void GrColorCubeEffect::GLSLProcessor::emitCode(EmitArgs& args) { if (nullptr == args.fInputColor) { args.fInputColor = "vec4(1)"; } GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; fColorCubeSizeUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType, kDefault_GrSLPrecision, "Size"); const char* colorCubeSizeUni = uniformHandler->getUniformCStr(fColorCubeSizeUni); fColorCubeInvSizeUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType, kDefault_GrSLPrecision, "InvSize"); const char* colorCubeInvSizeUni = uniformHandler->getUniformCStr(fColorCubeInvSizeUni); const char* nonZeroAlpha = "nonZeroAlpha"; const char* unPMColor = "unPMColor"; const char* cubeIdx = "cubeIdx"; const char* cCoords1 = "cCoords1"; const char* cCoords2 = "cCoords2"; // Note: if implemented using texture3D in OpenGL ES older than OpenGL ES 3.0, // the shader might need "#extension GL_OES_texture_3D : enable". GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; // Unpremultiply color fragBuilder->codeAppendf("\tfloat %s = max(%s.a, 0.00001);\n", nonZeroAlpha, args.fInputColor); fragBuilder->codeAppendf("\tvec4 %s = vec4(%s.rgb / %s, %s);\n", unPMColor, args.fInputColor, nonZeroAlpha, nonZeroAlpha); // Fit input color into the cube. fragBuilder->codeAppendf( "vec3 %s = vec3(%s.rg * vec2((%s - 1.0) * %s) + vec2(0.5 * %s), %s.b * (%s - 1.0));\n", cubeIdx, unPMColor, colorCubeSizeUni, colorCubeInvSizeUni, colorCubeInvSizeUni, unPMColor, colorCubeSizeUni); // Compute y coord for for texture fetches. fragBuilder->codeAppendf("vec2 %s = vec2(%s.r, (floor(%s.b) + %s.g) * %s);\n", cCoords1, cubeIdx, cubeIdx, cubeIdx, colorCubeInvSizeUni); fragBuilder->codeAppendf("vec2 %s = vec2(%s.r, (ceil(%s.b) + %s.g) * %s);\n", cCoords2, cubeIdx, cubeIdx, cubeIdx, colorCubeInvSizeUni); // Apply the cube. fragBuilder->codeAppendf("%s = vec4(mix(", args.fOutputColor); fragBuilder->appendTextureLookup(args.fSamplers[0], cCoords1); fragBuilder->codeAppend(".bgr, "); fragBuilder->appendTextureLookup(args.fSamplers[0], cCoords2); // Premultiply color by alpha. Note that the input alpha is not modified by this shader. fragBuilder->codeAppendf(".bgr, fract(%s.b)) * vec3(%s), %s.a);\n", cubeIdx, nonZeroAlpha, args.fInputColor); }
void GrCircleBlurFragmentProcessor::GLSLProcessor::emitCode(EmitArgs& args) { const char *dataName; // The data is formatted as: // x,y - the center of the circle // z - inner radius that should map to 0th entry in the texture. // w - the inverse of the distance over which the texture is stretched. fDataUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "data", &dataName); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; if (args.fInputColor) { fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor); } else { fragBuilder->codeAppendf("vec4 src=vec4(1);"); } // We just want to compute "(length(vec) - %s.z + 0.5) * %s.w" but need to rearrange // for precision. fragBuilder->codeAppendf("vec2 vec = vec2( (sk_FragCoord.x - %s.x) * %s.w, " "(sk_FragCoord.y - %s.y) * %s.w );", dataName, dataName, dataName, dataName); fragBuilder->codeAppendf("float dist = length(vec) + (0.5 - %s.z) * %s.w;", dataName, dataName); fragBuilder->codeAppendf("float intensity = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "vec2(dist, 0.5)"); fragBuilder->codeAppend(".a;"); fragBuilder->codeAppendf("%s = src * intensity;\n", args.fOutputColor ); }
void GrGLAlphaThresholdFragmentProcessor::emitCode(EmitArgs& args) { GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; fInnerThresholdVar = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType, kDefault_GrSLPrecision, "inner_threshold"); fOuterThresholdVar = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType, kDefault_GrSLPrecision, "outer_threshold"); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0); SkString maskCoords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 1); fragBuilder->codeAppendf("vec2 coord = %s;", coords2D.c_str()); fragBuilder->codeAppendf("vec2 mask_coord = %s;", maskCoords2D.c_str()); fragBuilder->codeAppend("vec4 input_color = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "coord"); fragBuilder->codeAppend(";"); fragBuilder->codeAppend("vec4 mask_color = "); fragBuilder->appendTextureLookup(args.fTexSamplers[1], "mask_coord"); fragBuilder->codeAppend(";"); fragBuilder->codeAppendf("float inner_thresh = %s;", uniformHandler->getUniformCStr(fInnerThresholdVar)); fragBuilder->codeAppendf("float outer_thresh = %s;", uniformHandler->getUniformCStr(fOuterThresholdVar)); fragBuilder->codeAppend("float mask = mask_color.a;"); fragBuilder->codeAppend("vec4 color = input_color;"); fragBuilder->codeAppend("if (mask < 0.5) {" "if (color.a > outer_thresh) {" "float scale = outer_thresh / color.a;" "color.rgb *= scale;" "color.a = outer_thresh;" "}" "} else if (color.a < inner_thresh) {" "float scale = inner_thresh / max(0.001, color.a);" "color.rgb *= scale;" "color.a = inner_thresh;" "}"); fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, (GrGLSLExpr4(args.fInputColor) * GrGLSLExpr4("color")).c_str()); }
void GrGLMagnifierEffect::emitCode(EmitArgs& args) { GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; fOffsetVar = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "Offset"); fInvZoomVar = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "InvZoom"); fInvInsetVar = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "InvInset"); fBoundsVar = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "Bounds"); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0); fragBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str()); fragBuilder->codeAppendf("\t\tvec2 zoom_coord = %s + %s * %s;\n", uniformHandler->getUniformCStr(fOffsetVar), coords2D.c_str(), uniformHandler->getUniformCStr(fInvZoomVar)); const char* bounds = uniformHandler->getUniformCStr(fBoundsVar); fragBuilder->codeAppendf("\t\tvec2 delta = (coord - %s.xy) * %s.zw;\n", bounds, bounds); fragBuilder->codeAppendf("\t\tdelta = min(delta, vec2(1.0, 1.0) - delta);\n"); fragBuilder->codeAppendf("\t\tdelta = delta * %s;\n", uniformHandler->getUniformCStr(fInvInsetVar)); fragBuilder->codeAppend("\t\tfloat weight = 0.0;\n"); fragBuilder->codeAppend("\t\tif (delta.s < 2.0 && delta.t < 2.0) {\n"); fragBuilder->codeAppend("\t\t\tdelta = vec2(2.0, 2.0) - delta;\n"); fragBuilder->codeAppend("\t\t\tfloat dist = length(delta);\n"); fragBuilder->codeAppend("\t\t\tdist = max(2.0 - dist, 0.0);\n"); fragBuilder->codeAppend("\t\t\tweight = min(dist * dist, 1.0);\n"); fragBuilder->codeAppend("\t\t} else {\n"); fragBuilder->codeAppend("\t\t\tvec2 delta_squared = delta * delta;\n"); fragBuilder->codeAppend("\t\t\tweight = min(min(delta_squared.x, delta_squared.y), 1.0);\n"); fragBuilder->codeAppend("\t\t}\n"); fragBuilder->codeAppend("\t\tvec2 mix_coord = mix(coord, zoom_coord, weight);\n"); fragBuilder->codeAppend("\t\tvec4 output_color = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "mix_coord"); fragBuilder->codeAppend(";\n"); fragBuilder->codeAppendf("\t\t%s = output_color;", args.fOutputColor); SkString modulate; GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor); fragBuilder->codeAppend(modulate.c_str()); }
void GrGLCircleBlurFragmentProcessor::emitCode(EmitArgs& args) { const char *dataName; // The data is formatted as: // x,y - the center of the circle // z - the distance at which the intensity starts falling off (e.g., the start of the table) // w - the inverse of the profile texture size fDataUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "data", &dataName); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; const char *fragmentPos = fragBuilder->fragmentPosition(); if (args.fInputColor) { fragBuilder->codeAppendf("vec4 src=%s;", args.fInputColor); } else { fragBuilder->codeAppendf("vec4 src=vec4(1);"); } // We just want to compute "length(vec) - %s.z + 0.5) * %s.w" but need to rearrange // for precision fragBuilder->codeAppendf("vec2 vec = vec2( (%s.x - %s.x) * %s.w , (%s.y - %s.y) * %s.w );", fragmentPos, dataName, dataName, fragmentPos, dataName, dataName); fragBuilder->codeAppendf("float dist = length(vec) + ( 0.5 - %s.z ) * %s.w;", dataName, dataName); fragBuilder->codeAppendf("float intensity = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "vec2(dist, 0.5)"); fragBuilder->codeAppend(".a;"); fragBuilder->codeAppendf("%s = src * intensity;\n", args.fOutputColor ); }
void GrGLMorphologyEffect::emitCode(EmitArgs& args) { const GrMorphologyEffect& me = args.fFp.cast<GrMorphologyEffect>(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; fPixelSizeUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType, kDefault_GrSLPrecision, "PixelSize"); const char* pixelSizeInc = uniformHandler->getUniformCStr(fPixelSizeUni); fRangeUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "Range"); const char* range = uniformHandler->getUniformCStr(fRangeUni); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 0); const char* func; switch (me.type()) { case GrMorphologyEffect::kErode_MorphologyType: fragBuilder->codeAppendf("\t\t%s = vec4(1, 1, 1, 1);\n", args.fOutputColor); func = "min"; break; case GrMorphologyEffect::kDilate_MorphologyType: fragBuilder->codeAppendf("\t\t%s = vec4(0, 0, 0, 0);\n", args.fOutputColor); func = "max"; break; default: SkFAIL("Unexpected type"); func = ""; // suppress warning break; } const char* dir; switch (me.direction()) { case Gr1DKernelEffect::kX_Direction: dir = "x"; break; case Gr1DKernelEffect::kY_Direction: dir = "y"; break; default: SkFAIL("Unknown filter direction."); dir = ""; // suppress warning } int width = GrMorphologyEffect::WidthFromRadius(me.radius()); // vec2 coord = coord2D; fragBuilder->codeAppendf("\t\tvec2 coord = %s;\n", coords2D.c_str()); // coord.x -= radius * pixelSize; fragBuilder->codeAppendf("\t\tcoord.%s -= %d.0 * %s; \n", dir, me.radius(), pixelSizeInc); if (me.useRange()) { // highBound = min(highBound, coord.x + (width-1) * pixelSize); fragBuilder->codeAppendf("\t\tfloat highBound = min(%s.y, coord.%s + %f * %s);", range, dir, float(width - 1), pixelSizeInc); // coord.x = max(lowBound, coord.x); fragBuilder->codeAppendf("\t\tcoord.%s = max(%s.x, coord.%s);", dir, range, dir); } fragBuilder->codeAppendf("\t\tfor (int i = 0; i < %d; i++) {\n", width); fragBuilder->codeAppendf("\t\t\t%s = %s(%s, ", args.fOutputColor, func, args.fOutputColor); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "coord"); fragBuilder->codeAppend(");\n"); // coord.x += pixelSize; fragBuilder->codeAppendf("\t\t\tcoord.%s += %s;\n", dir, pixelSizeInc); if (me.useRange()) { // coord.x = min(highBound, coord.x); fragBuilder->codeAppendf("\t\t\tcoord.%s = min(highBound, coord.%s);", dir, dir); } fragBuilder->codeAppend("\t\t}\n"); SkString modulate; GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor); fragBuilder->codeAppend(modulate.c_str()); }
void GrGLDisplacementMapEffect::emitCode(EmitArgs& args) { const GrDisplacementMapEffect& displacementMap = args.fFp.cast<GrDisplacementMapEffect>(); const GrTextureDomain& domain = displacementMap.domain(); fScaleUni = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "Scale"); const char* scaleUni = args.fUniformHandler->getUniformCStr(fScaleUni); const char* dColor = "dColor"; const char* cCoords = "cCoords"; const char* nearZero = "1e-6"; // Since 6.10352e−5 is the smallest half float, use // a number smaller than that to approximate 0, but // leave room for 32-bit float GPU rounding errors. GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; fragBuilder->codeAppendf("\t\tvec4 %s = ", dColor); fragBuilder->appendTextureLookup(args.fTexSamplers[0], args.fCoords[0].c_str(), args.fCoords[0].getType()); fragBuilder->codeAppend(";\n"); // Unpremultiply the displacement fragBuilder->codeAppendf( "\t\t%s.rgb = (%s.a < %s) ? vec3(0.0) : clamp(%s.rgb / %s.a, 0.0, 1.0);", dColor, dColor, nearZero, dColor, dColor); SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 1); fragBuilder->codeAppendf("\t\tvec2 %s = %s + %s*(%s.", cCoords, coords2D.c_str(), scaleUni, dColor); switch (displacementMap.xChannelSelector()) { case SkDisplacementMapEffect::kR_ChannelSelectorType: fragBuilder->codeAppend("r"); break; case SkDisplacementMapEffect::kG_ChannelSelectorType: fragBuilder->codeAppend("g"); break; case SkDisplacementMapEffect::kB_ChannelSelectorType: fragBuilder->codeAppend("b"); break; case SkDisplacementMapEffect::kA_ChannelSelectorType: fragBuilder->codeAppend("a"); break; case SkDisplacementMapEffect::kUnknown_ChannelSelectorType: default: SkDEBUGFAIL("Unknown X channel selector"); } switch (displacementMap.yChannelSelector()) { case SkDisplacementMapEffect::kR_ChannelSelectorType: fragBuilder->codeAppend("r"); break; case SkDisplacementMapEffect::kG_ChannelSelectorType: fragBuilder->codeAppend("g"); break; case SkDisplacementMapEffect::kB_ChannelSelectorType: fragBuilder->codeAppend("b"); break; case SkDisplacementMapEffect::kA_ChannelSelectorType: fragBuilder->codeAppend("a"); break; case SkDisplacementMapEffect::kUnknown_ChannelSelectorType: default: SkDEBUGFAIL("Unknown Y channel selector"); } fragBuilder->codeAppend("-vec2(0.5));\t\t"); fGLDomain.sampleTexture(fragBuilder, args.fUniformHandler, args.fGLSLCaps, domain, args.fOutputColor, SkString(cCoords), args.fTexSamplers[1]); fragBuilder->codeAppend(";\n"); }
void GrGLPerlinNoise::emitCode(EmitArgs& args) { const GrPerlinNoiseEffect& pne = args.fFp.cast<GrPerlinNoiseEffect>(); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; SkString vCoords = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); fBaseFrequencyUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "baseFrequency"); const char* baseFrequencyUni = uniformHandler->getUniformCStr(fBaseFrequencyUni); const char* stitchDataUni = nullptr; if (pne.stitchTiles()) { fStitchDataUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "stitchData"); stitchDataUni = uniformHandler->getUniformCStr(fStitchDataUni); } // There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8 const char* chanCoordR = "0.125"; const char* chanCoordG = "0.375"; const char* chanCoordB = "0.625"; const char* chanCoordA = "0.875"; const char* chanCoord = "chanCoord"; const char* stitchData = "stitchData"; const char* ratio = "ratio"; const char* noiseVec = "noiseVec"; const char* noiseSmooth = "noiseSmooth"; const char* floorVal = "floorVal"; const char* fractVal = "fractVal"; const char* uv = "uv"; const char* ab = "ab"; const char* latticeIdx = "latticeIdx"; const char* bcoords = "bcoords"; const char* lattice = "lattice"; const char* inc8bit = "0.00390625"; // 1.0 / 256.0 // This is the math to convert the two 16bit integer packed into rgba 8 bit input into a // [-1,1] vector and perform a dot product between that vector and the provided vector. const char* dotLattice = "dot(((%s.ga + %s.rb * vec2(%s)) * vec2(2.0) - vec2(1.0)), %s);"; // Add noise function static const GrGLSLShaderVar gPerlinNoiseArgs[] = { GrGLSLShaderVar(chanCoord, kFloat_GrSLType), GrGLSLShaderVar(noiseVec, kVec2f_GrSLType) }; static const GrGLSLShaderVar gPerlinNoiseStitchArgs[] = { GrGLSLShaderVar(chanCoord, kFloat_GrSLType), GrGLSLShaderVar(noiseVec, kVec2f_GrSLType), GrGLSLShaderVar(stitchData, kVec2f_GrSLType) }; SkString noiseCode; noiseCode.appendf("\tvec4 %s;\n", floorVal); noiseCode.appendf("\t%s.xy = floor(%s);\n", floorVal, noiseVec); noiseCode.appendf("\t%s.zw = %s.xy + vec2(1.0);\n", floorVal, floorVal); noiseCode.appendf("\tvec2 %s = fract(%s);\n", fractVal, noiseVec); // smooth curve : t * t * (3 - 2 * t) noiseCode.appendf("\n\tvec2 %s = %s * %s * (vec2(3.0) - vec2(2.0) * %s);", noiseSmooth, fractVal, fractVal, fractVal); // Adjust frequencies if we're stitching tiles if (pne.stitchTiles()) { noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }", floorVal, stitchData, floorVal, stitchData); noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }", floorVal, stitchData, floorVal, stitchData); noiseCode.appendf("\n\tif(%s.z >= %s.x) { %s.z -= %s.x; }", floorVal, stitchData, floorVal, stitchData); noiseCode.appendf("\n\tif(%s.w >= %s.y) { %s.w -= %s.y; }", floorVal, stitchData, floorVal, stitchData); } // Get texture coordinates and normalize noiseCode.appendf("\n\t%s = fract(floor(mod(%s, 256.0)) / vec4(256.0));\n", floorVal, floorVal); // Get permutation for x { SkString xCoords(""); xCoords.appendf("vec2(%s.x, 0.5)", floorVal); noiseCode.appendf("\n\tvec2 %s;\n\t%s.x = ", latticeIdx, latticeIdx); fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(), kVec2f_GrSLType); noiseCode.append(".r;"); } // Get permutation for x + 1 { SkString xCoords(""); xCoords.appendf("vec2(%s.z, 0.5)", floorVal); noiseCode.appendf("\n\t%s.y = ", latticeIdx); fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(), kVec2f_GrSLType); noiseCode.append(".r;"); } #if defined(SK_BUILD_FOR_ANDROID) // Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3). // The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit // value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725 // (or 0.484368 here). The following rounding operation prevents these precision issues from // affecting the result of the noise by making sure that we only have multiples of 1/255. // (Note that 1/255 is about 0.003921569, which is the value used here). noiseCode.appendf("\n\t%s = floor(%s * vec2(255.0) + vec2(0.5)) * vec2(0.003921569);", latticeIdx, latticeIdx); #endif // Get (x,y) coordinates with the permutated x noiseCode.appendf("\n\tvec4 %s = fract(%s.xyxy + %s.yyww);", bcoords, latticeIdx, floorVal); noiseCode.appendf("\n\n\tvec2 %s;", uv); // Compute u, at offset (0,0) { SkString latticeCoords(""); latticeCoords.appendf("vec2(%s.x, %s)", bcoords, chanCoord); noiseCode.appendf("\n\tvec4 %s = ", lattice); fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(), kVec2f_GrSLType); noiseCode.appendf(".bgra;\n\t%s.x = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } noiseCode.appendf("\n\t%s.x -= 1.0;", fractVal); // Compute v, at offset (-1,0) { SkString latticeCoords(""); latticeCoords.appendf("vec2(%s.y, %s)", bcoords, chanCoord); noiseCode.append("\n\tlattice = "); fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(), kVec2f_GrSLType); noiseCode.appendf(".bgra;\n\t%s.y = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } // Compute 'a' as a linear interpolation of 'u' and 'v' noiseCode.appendf("\n\tvec2 %s;", ab); noiseCode.appendf("\n\t%s.x = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth); noiseCode.appendf("\n\t%s.y -= 1.0;", fractVal); // Compute v, at offset (-1,-1) { SkString latticeCoords(""); latticeCoords.appendf("vec2(%s.w, %s)", bcoords, chanCoord); noiseCode.append("\n\tlattice = "); fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(), kVec2f_GrSLType); noiseCode.appendf(".bgra;\n\t%s.y = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } noiseCode.appendf("\n\t%s.x += 1.0;", fractVal); // Compute u, at offset (0,-1) { SkString latticeCoords(""); latticeCoords.appendf("vec2(%s.z, %s)", bcoords, chanCoord); noiseCode.append("\n\tlattice = "); fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(), kVec2f_GrSLType); noiseCode.appendf(".bgra;\n\t%s.x = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } // Compute 'b' as a linear interpolation of 'u' and 'v' noiseCode.appendf("\n\t%s.y = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth); // Compute the noise as a linear interpolation of 'a' and 'b' noiseCode.appendf("\n\treturn mix(%s.x, %s.y, %s.y);\n", ab, ab, noiseSmooth); SkString noiseFuncName; if (pne.stitchTiles()) { fragBuilder->emitFunction(kFloat_GrSLType, "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs), gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName); } else { fragBuilder->emitFunction(kFloat_GrSLType, "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs), gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName); } // There are rounding errors if the floor operation is not performed here fragBuilder->codeAppendf("\n\t\tvec2 %s = floor(%s.xy) * %s;", noiseVec, vCoords.c_str(), baseFrequencyUni); // Clear the color accumulator fragBuilder->codeAppendf("\n\t\t%s = vec4(0.0);", args.fOutputColor); if (pne.stitchTiles()) { // Set up TurbulenceInitial stitch values. fragBuilder->codeAppendf("vec2 %s = %s;", stitchData, stitchDataUni); } fragBuilder->codeAppendf("float %s = 1.0;", ratio); // Loop over all octaves fragBuilder->codeAppendf("for (int octave = 0; octave < %d; ++octave) {", pne.numOctaves()); fragBuilder->codeAppendf("%s += ", args.fOutputColor); if (pne.type() != SkPerlinNoiseShader::kFractalNoise_Type) { fragBuilder->codeAppend("abs("); } if (pne.stitchTiles()) { fragBuilder->codeAppendf( "vec4(\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s)," "\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s))", noiseFuncName.c_str(), chanCoordR, noiseVec, stitchData, noiseFuncName.c_str(), chanCoordG, noiseVec, stitchData, noiseFuncName.c_str(), chanCoordB, noiseVec, stitchData, noiseFuncName.c_str(), chanCoordA, noiseVec, stitchData); } else { fragBuilder->codeAppendf( "vec4(\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s)," "\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s))", noiseFuncName.c_str(), chanCoordR, noiseVec, noiseFuncName.c_str(), chanCoordG, noiseVec, noiseFuncName.c_str(), chanCoordB, noiseVec, noiseFuncName.c_str(), chanCoordA, noiseVec); } if (pne.type() != SkPerlinNoiseShader::kFractalNoise_Type) { fragBuilder->codeAppendf(")"); // end of "abs(" } fragBuilder->codeAppendf(" * %s;", ratio); fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", noiseVec); fragBuilder->codeAppendf("\n\t\t\t%s *= 0.5;", ratio); if (pne.stitchTiles()) { fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", stitchData); } fragBuilder->codeAppend("\n\t\t}"); // end of the for loop on octaves if (pne.type() == SkPerlinNoiseShader::kFractalNoise_Type) { // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 // by fractalNoise and (turbulenceFunctionResult) by turbulence. fragBuilder->codeAppendf("\n\t\t%s = %s * vec4(0.5) + vec4(0.5);", args.fOutputColor,args.fOutputColor); } // Clamp values fragBuilder->codeAppendf("\n\t\t%s = clamp(%s, 0.0, 1.0);", args.fOutputColor, args.fOutputColor); // Pre-multiply the result fragBuilder->codeAppendf("\n\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n", args.fOutputColor, args.fOutputColor, args.fOutputColor, args.fOutputColor); }
void emitCode(EmitArgs& args) override { const GrConfigConversionEffect& cce = args.fFp.cast<GrConfigConversionEffect>(); const GrSwizzle& swizzle = cce.swizzle(); GrConfigConversionEffect::PMConversion pmConversion = cce.pmConversion(); // Using highp for GLES here in order to avoid some precision issues on specific GPUs. GrGLSLShaderVar tmpVar("tmpColor", kVec4f_GrSLType, 0, kHigh_GrSLPrecision); SkString tmpDecl; tmpVar.appendDecl(args.fGLSLCaps, &tmpDecl); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; fragBuilder->codeAppendf("%s;", tmpDecl.c_str()); fragBuilder->codeAppendf("%s = ", tmpVar.c_str()); fragBuilder->appendTextureLookup(args.fTexSamplers[0], args.fCoords[0].c_str(), args.fCoords[0].getType()); fragBuilder->codeAppend(";"); if (GrConfigConversionEffect::kNone_PMConversion == pmConversion) { SkASSERT(GrSwizzle::RGBA() != swizzle); fragBuilder->codeAppendf("%s = %s.%s;", args.fOutputColor, tmpVar.c_str(), swizzle.c_str()); } else { switch (pmConversion) { case GrConfigConversionEffect::kMulByAlpha_RoundUp_PMConversion: fragBuilder->codeAppendf( "%s = vec4(ceil(%s.rgb * %s.a * 255.0) / 255.0, %s.a);", tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); break; case GrConfigConversionEffect::kMulByAlpha_RoundDown_PMConversion: // Add a compensation(0.001) here to avoid the side effect of the floor operation. // In Intel GPUs, the integer value converted from floor(%s.r * 255.0) / 255.0 // is less than the integer value converted from %s.r by 1 when the %s.r is // converted from the integer value 2^n, such as 1, 2, 4, 8, etc. fragBuilder->codeAppendf( "%s = vec4(floor(%s.rgb * %s.a * 255.0 + 0.001) / 255.0, %s.a);", tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); break; case GrConfigConversionEffect::kDivByAlpha_RoundUp_PMConversion: fragBuilder->codeAppendf( "%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(ceil(%s.rgb / %s.a * 255.0) / 255.0, %s.a);", tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); break; case GrConfigConversionEffect::kDivByAlpha_RoundDown_PMConversion: fragBuilder->codeAppendf( "%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(floor(%s.rgb / %s.a * 255.0) / 255.0, %s.a);", tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); break; default: SkFAIL("Unknown conversion op."); break; } fragBuilder->codeAppendf("%s = %s.%s;", args.fOutputColor, tmpVar.c_str(), swizzle.c_str()); } SkString modulate; GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor); fragBuilder->codeAppend(modulate.c_str()); }
void GrGLConvolutionEffect::emitCode(EmitArgs& args) { const GrConvolutionEffect& ce = args.fFp.cast<GrConvolutionEffect>(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "ImageIncrement"); if (ce.useBounds()) { fBoundsUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "Bounds"); } int width = Gr1DKernelEffect::WidthFromRadius(ce.radius()); int arrayCount = (width + 3) / 4; SkASSERT(4 * arrayCount >= width); fKernelUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "Kernel", arrayCount); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); fragBuilder->codeAppendf("%s = vec4(0, 0, 0, 0);", args.fOutputColor); const GrGLSLShaderVar& kernel = uniformHandler->getUniformVariable(fKernelUni); const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni); fragBuilder->codeAppendf("vec2 coord = %s - %d.0 * %s;", coords2D.c_str(), ce.radius(), imgInc); // Manually unroll loop because some drivers don't; yields 20-30% speedup. const char* kVecSuffix[4] = { ".x", ".y", ".z", ".w" }; for (int i = 0; i < width; i++) { SkString index; SkString kernelIndex; index.appendS32(i/4); kernel.appendArrayAccess(index.c_str(), &kernelIndex); kernelIndex.append(kVecSuffix[i & 0x3]); if (ce.useBounds()) { // We used to compute a bool indicating whether we're in bounds or not, cast it to a // float, and then mul weight*texture_sample by the float. However, the Adreno 430 seems // to have a bug that caused corruption. const char* bounds = uniformHandler->getUniformCStr(fBoundsUni); const char* component = ce.direction() == Gr1DKernelEffect::kY_Direction ? "y" : "x"; fragBuilder->codeAppendf("if (coord.%s >= %s.x && coord.%s <= %s.y) {", component, bounds, component, bounds); } fragBuilder->codeAppendf("\t\t%s += ", args.fOutputColor); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "coord"); fragBuilder->codeAppendf(" * %s;\n", kernelIndex.c_str()); if (ce.useBounds()) { fragBuilder->codeAppend("}"); } fragBuilder->codeAppendf("\t\tcoord += %s;\n", imgInc); } SkString modulate; GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor); fragBuilder->codeAppend(modulate.c_str()); }