void generateTaylorModelForSinFunc(TaylorModel& tm, FCL_REAL w, FCL_REAL q0) { FCL_REAL a = tm.getTimeInterval()->t_.center(); FCL_REAL t = w * a + q0; FCL_REAL w2 = w * w; FCL_REAL fa = sin(t); FCL_REAL fda = w*cos(t); FCL_REAL fdda = -w2*fa; FCL_REAL fddda = -w2*fda; tm.coeff(0) = fa-a*(fda-0.5*a*(fdda-1.0/3.0*a*fddda)); tm.coeff(1) = fda-a*fdda+0.5*a*a*fddda; tm.coeff(2) = 0.5*(fdda-a*fddda); tm.coeff(3) = 1.0/6.0*fddda; // compute bounds for w^3 sin(wt+q0)/16, t \in [t0, t1] Interval fddddBounds; if(w == 0) fddddBounds.setValue(0); else { FCL_REAL sinQL = sin(w * tm.getTimeInterval()->t_[0] + q0); FCL_REAL sinQR = sin(w * tm.getTimeInterval()->t_[1] + q0); if(sinQL < sinQR) fddddBounds.setValue(sinQL, sinQR); else fddddBounds.setValue(sinQR, sinQL); // enlarge to handle round-off errors fddddBounds[0] -= 1e-15; fddddBounds[1] += 1e-15; // sin reaches maximum if there exists an integer k in [(w*t0+q0-pi/2)/2pi, (w*t1+q0-pi/2)/2pi]; // sin reaches minimum if there exists an integer k in [(w*t0+q0-pi-pi/2)/2pi, (w*t1+q0-pi-pi/2)/2pi] FCL_REAL k1 = (tm.getTimeInterval()->t_[0] * w + q0) / (2 * boost::math::constants::pi<FCL_REAL>()) - 0.25; FCL_REAL k2 = (tm.getTimeInterval()->t_[1] * w + q0) / (2 * boost::math::constants::pi<FCL_REAL>()) - 0.25; if(w > 0) { if(ceil(k2) - floor(k1) > 1) fddddBounds[1] = 1; k1 -= 0.5; k2 -= 0.5; if(ceil(k2) - floor(k1) > 1) fddddBounds[0] = -1; } else { if(ceil(k1) - floor(k2) > 1) fddddBounds[1] = 1; k1 -= 0.5; k2 -= 0.5; if(ceil(k1) - floor(k2) > 1) fddddBounds[0] = -1; } FCL_REAL w4 = w2 * w2; fddddBounds *= w4; FCL_REAL midSize = 0.5 * (tm.getTimeInterval()->t_[1] - tm.getTimeInterval()->t_[0]); FCL_REAL midSize2 = midSize * midSize; FCL_REAL midSize4 = midSize2 * midSize2; // [0, midSize4] * fdddBounds if(fddddBounds[0] > 0) tm.remainder().setValue(0, fddddBounds[1] * midSize4 * (1.0 / 24)); else if(fddddBounds[0] < 0) tm.remainder().setValue(fddddBounds[0] * midSize4 * (1.0 / 24), 0); else tm.remainder().setValue(fddddBounds[0] * midSize4 * (1.0 / 24), fddddBounds[1] * midSize4 * (1.0 / 24)); } }
Interval TaylorModel::getTightBound(FCL_REAL t0, FCL_REAL t1) const { if(t0 < time_interval_->t_[0]) t0 = time_interval_->t_[0]; if(t1 > time_interval_->t_[1]) t1 = time_interval_->t_[1]; if(coeffs_[3] == 0) { register FCL_REAL a = -coeffs_[1] / (2 * coeffs_[2]); Interval polybounds; if(a <= t1 && a >= t0) { FCL_REAL AQ = coeffs_[0] + a * (coeffs_[1] + a * coeffs_[2]); register FCL_REAL t = t0; FCL_REAL LQ = coeffs_[0] + t * (coeffs_[1] + t * coeffs_[2]); t = t1; FCL_REAL RQ = coeffs_[0] + t * (coeffs_[1] + t * coeffs_[2]); FCL_REAL minQ = LQ, maxQ = RQ; if(LQ > RQ) { minQ = RQ; maxQ = LQ; } if(minQ > AQ) minQ = AQ; if(maxQ < AQ) maxQ = AQ; polybounds.setValue(minQ, maxQ); } else { register FCL_REAL t = t0; FCL_REAL LQ = coeffs_[0] + t * (coeffs_[1] + t * coeffs_[2]); t = t1; FCL_REAL RQ = coeffs_[0] + t * (coeffs_[1] + t * coeffs_[2]); if(LQ > RQ) polybounds.setValue(RQ, LQ); else polybounds.setValue(LQ, RQ); } return polybounds + r_; } else { register FCL_REAL t = t0; FCL_REAL LQ = coeffs_[0] + t * (coeffs_[1] + t * (coeffs_[2] + t * coeffs_[3])); t = t1; FCL_REAL RQ = coeffs_[0] + t * (coeffs_[1] + t * (coeffs_[2] + t * coeffs_[3])); if(LQ > RQ) { FCL_REAL tmp = LQ; LQ = RQ; RQ = tmp; } // derivative: c1+2*c2*t+3*c3*t^2 FCL_REAL delta = coeffs_[2] * coeffs_[2] - 3 * coeffs_[1] * coeffs_[3]; if(delta < 0) return Interval(LQ, RQ) + r_; FCL_REAL r1 = (-coeffs_[2]-sqrt(delta))/(3*coeffs_[3]); FCL_REAL r2 = (-coeffs_[2]+sqrt(delta))/(3*coeffs_[3]); if(r1 <= t1 && r1 >= t0) { FCL_REAL Q = coeffs_[0] + r1 * (coeffs_[1] + r1 * (coeffs_[2] + r1 * coeffs_[3])); if(Q < LQ) LQ = Q; else if(Q > RQ) RQ = Q; } if(r2 <= t1 && r2 >= t0) { FCL_REAL Q = coeffs_[0] + r2 * (coeffs_[1] + r2 * (coeffs_[2] + r2 * coeffs_[3])); if(Q < LQ) LQ = Q; else if(Q > RQ) RQ = Q; } return Interval(LQ, RQ) + r_; } }