int CcdPhysicsEnvironment::createConstraint(class PHY_IPhysicsController* ctrl0,class PHY_IPhysicsController* ctrl1,PHY_ConstraintType type, float pivotX,float pivotY,float pivotZ, float axisX,float axisY,float axisZ) { CcdPhysicsController* c0 = (CcdPhysicsController*)ctrl0; CcdPhysicsController* c1 = (CcdPhysicsController*)ctrl1; RigidBody* rb0 = c0 ? c0->GetRigidBody() : 0; RigidBody* rb1 = c1 ? c1->GetRigidBody() : 0; ASSERT(rb0); SimdVector3 pivotInA(pivotX,pivotY,pivotZ); SimdVector3 pivotInB = rb1 ? rb1->getCenterOfMassTransform().inverse()(rb0->getCenterOfMassTransform()(pivotInA)) : pivotInA; SimdVector3 axisInA(axisX,axisY,axisZ); SimdVector3 axisInB = rb1 ? (rb1->getCenterOfMassTransform().getBasis().inverse()*(rb0->getCenterOfMassTransform().getBasis() * axisInA)) : rb0->getCenterOfMassTransform().getBasis() * axisInA; bool angularOnly = false; switch (type) { case PHY_POINT2POINT_CONSTRAINT: { Point2PointConstraint* p2p = 0; if (rb1) { p2p = new Point2PointConstraint(*rb0, *rb1,pivotInA,pivotInB); } else { p2p = new Point2PointConstraint(*rb0, pivotInA); } m_constraints.push_back(p2p); p2p->SetUserConstraintId(gConstraintUid++); p2p->SetUserConstraintType(type); //64 bit systems can't cast pointer to int. could use size_t instead. return p2p->GetUserConstraintId(); break; } case PHY_GENERIC_6DOF_CONSTRAINT: { Generic6DofConstraint* genericConstraint = 0; if (rb1) { SimdTransform frameInA; SimdTransform frameInB; SimdVector3 axis1, axis2; SimdPlaneSpace1( axisInA, axis1, axis2 ); frameInA.getBasis().setValue( axisInA.x(), axis1.x(), axis2.x(), axisInA.y(), axis1.y(), axis2.y(), axisInA.z(), axis1.z(), axis2.z() ); SimdPlaneSpace1( axisInB, axis1, axis2 ); frameInB.getBasis().setValue( axisInB.x(), axis1.x(), axis2.x(), axisInB.y(), axis1.y(), axis2.y(), axisInB.z(), axis1.z(), axis2.z() ); frameInA.setOrigin( pivotInA ); frameInB.setOrigin( pivotInB ); genericConstraint = new Generic6DofConstraint( *rb0,*rb1, frameInA,frameInB); } else { // TODO: Implement single body case... } m_constraints.push_back(genericConstraint); genericConstraint->SetUserConstraintId(gConstraintUid++); genericConstraint->SetUserConstraintType(type); //64 bit systems can't cast pointer to int. could use size_t instead. return genericConstraint->GetUserConstraintId(); break; } case PHY_ANGULAR_CONSTRAINT: angularOnly = true; case PHY_LINEHINGE_CONSTRAINT: { HingeConstraint* hinge = 0; if (rb1) { hinge = new HingeConstraint( *rb0, *rb1,pivotInA,pivotInB,axisInA,axisInB); } else { hinge = new HingeConstraint(*rb0, pivotInA,axisInA); } hinge->setAngularOnly(angularOnly); m_constraints.push_back(hinge); hinge->SetUserConstraintId(gConstraintUid++); hinge->SetUserConstraintType(type); //64 bit systems can't cast pointer to int. could use size_t instead. return hinge->GetUserConstraintId(); break; } #ifdef NEW_BULLET_VEHICLE_SUPPORT case PHY_VEHICLE_CONSTRAINT: { RaycastVehicle::VehicleTuning* tuning = new RaycastVehicle::VehicleTuning(); RigidBody* chassis = rb0; DefaultVehicleRaycaster* raycaster = new DefaultVehicleRaycaster(this,ctrl0); RaycastVehicle* vehicle = new RaycastVehicle(*tuning,chassis,raycaster); WrapperVehicle* wrapperVehicle = new WrapperVehicle(vehicle,ctrl0); m_wrapperVehicles.push_back(wrapperVehicle); vehicle->SetUserConstraintId(gConstraintUid++); vehicle->SetUserConstraintType(type); return vehicle->GetUserConstraintId(); break; }; #endif //NEW_BULLET_VEHICLE_SUPPORT default: { } }; //RigidBody& rbA,RigidBody& rbB, const SimdVector3& pivotInA,const SimdVector3& pivotInB return 0; }
int main(int argc,char** argv) { int i; for (i=0;i<numObjects;i++) { if (i>0) { shapePtr[i] = prebuildShapePtr[1]; shapeIndex[i] = 1;//sphere } else { shapeIndex[i] = 0; shapePtr[i] = prebuildShapePtr[0]; } } ConvexDecomposition::WavefrontObj wo; char* filename = "file.obj"; tcount = wo.loadObj(filename); class MyConvexDecomposition : public ConvexDecomposition::ConvexDecompInterface { public: MyConvexDecomposition (FILE* outputFile) :mBaseCount(0), mHullCount(0), mOutputFile(outputFile) { } virtual void ConvexDecompResult(ConvexDecomposition::ConvexResult &result) { TriangleMesh* trimesh = new TriangleMesh(); SimdVector3 localScaling(6.f,6.f,6.f); //export data to .obj printf("ConvexResult\n"); if (mOutputFile) { fprintf(mOutputFile,"## Hull Piece %d with %d vertices and %d triangles.\r\n", mHullCount, result.mHullVcount, result.mHullTcount ); fprintf(mOutputFile,"usemtl Material%i\r\n",mBaseCount); fprintf(mOutputFile,"o Object%i\r\n",mBaseCount); for (unsigned int i=0; i<result.mHullVcount; i++) { const float *p = &result.mHullVertices[i*3]; fprintf(mOutputFile,"v %0.9f %0.9f %0.9f\r\n", p[0], p[1], p[2] ); } //calc centroid, to shift vertices around center of mass centroids[numObjects] = SimdVector3(0,0,0); if ( 1 ) { const unsigned int *src = result.mHullIndices; for (unsigned int i=0; i<result.mHullTcount; i++) { unsigned int index0 = *src++; unsigned int index1 = *src++; unsigned int index2 = *src++; SimdVector3 vertex0(result.mHullVertices[index0*3], result.mHullVertices[index0*3+1],result.mHullVertices[index0*3+2]); SimdVector3 vertex1(result.mHullVertices[index1*3], result.mHullVertices[index1*3+1],result.mHullVertices[index1*3+2]); SimdVector3 vertex2(result.mHullVertices[index2*3], result.mHullVertices[index2*3+1],result.mHullVertices[index2*3+2]); vertex0 *= localScaling; vertex1 *= localScaling; vertex2 *= localScaling; centroids[numObjects] += vertex0; centroids[numObjects]+= vertex1; centroids[numObjects]+= vertex2; } } centroids[numObjects] *= 1.f/(float(result.mHullTcount) * 3); if ( 1 ) { const unsigned int *src = result.mHullIndices; for (unsigned int i=0; i<result.mHullTcount; i++) { unsigned int index0 = *src++; unsigned int index1 = *src++; unsigned int index2 = *src++; SimdVector3 vertex0(result.mHullVertices[index0*3], result.mHullVertices[index0*3+1],result.mHullVertices[index0*3+2]); SimdVector3 vertex1(result.mHullVertices[index1*3], result.mHullVertices[index1*3+1],result.mHullVertices[index1*3+2]); SimdVector3 vertex2(result.mHullVertices[index2*3], result.mHullVertices[index2*3+1],result.mHullVertices[index2*3+2]); vertex0 *= localScaling; vertex1 *= localScaling; vertex2 *= localScaling; vertex0 -= centroids[numObjects]; vertex1 -= centroids[numObjects]; vertex2 -= centroids[numObjects]; trimesh->AddTriangle(vertex0,vertex1,vertex2); index0+=mBaseCount; index1+=mBaseCount; index2+=mBaseCount; fprintf(mOutputFile,"f %d %d %d\r\n", index0+1, index1+1, index2+1 ); } } shapeIndex[numObjects] = numObjects; shapePtr[numObjects++] = new ConvexTriangleMeshShape(trimesh); mBaseCount+=result.mHullVcount; // advance the 'base index' counter. } } int mBaseCount; int mHullCount; FILE* mOutputFile; }; if (tcount) { numObjects = 1; //always have the ground object first TriangleMesh* trimesh = new TriangleMesh(); SimdVector3 localScaling(6.f,6.f,6.f); for (int i=0;i<wo.mTriCount;i++) { int index0 = wo.mIndices[i*3]; int index1 = wo.mIndices[i*3+1]; int index2 = wo.mIndices[i*3+2]; SimdVector3 vertex0(wo.mVertices[index0*3], wo.mVertices[index0*3+1],wo.mVertices[index0*3+2]); SimdVector3 vertex1(wo.mVertices[index1*3], wo.mVertices[index1*3+1],wo.mVertices[index1*3+2]); SimdVector3 vertex2(wo.mVertices[index2*3], wo.mVertices[index2*3+1],wo.mVertices[index2*3+2]); vertex0 *= localScaling; vertex1 *= localScaling; vertex2 *= localScaling; trimesh->AddTriangle(vertex0,vertex1,vertex2); } shapePtr[numObjects++] = new ConvexTriangleMeshShape(trimesh); } if (tcount) { char outputFileName[512]; strcpy(outputFileName,filename); char *dot = strstr(outputFileName,"."); if ( dot ) *dot = 0; strcat(outputFileName,"_convex.obj"); FILE* outputFile = fopen(outputFileName,"wb"); unsigned int depth = 7; float cpercent = 5; float ppercent = 15; unsigned int maxv = 16; float skinWidth = 0.01; printf("WavefrontObj num triangles read %i",tcount); ConvexDecomposition::DecompDesc desc; desc.mVcount = wo.mVertexCount; desc.mVertices = wo.mVertices; desc.mTcount = wo.mTriCount; desc.mIndices = (unsigned int *)wo.mIndices; desc.mDepth = depth; desc.mCpercent = cpercent; desc.mPpercent = ppercent; desc.mMaxVertices = maxv; desc.mSkinWidth = skinWidth; MyConvexDecomposition convexDecomposition(outputFile); desc.mCallback = &convexDecomposition; //convexDecomposition.performConvexDecomposition(desc); ConvexBuilder cb(desc.mCallback); int ret = cb.process(desc); if (outputFile) fclose(outputFile); } CollisionDispatcher* dispatcher = new CollisionDispatcher(); SimdVector3 worldAabbMin(-10000,-10000,-10000); SimdVector3 worldAabbMax(10000,10000,10000); OverlappingPairCache* broadphase = new AxisSweep3(worldAabbMin,worldAabbMax); //OverlappingPairCache* broadphase = new SimpleBroadphase(); physicsEnvironmentPtr = new CcdPhysicsEnvironment(dispatcher,broadphase); physicsEnvironmentPtr->setDeactivationTime(2.f); physicsEnvironmentPtr->setGravity(0,-10,0); PHY_ShapeProps shapeProps; shapeProps.m_do_anisotropic = false; shapeProps.m_do_fh = false; shapeProps.m_do_rot_fh = false; shapeProps.m_friction_scaling[0] = 1.; shapeProps.m_friction_scaling[1] = 1.; shapeProps.m_friction_scaling[2] = 1.; shapeProps.m_inertia = 1.f; shapeProps.m_lin_drag = 0.2f; shapeProps.m_ang_drag = 0.1f; shapeProps.m_mass = 10.0f; PHY_MaterialProps materialProps; materialProps.m_friction = 10.5f; materialProps.m_restitution = 0.0f; CcdConstructionInfo ccdObjectCi; ccdObjectCi.m_friction = 0.5f; ccdObjectCi.m_linearDamping = shapeProps.m_lin_drag; ccdObjectCi.m_angularDamping = shapeProps.m_ang_drag; SimdTransform tr; tr.setIdentity(); for (i=0;i<numObjects;i++) { shapeProps.m_shape = shapePtr[shapeIndex[i]]; shapeProps.m_shape->SetMargin(0.05f); bool isDyna = i>0; //if (i==1) // isDyna=false; if (0)//i==1) { SimdQuaternion orn(0,0,0.1*SIMD_HALF_PI); ms[i].setWorldOrientation(orn.x(),orn.y(),orn.z(),orn[3]); } if (i>0) { switch (i) { case 1: { ms[i].setWorldPosition(0,10,0); //for testing, rotate the ground cube so the stack has to recover a bit break; } case 2: { ms[i].setWorldPosition(0,8,2); break; } default: ms[i].setWorldPosition(0,i*CUBE_HALF_EXTENTS*2 - CUBE_HALF_EXTENTS,0); } float quatIma0,quatIma1,quatIma2,quatReal; SimdQuaternion quat; SimdVector3 axis(0,0,1); SimdScalar angle=0.5f; quat.setRotation(axis,angle); ms[i].setWorldOrientation(quat.getX(),quat.getY(),quat.getZ(),quat[3]); } else { ms[i].setWorldPosition(0,-10+EXTRA_HEIGHT,0); } ccdObjectCi.m_MotionState = &ms[i]; ccdObjectCi.m_gravity = SimdVector3(0,0,0); ccdObjectCi.m_localInertiaTensor =SimdVector3(0,0,0); if (!isDyna) { shapeProps.m_mass = 0.f; ccdObjectCi.m_mass = shapeProps.m_mass; ccdObjectCi.m_collisionFlags = CollisionObject::isStatic; } else { shapeProps.m_mass = 1.f; ccdObjectCi.m_mass = shapeProps.m_mass; ccdObjectCi.m_collisionFlags = 0; } SimdVector3 localInertia; if (shapePtr[shapeIndex[i]]->GetShapeType() == EMPTY_SHAPE_PROXYTYPE) { //take inertia from first shape shapePtr[1]->CalculateLocalInertia(shapeProps.m_mass,localInertia); } else { shapePtr[shapeIndex[i]]->CalculateLocalInertia(shapeProps.m_mass,localInertia); } ccdObjectCi.m_localInertiaTensor = localInertia; ccdObjectCi.m_collisionShape = shapePtr[shapeIndex[i]]; physObjects[i]= new CcdPhysicsController( ccdObjectCi); // Only do CCD if motion in one timestep (1.f/60.f) exceeds CUBE_HALF_EXTENTS physObjects[i]->GetRigidBody()->m_ccdSquareMotionTreshold = CUBE_HALF_EXTENTS; //Experimental: better estimation of CCD Time of Impact: //physObjects[i]->GetRigidBody()->m_ccdSweptShereRadius = 0.5*CUBE_HALF_EXTENTS; physicsEnvironmentPtr->addCcdPhysicsController( physObjects[i]); if (i==1) { //physObjects[i]->SetAngularVelocity(0,0,-2,true); } physicsEnvironmentPtr->setDebugDrawer(&debugDrawer); } //create a constraint if (createConstraint) { //physObjects[i]->SetAngularVelocity(0,0,-2,true); int constraintId; float pivotX=CUBE_HALF_EXTENTS, pivotY=-CUBE_HALF_EXTENTS, pivotZ=CUBE_HALF_EXTENTS; float axisX=1,axisY=0,axisZ=0; HingeConstraint* hinge = 0; SimdVector3 pivotInA(CUBE_HALF_EXTENTS,-CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS); SimdVector3 pivotInB(-CUBE_HALF_EXTENTS,-CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS); SimdVector3 axisInA(0,1,0); SimdVector3 axisInB(0,-1,0); RigidBody* rb0 = physObjects[1]->GetRigidBody(); RigidBody* rb1 = physObjects[2]->GetRigidBody(); hinge = new HingeConstraint( *rb0, *rb1,pivotInA,pivotInB,axisInA,axisInB); physicsEnvironmentPtr->m_constraints.push_back(hinge); hinge->SetUserConstraintId(100); hinge->SetUserConstraintType(PHY_LINEHINGE_CONSTRAINT); } clientResetScene(); setCameraDistance(26.f); return glutmain(argc, argv,640,480,"Bullet Physics Demo. http://www.continuousphysics.com/Bullet/phpBB2/"); }