling(startPage); rootPage = ((*node)->Path().IsRoot() ? startPage : rootPage); ((MXTnode *)(*node))->SetPageNum(pageNum); WriteNode(*node); if (!(*node)->Path().IsRoot() && startPage != oldPath.Page()) { GiSTpath parentPath = oldPath; parentPath.MakeParent(); GiSTnode *parentNode = ReadNode(parentPath); GiSTentry *e = parentNode->SearchPtr(oldPath.Page()); assert(e != NULL); int pos = e->Position(); e->SetPtr(startPage); parentNode->DeleteEntry(pos); parentNode->InsertBefore(*e, pos); WriteNode(parentNode); delete parentNode; delete e; } } else { // split now bool bLeft = false, bNewRoot = false; if ((*node)->Path().IsRoot()) { bNewRoot = true; (*node)->Path().MakeChild(rootPage); rootPage = store->Allocate(); } int oldPageNum = ((MXTnode *)(*node))->GetPageNum(); GiSTnode *node2 = ((MXTnode *)(*node))->PickSplit(cands, dists, vec); delete[] dists; int curPageNum = ((MXTnode *)(*node))->GetPageNum(); assert(oldPageNum >= curPageNum); if (oldPageNum > curPageNum) { ((MXTfile *)store)->Deallocate((*node)->Path().Page()+curPageNum, oldPageNum-curPageNum); } node2->Path().MakeSibling(((MXTfile *)store)->Allocate(((MXTnode *)node2)->GetPageNum())); WriteNode(*node); WriteNode(node2); GiSTentry *e = (*node)->SearchPtr(entry.Ptr()); if (e != NULL) { bLeft = true; delete e; } GiSTentry *e1 = (*node)->Union(); GiSTentry *e2 = node2->Union(); e1->SetPtr((*node)->Path().Page()); e2->SetPtr(node2->Path().Page()); // Create new root if root is being split if (bNewRoot) { GiSTnode *root = NewNode(this); root->SetLevel((*node)->Level() + 1); root->InsertBefore(*e1, 0); root->InsertBefore(*e2, 1); root->Path().MakeRoot(); WriteNode(root); delete root; } else { // Insert entry for N' in parent GiSTpath parentPath = (*node)->Path(); parentPath.MakeParent(); GiSTnode *parent = ReadNode(parentPath); // Find the entry for N in parent GiSTentry *e = parent->SearchPtr((*node)->Path().Page()); assert(e != NULL); // Insert the new entry right after it int pos = e->Position(); parent->DeleteEntry(pos); parent->InsertBefore(*e1, pos); parent->InsertBefore(*e2, pos+1); delete e; if (!parent->IsOverFull(*store)) { WriteNode(parent); } else { Split(&parent, bLeft? *e1: *e2); // parent is the node which contains the entry inserted GiSTpage page = (*node)->Path().Page(); (*node)->Path() = parent->Path(); // parent's path may change (*node)->Path().MakeChild(page); page = node2->Path().Page(); node2->Path() = (*node)->Path(); node2->Path().MakeSibling(page); } delete parent; } if (!bLeft) { delete *node; *node = node2; // return it } else { delete node2; } delete e1; delete e2; } }