int main(int argc, char** argv) { int retn = 0; size_t i; try { std::string iFile = (argc > 1) ? argv[1] : "HMW_NaCl.xml"; double V0[20], pmV[20]; HMWSoln* HMW = new HMWSoln(iFile, "NaCl_electrolyte"); /* * Load in and initialize the */ Cantera::thermo_t* solid = newPhase<doublereal>("NaCl_Solid.xml","NaCl(S)"); size_t nsp = HMW->nSpecies(); //double acMol[100]; //double act[100]; double mf[100]; double moll[100]; HMW->getMoleFractions(mf); string sName; TemperatureTable TTable(15, false, 273.15, 25., 0, 0); HMW->setState_TP(298.15, 1.01325E5); size_t i1 = HMW->speciesIndex("Na+"); size_t i2 = HMW->speciesIndex("Cl-"); //int i3 = HMW->speciesIndex("H2O(L)"); for (i = 0; i < nsp; i++) { moll[i] = 0.0; } HMW->setMolalities(moll); /* * Set the Pressure */ double pres = OneAtm; /* * Fix the molality */ double Is = 6.146; moll[i1] = Is; moll[i2] = Is; HMW->setState_TPM(298.15, pres, moll); double Xmol[30]; HMW->getMoleFractions(Xmol); double meanMW = HMW->meanMolecularWeight(); /* * ThermoUnknowns */ double T; double V0_NaCl = 0.0, V0_Naplus = 0.0, V0_Clminus = 0.0, Delta_V0s = 0.0, V0_H2O = 0.0; double V_NaCl = 0.0, V_Naplus = 0.0, V_Clminus = 0.0, V_H2O = 0.0; double molarV0; #ifdef DEBUG_HKM FILE* ttt = fopen("table.csv","w"); #endif printf("A_V : Comparison to Pitzer's book, p. 99, can be made.\n"); printf(" Agreement to 3 sig digits \n"); printf("\n"); printf("Delta_V0: Heat Capacity of Solution per mole of salt (standard states)\n"); printf(" rxn for the ss heat of soln: " "NaCl(s) -> Na+(aq) + Cl-(aq)\n"); printf("\n"); printf("Delta_Vs: Delta volume of Solution per mole of salt\n"); printf(" rxn for heat of soln: " " n1 H2O(l,pure) + n2 NaCl(s) -> n2 MX(aq) + n1 H2O(l) \n"); printf(" Delta_Hs = (n1 h_H2O_bar + n2 h_MX_bar " "- n1 h_H2O_0 - n2 h_MX_0)/n2\n"); printf("\n"); printf("phiV: phiV, calculated from the program, is checked\n"); printf(" against analytical formula in V_standalone program.\n"); printf(" (comparison against Pitzer book, p. 97, eqn. 96)\n"); /* * Create a Table of NaCl Enthalpy Properties as a Function * of the Temperature */ printf("\n\n"); printf(" T, Pres, Aphi, A_V," " Delta_V0," " Delta_Vs, Vex, phiV," " MolarV, MolarV0\n"); printf(" Kelvin, bar, sqrt(kg/gmol),sqrt(kg/gmol)cm3/gmol," "cm**3/gmolSalt," "cm**3/gmolSalt,cm**3/gmolSoln,cm**3/gmolSalt," "cm**3/gmol, cm**3/gmol\n"); #ifdef DEBUG_HKM fprintf(ttt,"T, Pres, A_V, Vex, phiV, MolarV, MolarV0\n"); fprintf(ttt,"Kelvin, bar, sqrt(kg/gmol)cm3/gmol, cm3/gmolSoln, cm3/gmolSalt, kJ/gmolSoln," "kJ/gmolSoln\n"); #endif for (i = 0; i < TTable.NPoints + 1; i++) { if (i == TTable.NPoints) { T = 323.15; } else { T = TTable.T[i]; } /* * RT is in units of J/kmolK */ //double RT = GasConstant * T; /* * Make sure we are at the saturation pressure or above. */ double psat = HMW->satPressure(T); pres = OneAtm; if (psat > pres) { pres = psat; } HMW->setState_TPM(T, pres, moll); solid->setState_TP(T, pres); /* * Get the Standard State volumes m3/kmol */ solid->getStandardVolumes(V0); V0_NaCl = V0[0]; HMW->getStandardVolumes(V0); V0_H2O = V0[0]; V0_Naplus = V0[i1]; V0_Clminus = V0[i2]; /* * Calculate the standard state volume change of solution * for NaCl(s) -> Na+ + Cl- * units: m3 / kmol */ Delta_V0s = V0_Naplus + V0_Clminus - V0_NaCl; double dd = solid->density(); double MW_NaCl = solid->meanMolecularWeight(); V_NaCl = MW_NaCl / dd; //printf("V_NaCl = %g , V0_NaCl = %g %g\n", V_NaCl, V0_NaCl, 1.0/solid->molarDensity()); /* * Get the partial molar volumes */ HMW->getPartialMolarVolumes(pmV); V_H2O = pmV[0]; V_Naplus = pmV[i1]; V_Clminus = pmV[i2]; //double Delta_V_Salt = V_NaCl - (V_Naplus + V_Clminus); /* * Calculate the molar volume of solution */ double dsoln = HMW->density(); meanMW = HMW->meanMolecularWeight(); double molarV = meanMW / dsoln; //double md = HMW->molarDensity(); //printf("compare %g %g\n", molarV, 1.0/md); /* * Calculate the delta volume of solution for the reaction * NaCl(s) -> Na+ + Cl- */ double Delta_Vs = (Xmol[0] * V_H2O + Xmol[i1] * V_Naplus + Xmol[i2] * V_Clminus - Xmol[0] * V0_H2O - Xmol[i1] * V_NaCl); Delta_Vs /= Xmol[i1]; /* * Calculate the apparent molar volume, J, from the * partial molar quantities, units m3/kmol */ double Vex = (Xmol[0] * (V_H2O - V0_H2O) + Xmol[i1] * (V_Naplus - V0_Naplus) + Xmol[i2] * (V_Clminus - V0_Clminus)); /* * Calculate the apparent relative molal volume, phiV, * units of m3/kmol */ double phiV = Vex / Xmol[i1]; double Aphi = HMW->A_Debye_TP(T, pres) / 3.0; //double AL = HMW->ADebye_L(T,pres); double Av = HMW->ADebye_V(T, pres) * 1.0E3; molarV0 = 0.0; for (size_t k = 0; k < nsp; k++) { molarV0 += Xmol[k] * V0[k]; } if (i != TTable.NPoints+1) { printf("%13.4g, %13.4g, %13.4g, %13.4g, %13.4g, %13.4g, " "%13.5g, %13.4g, %13.4g, %13.4g\n", T, pres*1.0E-5, Aphi, Av, Delta_V0s*1.0E3, Delta_Vs*1.0E3, Vex*1.0E3, phiV*1.0E3, molarV*1.0E3 , molarV0*1.0E3); #ifdef DEBUG_HKM fprintf(ttt,"%g, %g, %g, %g, %g, %g, %g\n", T, pres*1.0E-5, Av, Vex*1.0E3, phiV*1.0E3, molarV*1.0E3 , molarV0*1.0E3); #endif } } printf("Breakdown of Volume Calculation at 323.15 K, 1atm:\n"); printf(" Species MoleFrac Molal V0 " " partV (partV - V0)\n"); printf(" H2O(L)"); printf("%13.4g %13.4g %13.4g %13.4g %13.4g\n", Xmol[0], moll[0], V0_H2O*1.E3, V_H2O*1.E3, (V_H2O-V0_H2O)*1.E3); printf(" Na+ "); printf("%13.4g %13.4g %13.4g %13.4g %13.4g\n", Xmol[i1], moll[i1], V0_Naplus*1.E3 , V_Naplus*1.E3, (V_Naplus -V0_Naplus)*1.E3); printf(" Cl- "); printf("%13.4g %13.4g %13.4g %13.4g %13.4g\n", Xmol[i2], moll[i2], V0_Clminus*1.E3, V_Clminus*1.E3, (V_Clminus - V0_Clminus)*1.E3); printf(" NaCl(s)"); double dd = V_NaCl*1.E3 - V0_NaCl*1.E3; if (fabs(dd) < 1.0E-12) { dd = 0.0; } printf("%13.4g %13.4g %13.4g %13.4g\n", 1.0, V0_NaCl*1.E3 , V_NaCl*1.E3, dd); delete HMW; HMW = 0; delete solid; solid = 0; Cantera::appdelete(); #ifdef DEBUG_HKM fclose(ttt); #endif return retn; } catch (CanteraError& err) { std::cout << err.what() << std::endl; Cantera::appdelete(); return -1; } }
int main(int argc, char** argv) { int retn = 0; size_t i; try { std::string iFile = (argc > 1) ? argv[1] : "HMW_NaCl.xml"; double Cp0_R[20], pmCp[20]; HMWSoln* HMW = new HMWSoln(iFile, "NaCl_electrolyte"); /* * Load in and initialize the */ Cantera::thermo_t* solid = newPhase<doublereal>("NaCl_Solid.xml","NaCl(S)"); size_t nsp = HMW->nSpecies(); double mf[100]; double moll[100]; for (i = 0; i < 100; i++) { mf[i] = 0.0; } HMW->getMoleFractions(mf); string sName; TemperatureTable TTable(15, false, 273.15, 25., 0, 0); HMW->setState_TP(298.15, 1.01325E5); size_t i1 = HMW->speciesIndex("Na+"); size_t i2 = HMW->speciesIndex("Cl-"); //int i3 = HMW->speciesIndex("H2O(L)"); for (i = 0; i < nsp; i++) { moll[i] = 0.0; } HMW->setMolalities(moll); double Is = 0.0; /* * Set the Pressure */ double pres = OneAtm; /* * Fix the molality */ Is = 6.146; moll[i1] = Is; moll[i2] = Is; HMW->setState_TPM(298.15, pres, moll); double Xmol[30]; HMW->getMoleFractions(Xmol); /* * ThermoUnknowns */ double T; double Cp0_NaCl = 0.0, Cp0_Naplus = 0.0, Cp0_Clminus = 0.0, Delta_Cp0s = 0.0, Cp0_H2O = 0.0; double Cp_NaCl = 0.0, Cp_Naplus = 0.0, Cp_Clminus = 0.0, Cp_H2O = 0.0; double molarCp0; #ifdef DEBUG_HKM FILE* ttt = fopen("table.csv","w"); #endif printf("A_J/R: Comparison to Pitzer's book, p. 99, can be made.\n"); printf(" Agreement is within 12 pc \n"); printf("\n"); printf("Delta_Cp0: Heat Capacity of Solution per mole of salt (standard states)\n"); printf(" rxn for the ss heat of soln: " "NaCl(s) -> Na+(aq) + Cl-(aq)\n"); printf("\n"); printf("Delta_Cps: Delta heat Capacity of Solution per mole of salt\n"); printf(" rxn for heat of soln: " " n1 H2O(l,pure) + n2 NaCl(s) -> n2 MX(aq) + n1 H2O(l) \n"); printf(" Delta_Hs = (n1 h_H2O_bar + n2 h_MX_bar " "- n1 h_H2O_0 - n2 h_MX_0)/n2\n"); printf("\n"); printf("phiJ: phiJ, calculated from the program, is checked\n"); printf(" against analytical formula in J_standalone program.\n"); printf(" (comparison against Eq. 12, Silvester and Pitzer)\n"); /* * Create a Table of NaCl Enthalpy Properties as a Function * of the Temperature */ printf("\n\n"); printf(" T, Pres, Aphi, A_J/R," " Delta_Cp0," " Delta_Cps, J, phiJ," " MolarCp, MolarCp0\n"); printf(" Kelvin, bar, sqrt(kg/gmol), sqrt(kg/gmol)," " kJ/gmolSalt," " kJ/gmolSalt, kJ/gmolSoln, kJ/gmolSalt," " kJ/gmol, kJ/gmol\n"); #ifdef DEBUG_HKM fprintf(ttt,"T, Pres, A_J/R, Delta_Cp0, Delta_Cps, J, phiJ\n"); fprintf(ttt,"Kelvin, bar, sqrt(kg/gmol), kJ/gmolSalt, kJ/gmolSalt, kJ/gmolSoln," "kJ/gmolSalt\n"); #endif for (i = 0; i < TTable.NPoints + 1; i++) { if (i == TTable.NPoints) { T = 323.15; } else { T = TTable.T[i]; } /* * RT is in units of J/kmolK */ //double RT = GasConstant * T; /* * Make sure we are at the saturation pressure or above. */ double psat = HMW->satPressure(T); pres = OneAtm; if (psat > pres) { pres = psat; } HMW->setState_TPM(T, pres, moll); solid->setState_TP(T, pres); /* * Get the Standard State DeltaH */ solid->getCp_R(Cp0_R); Cp0_NaCl = Cp0_R[0] * GasConstant * 1.0E-6; HMW->getCp_R(Cp0_R); Cp0_H2O = Cp0_R[0] * GasConstant * 1.0E-6; Cp0_Naplus = Cp0_R[i1] * GasConstant * 1.0E-6; Cp0_Clminus = Cp0_R[i2] * GasConstant * 1.0E-6; /* * Calculate the standard state heat of solution * for NaCl(s) -> Na+ + Cl- * units: kJ/gmolSalt */ Delta_Cp0s = Cp0_Naplus + Cp0_Clminus - Cp0_NaCl; pmCp[0] = solid->cp_mole(); Cp_NaCl = pmCp[0] * 1.0E-6; HMW->getPartialMolarCp(pmCp); Cp_H2O = pmCp[0] * 1.0E-6; Cp_Naplus = pmCp[i1] * 1.0E-6; Cp_Clminus = pmCp[i2] * 1.0E-6; //double Delta_Cp_Salt = Cp_NaCl - (Cp_Naplus + Cp_Clminus); double molarCp = HMW->cp_mole() * 1.0E-6; /* * Calculate the heat capacity of solution for the reaction * NaCl(s) -> Na+ + Cl- */ double Delta_Cps = (Xmol[0] * Cp_H2O + Xmol[i1] * Cp_Naplus + Xmol[i2] * Cp_Clminus - Xmol[0] * Cp0_H2O - Xmol[i1] * Cp_NaCl); Delta_Cps /= Xmol[i1]; /* * Calculate the relative heat capacity, J, from the * partial molar quantities, units J/gmolSolutionK */ double J = (Xmol[0] * (Cp_H2O - Cp0_H2O) + Xmol[i1] * (Cp_Naplus - Cp0_Naplus) + Xmol[i2] * (Cp_Clminus - Cp0_Clminus)); /* * Calculate the apparent relative molal heat capacity, phiJ, * units of J/gmolSaltAddedK */ double phiJ = J / Xmol[i1]; double Aphi = HMW->A_Debye_TP(T, pres) / 3.0; //double AL = HMW->ADebye_L(T,pres); double AJ = HMW->ADebye_J(T, pres); for (size_t k = 0; k < nsp; k++) { Cp0_R[k] *= GasConstant * 1.0E-6; } molarCp0 = 0.0; for (size_t k = 0; k < nsp; k++) { molarCp0 += Xmol[k] * Cp0_R[k]; } if (i != TTable.NPoints+1) { printf("%13.5g, %13.5g, %13.5g, %13.5g, %13.5g, %13.5g, " "%13.5g, %13.5g, %13.5g, %13.5g\n", T, pres*1.0E-5, Aphi, AJ/GasConstant, Delta_Cp0s, Delta_Cps, J, phiJ, molarCp , molarCp0); #ifdef DEBUG_HKM fprintf(ttt,"%g, %g, %g, %g, %g, %g, %g\n", T, pres*1.0E-5, AJ/GasConstant, Delta_Cp0s, Delta_Cps, J, phiJ); #endif } } printf("Breakdown of Heat Capacity Calculation at 323.15 K, 1atm:\n"); printf(" Species MoleFrac Molal Cp0 " " partCp (partCp - Cp0)\n"); printf(" H2O(L)"); printf("%13.5g %13.5g %13.5g %13.5g %13.5g\n", Xmol[0], moll[0], Cp0_H2O , Cp_H2O, Cp_H2O-Cp0_H2O); printf(" Na+ "); printf("%13.5g %13.5g %13.5g %13.5g %13.5g\n", Xmol[i1], moll[i1], Cp0_Naplus , Cp_Naplus, Cp_Naplus -Cp0_Naplus); printf(" Cl- "); printf("%13.5g %13.5g %13.5g %13.5g %13.5g\n", Xmol[i2], moll[i2], Cp0_Clminus , Cp_Clminus, Cp_Clminus - Cp0_Clminus); printf(" NaCl(s)"); printf("%13.5g %13.5g %13.5g %13.5g\n", 1.0, Cp0_NaCl , Cp_NaCl, Cp_NaCl - Cp0_NaCl); delete HMW; HMW = 0; delete solid; solid = 0; Cantera::appdelete(); #ifdef DEBUG_HKM fclose(ttt); #endif return retn; } catch (CanteraError& err) { std::cout << err.what() << std::endl; Cantera::appdelete(); return -1; } }