Value* While::codeGen(CodeGenContext &context) { //Value* conditionValue = condition.codeGen(context); IRBuilder<> *builder = context.currentBuilder(); Function *mainFunction = builder->GetInsertBlock()->getParent(); BasicBlock *condBb = BasicBlock::Create(getGlobalContext(), "whilecond", mainFunction); BasicBlock *doBb = BasicBlock::Create(getGlobalContext(), "whiledo"); BasicBlock *afterWhileBb = BasicBlock::Create(getGlobalContext(), "afterWhile"); builder->CreateBr(condBb); builder->SetInsertPoint(condBb); Value* conditionValue = condition.codeGen(context); builder->CreateCondBr(conditionValue, doBb, afterWhileBb); condBb = builder->GetInsertBlock(); mainFunction->getBasicBlockList().push_back(doBb); builder->SetInsertPoint(doBb); Value *doValue = (*doStmt).codeGen(context); builder->CreateBr(condBb); doBb = builder->GetInsertBlock(); mainFunction->getBasicBlockList().push_back(afterWhileBb); builder->SetInsertPoint(afterWhileBb); return NULL; }
Value* If::codeGen(CodeGenContext &context) { Value* conditionValue = condition.codeGen(context); IRBuilder<> *builder = context.currentBuilder(); Function *mainFunction = builder->GetInsertBlock()->getParent(); BasicBlock *thenBb = BasicBlock::Create(getGlobalContext(), "then", mainFunction); BasicBlock *mergeBb = BasicBlock::Create(getGlobalContext(), "ifcont"); BasicBlock *elseBb = BasicBlock::Create(getGlobalContext(), "else"); if (elseStmt == NULL) { std::cout << "Creating if then " << endl; builder->CreateCondBr(conditionValue, thenBb, mergeBb); builder->SetInsertPoint(thenBb); Value *thenValue = (*thenStmt).codeGen(context); builder->CreateBr(mergeBb); thenBb = builder->GetInsertBlock(); mainFunction->getBasicBlockList().push_back(mergeBb); builder->SetInsertPoint(mergeBb); return NULL; } else { cout << "Creating if then else" << endl; builder->CreateCondBr(conditionValue, thenBb, elseBb); builder->SetInsertPoint(thenBb); Value *thenValue = (*thenStmt).codeGen(context); builder->CreateBr(mergeBb); thenBb = builder->GetInsertBlock(); mainFunction->getBasicBlockList().push_back(elseBb); builder->SetInsertPoint(elseBb); Value *elseValue = (*elseStmt).codeGen(context); builder->CreateBr(mergeBb); elseBb = builder->GetInsertBlock(); mainFunction->getBasicBlockList().push_back(mergeBb); builder->SetInsertPoint(mergeBb); return NULL; } }
// Rewrite final suspend point handling. We do not use suspend index to // represent the final suspend point. Instead we zero-out ResumeFnAddr in the // coroutine frame, since it is undefined behavior to resume a coroutine // suspended at the final suspend point. Thus, in the resume function, we can // simply remove the last case (when coro::Shape is built, the final suspend // point (if present) is always the last element of CoroSuspends array). // In the destroy function, we add a code sequence to check if ResumeFnAddress // is Null, and if so, jump to the appropriate label to handle cleanup from the // final suspend point. static void handleFinalSuspend(IRBuilder<> &Builder, Value *FramePtr, coro::Shape &Shape, SwitchInst *Switch, bool IsDestroy) { assert(Shape.HasFinalSuspend); auto FinalCaseIt = std::prev(Switch->case_end()); BasicBlock *ResumeBB = FinalCaseIt->getCaseSuccessor(); Switch->removeCase(FinalCaseIt); if (IsDestroy) { BasicBlock *OldSwitchBB = Switch->getParent(); auto *NewSwitchBB = OldSwitchBB->splitBasicBlock(Switch, "Switch"); Builder.SetInsertPoint(OldSwitchBB->getTerminator()); auto *GepIndex = Builder.CreateConstInBoundsGEP2_32(Shape.FrameTy, FramePtr, 0, 0, "ResumeFn.addr"); auto *Load = Builder.CreateLoad(GepIndex); auto *NullPtr = ConstantPointerNull::get(cast<PointerType>(Load->getType())); auto *Cond = Builder.CreateICmpEQ(Load, NullPtr); Builder.CreateCondBr(Cond, ResumeBB, NewSwitchBB); OldSwitchBB->getTerminator()->eraseFromParent(); } }
void GNUstep::IMPCacher::SpeculativelyInline(Instruction *call, Function *function) { BasicBlock *beforeCallBB = call->getParent(); BasicBlock *callBB = SplitBlock(beforeCallBB, call, Owner); BasicBlock *inlineBB = BasicBlock::Create(Context, "inline", callBB->getParent()); BasicBlock::iterator iter = call; iter++; BasicBlock *afterCallBB = SplitBlock(iter->getParent(), iter, Owner); removeTerminator(beforeCallBB); // Put a branch before the call, testing whether the callee really is the // function IRBuilder<> B = IRBuilder<>(beforeCallBB); Value *callee = isa<CallInst>(call) ? cast<CallInst>(call)->getCalledValue() : cast<InvokeInst>(call)->getCalledValue(); const FunctionType *FTy = function->getFunctionType(); const FunctionType *calleeTy = cast<FunctionType>( cast<PointerType>(callee->getType())->getElementType()); if (calleeTy != FTy) { callee = B.CreateBitCast(callee, function->getType()); } Value *isInlineValid = B.CreateICmpEQ(callee, function); B.CreateCondBr(isInlineValid, inlineBB, callBB); // In the inline BB, add a copy of the call, but this time calling the real // version. Instruction *inlineCall = call->clone(); Value *inlineResult= inlineCall; inlineBB->getInstList().push_back(inlineCall); B.SetInsertPoint(inlineBB); if (calleeTy != FTy) { for (unsigned i=0 ; i<FTy->getNumParams() ; i++) { LLVMType *callType = calleeTy->getParamType(i); LLVMType *argType = FTy->getParamType(i); if (callType != argType) { inlineCall->setOperand(i, new BitCastInst(inlineCall->getOperand(i), argType, "", inlineCall)); } } if (FTy->getReturnType() != calleeTy->getReturnType()) { if (FTy->getReturnType() == Type::getVoidTy(Context)) { inlineResult = Constant::getNullValue(calleeTy->getReturnType()); } else { inlineResult = new BitCastInst(inlineCall, calleeTy->getReturnType(), "", inlineBB); } } } B.CreateBr(afterCallBB); // Unify the return values if (call->getType() != Type::getVoidTy(Context)) { PHINode *phi = CreatePHI(call->getType(), 2, "", afterCallBB->begin()); call->replaceAllUsesWith(phi); phi->addIncoming(call, callBB); phi->addIncoming(inlineResult, inlineBB); } // Really do the real inlining InlineFunctionInfo IFI(0, 0); if (CallInst *c = dyn_cast<CallInst>(inlineCall)) { c->setCalledFunction(function); InlineFunction(c, IFI); } else if (InvokeInst *c = dyn_cast<InvokeInst>(inlineCall)) { c->setCalledFunction(function); InlineFunction(c, IFI); } }
/// compile_if - Emit code for '[' void BrainFTraceRecorder::compile_if(BrainFTraceNode *node, IRBuilder<>& builder) { BasicBlock *ZeroChild = 0; BasicBlock *NonZeroChild = 0; BasicBlock *Parent = builder.GetInsertBlock(); LLVMContext &Context = Header->getContext(); // If both directions of the branch go back to the trace-head, just // jump there directly. if (node->left == (BrainFTraceNode*)~0ULL && node->right == (BrainFTraceNode*)~0ULL) { HeaderPHI->addIncoming(DataPtr, builder.GetInsertBlock()); builder.CreateBr(Header); return; } // Otherwise, there are two cases to handle for each direction: // ~0ULL - A branch back to the trace head // 0 - A branch out of the trace // * - A branch to a node we haven't compiled yet. // Go ahead and generate code for both targets. if (node->left == (BrainFTraceNode*)~0ULL) { NonZeroChild = Header; HeaderPHI->addIncoming(DataPtr, Parent); } else if (node->left == 0) { NonZeroChild = BasicBlock::Create(Context, "exit_left_"+utostr(node->pc), Header->getParent()); builder.SetInsertPoint(NonZeroChild); // Set the extension leaf, which is a pointer to the leaf of the trace // tree from which we are side exiting. ConstantInt *ExtLeaf = ConstantInt::get(int_type, (intptr_t)node); builder.CreateStore(ExtLeaf, ext_leaf); ConstantInt *NewPc = ConstantInt::get(int_type, node->pc+1); Value *BytecodeIndex = builder.CreateConstInBoundsGEP1_32(bytecode_array, node->pc+1); Value *Target = builder.CreateLoad(BytecodeIndex); CallInst *Call =cast<CallInst>(builder.CreateCall2(Target, NewPc, DataPtr)); Call->setTailCall(); builder.CreateRetVoid(); } else { NonZeroChild = BasicBlock::Create(Context, utostr(node->left->pc), Header->getParent()); builder.SetInsertPoint(NonZeroChild); compile_opcode(node->left, builder); } if (node->right == (BrainFTraceNode*)~0ULL) { ZeroChild = Header; HeaderPHI->addIncoming(DataPtr, Parent); } else if (node->right == 0) { ZeroChild = BasicBlock::Create(Context, "exit_right_"+utostr(node->pc), Header->getParent()); builder.SetInsertPoint(ZeroChild); // Set the extension leaf, which is a pointer to the leaf of the trace // tree from which we are side exiting. ConstantInt *ExtLeaf = ConstantInt::get(int_type, (intptr_t)node); builder.CreateStore(ExtLeaf, ext_leaf); ConstantInt *NewPc = ConstantInt::get(int_type, JumpMap[node->pc]+1); Value *BytecodeIndex = builder.CreateConstInBoundsGEP1_32(bytecode_array, JumpMap[node->pc]+1); Value *Target = builder.CreateLoad(BytecodeIndex); CallInst *Call =cast<CallInst>(builder.CreateCall2(Target, NewPc, DataPtr)); Call->setTailCall(); builder.CreateRetVoid(); } else { ZeroChild = BasicBlock::Create(Context, utostr(node->right->pc), Header->getParent()); builder.SetInsertPoint(ZeroChild); compile_opcode(node->right, builder); } // Generate the test and branch to select between the targets. builder.SetInsertPoint(Parent); Value *Loaded = builder.CreateLoad(DataPtr); Value *Cmp = builder.CreateICmpEQ(Loaded, ConstantInt::get(Loaded->getType(), 0)); builder.CreateCondBr(Cmp, ZeroChild, NonZeroChild); }
void code_emitter::emit_stmts (statement_t *stmt, unsigned int slice_flag) { for (; stmt != NULL; stmt = stmt->next) { if (!must_emit_stmt(stmt, slice_flag)) continue; switch (stmt->kind) { case STMT_NIL : g_assert(slice_flag == SLICE_IGNORE); break; case STMT_ASSIGN : #ifdef DEBUG_OUTPUT compiler_print_assign_statement(stmt); printf("\n"); #endif if (stmt->v.assign.rhs->kind == RHS_OP && stmt->v.assign.rhs->v.op.op->index == OP_OUTPUT_TUPLE) builder->CreateRet(emit_primary(&stmt->v.assign.rhs->v.op.args[0])); else set_value(stmt->v.assign.lhs, emit_rhs(stmt->v.assign.rhs)); break; case STMT_IF_COND : { Value *condition_number = emit_rhs(stmt->v.if_cond.condition); Value *condition; map<rhs_t*, Value*> rhs_map; if (condition_number->getType() == Type::Int32Ty) condition = builder->CreateICmpNE(condition_number, make_int_const(0)); else if (condition_number->getType() == Type::FloatTy) condition = builder->CreateFCmpONE(condition_number, make_float_const(0.0)); else g_assert_not_reached(); BasicBlock *then_bb = BasicBlock::Create("then", current_function); BasicBlock *else_bb = BasicBlock::Create("else"); BasicBlock *merge_bb = BasicBlock::Create("ifcont"); builder->CreateCondBr(condition, then_bb, else_bb); builder->SetInsertPoint(then_bb); emit_stmts(stmt->v.if_cond.consequent, slice_flag); emit_phi_rhss(stmt->v.if_cond.exit, true, &rhs_map, slice_flag); builder->CreateBr(merge_bb); then_bb = builder->GetInsertBlock(); current_function->getBasicBlockList().push_back(else_bb); builder->SetInsertPoint(else_bb); emit_stmts(stmt->v.if_cond.alternative, slice_flag); emit_phi_rhss(stmt->v.if_cond.exit, false, &rhs_map, slice_flag); builder->CreateBr(merge_bb); else_bb = builder->GetInsertBlock(); current_function->getBasicBlockList().push_back(merge_bb); builder->SetInsertPoint(merge_bb); emit_phis(stmt->v.if_cond.exit, then_bb, else_bb, rhs_map, slice_flag); } break; case STMT_WHILE_LOOP: { BasicBlock *start_bb = builder->GetInsertBlock(); BasicBlock *entry_bb = BasicBlock::Create("entry", current_function); BasicBlock *body_bb = BasicBlock::Create("body"); BasicBlock *exit_bb = BasicBlock::Create("exit"); map<rhs_t*, Value*> rhs_map; emit_phi_rhss(stmt->v.while_loop.entry, true, &rhs_map, slice_flag); builder->CreateBr(entry_bb); builder->SetInsertPoint(entry_bb); emit_phis(stmt->v.while_loop.entry, start_bb, NULL, rhs_map, slice_flag); Value *invariant_number = emit_rhs(stmt->v.while_loop.invariant); Value *invariant; if (invariant_number->getType() == Type::Int32Ty) invariant = builder->CreateICmpNE(invariant_number, make_int_const(0)); else if (invariant_number->getType() == Type::FloatTy) invariant = builder->CreateFCmpONE(invariant_number, make_float_const(0.0)); else g_assert_not_reached(); builder->CreateCondBr(invariant, body_bb, exit_bb); current_function->getBasicBlockList().push_back(body_bb); builder->SetInsertPoint(body_bb); emit_stmts(stmt->v.while_loop.body, slice_flag); body_bb = builder->GetInsertBlock(); emit_phi_rhss(stmt->v.while_loop.entry, false, &rhs_map, slice_flag); emit_phis(stmt->v.while_loop.entry, NULL, body_bb, rhs_map, slice_flag); builder->CreateBr(entry_bb); current_function->getBasicBlockList().push_back(exit_bb); builder->SetInsertPoint(exit_bb); } break; default: g_assert_not_reached(); break; } } }
JITFunction* CompilePipeline(Pipeline *pipeline, Thread *thread) { size_t i = 0; size_t size = 0; std::unique_ptr<Module> owner = make_unique<Module>("PipelineFunction", thread->context); Module *module = owner.get(); std::string fname = std::string("PipelineFunction") + std::to_string(thread->functions++); size_t input_count = pipeline->inputData->objects.size(); size_t output_count = pipeline->outputData->objects.size(); size_t function_arg_count = 6; size_t arg_count = input_count + output_count + (function_arg_count - 2); size_t start_addr = input_count + output_count; size_t end_addr = start_addr + 1; size_t result_sizes_addr = end_addr + 1; size_t thread_nr_addr = result_sizes_addr + 1; IRBuilder<> *builder = &thread->builder; auto passmanager = CreatePassManager(module, thread->jit.get()); module->setDataLayout(thread->jit->getTargetMachine().createDataLayout()); Type *int8_tpe = Type::getInt8Ty(thread->context); Type *int8ptr_tpe = PointerType::get(int8_tpe, 0); Type *int8ptrptr_tpe = PointerType::get(int8ptr_tpe, 0); Type *int64_tpe = Type::getInt64Ty(thread->context); Type *int64ptr_tpe = PointerType::get(int64_tpe, 0); JITInformation info; // arguments of the function // the arguments are (void **result, void** inputs, size_t start, size_t end); // note that we don't actually use void**, we use int8**, because LLVM does not support void pointers std::vector<Type*> arguments(function_arg_count); i = 0; arguments[i++] = int8ptrptr_tpe; // void** results arguments[i++] = int8ptrptr_tpe; // void** inputs arguments[i++] = int64_tpe; // size_t start arguments[i++] = int64_tpe; // size_t end arguments[i++] = int64ptr_tpe; // size_t* result_sizes arguments[i++] = int64_tpe; // size_t thread_nr assert(i == function_arg_count); /*for(auto inputs = pipeline->inputData->objects.begin(); inputs != pipeline->inputData->objects.end(); inputs++, i++) { arguments[i] = PointerType::get(getLLVMType(thread->context, inputs->type), 0); } for(auto outputs = pipeline->outputData->objects.begin(); outputs != pipeline->outputData->objects.end(); outputs++, i++) { arguments[i] = PointerType::get(getLLVMType(thread->context, outputs->type), 0); }*/ // create the LLVM function FunctionType *prototype = FunctionType::get(int64_tpe, arguments, false); Function *function = Function::Create(prototype, GlobalValue::ExternalLinkage, fname, module); function->setCallingConv(CallingConv::C); // create the basic blocks BasicBlock *loop_entry = BasicBlock::Create(thread->context, "entry", function, 0); BasicBlock *loop_cond = BasicBlock::Create(thread->context, "for.cond", function, 0); BasicBlock *loop_body = BasicBlock::Create(thread->context, "for.body", function, 0); BasicBlock *loop_inc = BasicBlock::Create(thread->context, "for.inc", function, 0); BasicBlock *loop_end = BasicBlock::Create(thread->context, "for.end", function, 0); info.builder = &thread->builder; info.context = &thread->context; info.function = function; info.loop_entry = loop_entry; info.loop_cond = loop_cond; info.loop_body = loop_body; info.loop_inc = loop_inc; info.loop_end = loop_end; info.current = loop_body; #ifndef _NOTDEBUG // argument names (for debug purposes only) std::vector<std::string> argument_names(arg_count); i = 0; for(auto inputs = pipeline->inputData->objects.begin(); inputs != pipeline->inputData->objects.end(); inputs++, i++) { argument_names[i] = std::string("inputs") + std::to_string(i); } for(auto outputs = pipeline->outputData->objects.begin(); outputs != pipeline->outputData->objects.end(); outputs++, i++) { argument_names[i] = std::string("outputs") + std::to_string(i - input_count); } argument_names[i++] = "start"; argument_names[i++] = "end"; argument_names[i++] = "result_sizes"; argument_names[i++] = "thread_nr"; #endif std::vector<AllocaInst*> argument_addresses(arg_count); builder->SetInsertPoint(loop_entry); { // allocate space for the arguments auto args = function->arg_begin(); i = 0; for(auto outputs = pipeline->outputData->objects.begin(); outputs != pipeline->outputData->objects.end(); outputs++, i++) { Type *column_type = PointerType::get(getLLVMType(thread->context, outputs->source->type), 0); Value *voidptrptr = builder->CreateGEP(int8ptr_tpe, &*args, ConstantInt::get(int64_tpe, i, true)); Value *voidptr = builder->CreateLoad(voidptrptr, "voidptr"); Value *columnptr = builder->CreatePointerCast(voidptr, column_type); argument_addresses[i] = builder->CreateAlloca(column_type, nullptr, argument_names[i]); builder->CreateStore(columnptr, argument_addresses[i]); outputs->alloca_address = (void*) argument_addresses[i]; if (size == 0 || size == 1) { assert(outputs->source->size >= 0); size = outputs->source->size; } assert(size == outputs->source->size || outputs->source->size == 1); } args++; for(auto inputs = pipeline->inputData->objects.begin(); inputs != pipeline->inputData->objects.end(); inputs++, i++) { Type *column_type = PointerType::get(getLLVMType(thread->context, inputs->source->type), 0); Value *voidptrptr = builder->CreateGEP(int8ptr_tpe, &*args, ConstantInt::get(int64_tpe, i - output_count, true)); Value *voidptr = builder->CreateLoad(voidptrptr, "voidptr"); Value *columnptr = builder->CreatePointerCast(voidptr, column_type); argument_addresses[i] = builder->CreateAlloca(column_type, nullptr, argument_names[i]); builder->CreateStore(columnptr, argument_addresses[i]); inputs->alloca_address = (void*) argument_addresses[i]; if (size == 0 || size == 1) { assert(inputs->source->size >= 0); size = inputs->source->size; } assert(size == inputs->source->size || inputs->source->size == 1); } args++; argument_addresses[i] = builder->CreateAlloca(arguments[2], nullptr, argument_names[i]); builder->CreateStore(&*args, argument_addresses[i]); args++; i++; argument_addresses[i] = builder->CreateAlloca(arguments[3], nullptr, argument_names[i]); builder->CreateStore(&*args, argument_addresses[i]); args++; i++; argument_addresses[i] = builder->CreateAlloca(arguments[4], nullptr, argument_names[i]); builder->CreateStore(&*args, argument_addresses[i]); args++; i++; argument_addresses[i] = builder->CreateAlloca(arguments[5], nullptr, argument_names[i]); builder->CreateStore(&*args, argument_addresses[i]); args++; i++; assert(args == function->arg_end()); assert(i == arg_count); info.index_addr = argument_addresses[start_addr]; info.thread_addr = argument_addresses[thread_nr_addr]; PerformInitialization(info, pipeline->operation); builder->CreateBr(loop_cond); } // for loop condition: index < end builder->SetInsertPoint(loop_cond); { LoadInst *index = builder->CreateLoad(argument_addresses[start_addr], "index"); LoadInst *end = builder->CreateLoad(argument_addresses[end_addr], "end"); Value *condition = builder->CreateICmpSLT(index, end, "index < end"); builder->CreateCondBr(condition, loop_body, loop_end); } // loop body: perform the computation builder->SetInsertPoint(loop_body); { LoadInst *index = builder->CreateLoad(argument_addresses[start_addr], "index"); info.index = index; info.index_addr = argument_addresses[start_addr]; // perform the computation over the given index // we don't use the return value because the final assignment has already taken place Value *v = PerformOperation(info, thread->builder, thread->context, pipeline->operation, pipeline->inputData, pipeline->outputData); if (v == NULL) { // failed to perform operation printf("Failed to compile pipeline %s\n", pipeline->name); return NULL; } builder->CreateBr(loop_inc); } // loop increment: index++ builder->SetInsertPoint(loop_inc); { LoadInst *index = builder->CreateLoad(argument_addresses[start_addr], "index"); Value *incremented_index = builder->CreateAdd(index, ConstantInt::get(int64_tpe, 1, true), "index++"); builder->CreateStore(incremented_index, argument_addresses[start_addr]); builder->CreateBr(loop_cond); } // loop end: return; (nothing happens here because we have no return value) builder->SetInsertPoint(loop_end); { // return the output size of each of the columns int i = 0; Value *result_sizes = builder->CreateLoad(argument_addresses[result_sizes_addr], "result_sizes[]"); for(auto it = pipeline->outputData->objects.begin(); it != pipeline->outputData->objects.end(); it++) { Value* output_count; if (it->index_addr) { output_count = builder->CreateLoad((Value*) it->index_addr, "count"); } else { output_count = ConstantInt::get(int64_tpe, 1, true); } Value *output_addr = builder->CreateGEP(int64_tpe, result_sizes, ConstantInt::get(int64_tpe, i, true)); builder->CreateStore(output_count, output_addr); i++; } builder->CreateRet(ConstantInt::get(int64_tpe, 0, true)); } #ifndef _NOTDEBUG verifyFunction(*function); verifyModule(*module); #endif //printf("LLVM for pipeline %s\n", pipeline->name); module->dump(); passmanager->run(*function); // dump generated LLVM code //module->dump(); auto handle = thread->jit->addModule(std::move(owner)); jit_function compiled_function = (jit_function) thread->jit->findSymbol(fname).getAddress(); if (!compiled_function) { printf("Error creating function.\n"); return NULL; } JITFunction *jf = CreateJITFunction(thread, pipeline); jf->size = size; jf->function = compiled_function; jf->jit = thread->jit.get(); jf->handle = handle; assert(jf->function); return jf; }