示例#1
0
文件: rplib2.cpp 项目: KAPSARC/KTAB
// build the square matrix of position utilities.
// Row is actor i, Column is position of actor j,
// U(i,j) is utility to actor i of position of actor j.
// If there are duplicate positions, there will be duplicate columns.
void RP2State::setAllAUtil(ReportingLevel) {
  const unsigned int na = eMod->numAct;
  assert(Model::minNumActor <= na);
  assert(na <= Model::maxNumActor);
  aUtil = {};
  aUtil.resize(na);
  auto uMat = KMatrix(na, na); // they will all be the same in this demo
  for (unsigned int j = 0; j < na; j++) {
    unsigned int nj = posNdx(j);
    auto utilJ = actorUtilVectFn(-1, nj); // all have objective perspective
    for (unsigned int i = 0; i < na; i++) {
      uMat(i, j) = utilJ[i];
    }
  }
  for (unsigned int i = 0; i < na; i++) {
    aUtil[i] = uMat;
  }
  return;
}
示例#2
0
// return the list of the most self-interested position of each actor,
// with the CP last.
// As a side-affect, set each actor's min/max permutation values so as to
// compute normalized utilities later.
vector<VUI> scanAllPossiblePositions(const RPModel * rpm) {
  unsigned int numA = rpm->numAct;
  unsigned int numRefItem = rpm->numItm;
  assert(numRefItem == rpm->numCat);

  LOG(INFO) << "There are" << numA << "actors and" << numRefItem << "reform items";



  KMatrix aCap = KMatrix(1, numA);
  for (unsigned int i = 0; i < numA; i++) {
    auto ri = ((const RPActor *)(rpm->actrs[i]));
    aCap(0, i) = ri->sCap;
  }
  LOG(INFO) << "Actor capabilities: ";
  aCap.mPrintf(" %.2f ");


  LOG(INFO) << "Effective gov cost of items:";
  (rpm->govCost).mPrintf("%.3f ");
  LOG(INFO) << "Government budget: " << rpm->govBudget;
  assert(0 < rpm->govBudget);


  string log("Value to actors (rows) of individual reform items (columns):");
  for (unsigned int i = 0; i < rpm->actrs.size(); i++) {
    auto rai = ((const RPActor*)(rpm->actrs[i]));
    for (unsigned int j = 0; j < numRefItem; j++) {
      double vij = rai->riVals[j];
      log += KBase::getFormattedString(" %6.2f", vij);
    }
  }
  LOG(INFO) << log;

  LOG(INFO) << "Computing positions ... ";
  vector<VUI> allPositions; // list of all possiblepositions
  VUI pstn;
  // build the first permutation: 0,1,2,3,...
  for (unsigned int i = 0; i < numRefItem; i++) {
    pstn.push_back(i);
  }
  allPositions.push_back(pstn);
  while (next_permutation(pstn.begin(), pstn.end())) {
    allPositions.push_back(pstn);
  }
  const unsigned int numPos = allPositions.size();
  LOG(INFO) << "For" << numRefItem << "reform items there are"
   << numPos << "positions";


  // -------------------------------------------------
  // The next section sets up actor utilities.
  // First, we compute the unnormalized, raw utilities. The 'utilActorPos' checks
  // to see if pvMin/pvMax have been set, and returns the raw scores if not.
  // Then we scan across rows to find that actor's pvMin/pvMax, and record that
  // so utilActorPos can use it in the future. Finally, we normalize the rows and
  // display the normalized utility matrix.
  auto ruFn = [allPositions, rpm](unsigned int ai, unsigned int pj) {
    auto pstn = allPositions[pj];
    double uip = rpm->utilActorPos(ai, pstn);
    return uip;
  };

  LOG(INFO) << "Computing utilities of positions ... ";
  // rows are actors, columns are all possible positions
  auto rawUij = KMatrix::map(ruFn, numA, numPos);

  // set the min/max for each actor
  for (unsigned int i = 0; i < numA; i++) {
    double pvMin = rawUij(i, 0);
    double pvMax = rawUij(i, 0);
    for (unsigned int j = 0; j < numPos; j++) {
      double rij = rawUij(i, j);
      if (rij < pvMin) {
        pvMin = rij;
      }
      if (rij > pvMax) {
        pvMax = rij;
      }
    }
    assert(0 <= pvMin);
    assert(pvMin < pvMax);
    auto ai = ((RPActor*)(rpm->actrs[i]));
    ai->posValMin = pvMin;
    ai->posValMax = pvMax;
  }
  LOG(INFO) << "Normalizing utilities of positions ... ";
  KMatrix uij = KBase::rescaleRows(rawUij, 0.0, 1.0); // von Neumann utility scale

  string utilMtx("Complete (normalized) utility matrix of all possible positions (rows) versus actors (columns) \n");
  for (unsigned int pj = 0; pj < numPos; pj++) {
    utilMtx += KBase::getFormattedString("%3u  ", pj);
    auto pstn = allPositions[pj];
    //printVUI(pstn);
    utilMtx += KBase::stringVUI(pstn);
    utilMtx += "  ";
    for (unsigned int ai = 0; ai < numA; ai++) {
      double uap = uij(ai, pj);
      utilMtx += KBase::getFormattedString("%6.4f, ", uap);
    }
    utilMtx += KBase::getFormattedString("\n");
  }
  LOG(INFO) << utilMtx;

  // -------------------------------------------------
  // The next section determines the most self-interested positions for each actor,
  // as well as the 'central position' over all possible reform priorities
  // (which 'office seeking politicans' would adopt IF proportional voting).
  LOG(INFO) << "Computing best position for each actor";
  vector<VUI> bestAP; // list of each actor's best position (followed by CP)
  for (unsigned int ai = 0; ai < numA; ai++) {
    unsigned int bestJ = 0;
    double bestV = 0;
    for (unsigned int pj = 0; pj < numPos; pj++) {
      if (bestV < uij(ai, pj)) {
        bestJ = pj;
        bestV = uij(ai, pj);
      }
    }
    string bestMtx("Best position for ");
    string ais = std::to_string(ai);
    //string bjs = std::to_string(bestJ);
    string ps = KBase::stringVUI(allPositions[bestJ]);
    bestMtx += ais + " is " + ps;
    LOG(INFO) << bestMtx; 
    //LOG(INFO) << "Best for" << ai << "is ";
    //printVUI(positions[bestJ]);
    bestAP.push_back(allPositions[bestJ]);
  }


  LOG(INFO) << "Computing zeta ... ";
  KMatrix zeta = aCap * uij;
  assert((1 == zeta.numR()) && (numPos == zeta.numC()));


  LOG(INFO) << "Sorting positions from most to least net support ...";

  auto betterPR = [](tuple<unsigned int, double, VUI> pr1,
      tuple<unsigned int, double, VUI> pr2) {
    double v1 = get<1>(pr1);
    double v2 = get<1>(pr2);
    bool better = (v1 > v2);
    return better;
  };

  auto pairs = vector<tuple<unsigned int, double, VUI>>();
  for (unsigned int i = 0; i < numPos; i++) {
    auto pri = tuple<unsigned int, double, VUI>(i, zeta(0, i), allPositions[i]);
    pairs.push_back(pri);
  }

  sort(pairs.begin(), pairs.end(), betterPR);

  const unsigned int maxDisplayed = 720; // factorial(6)
  unsigned int  numPr = (pairs.size() < maxDisplayed) ? pairs.size() : maxDisplayed;

  LOG(INFO) << "Displaying highest" << numPr;
  for (unsigned int i = 0; i < numPr; i++) {
    auto pri = pairs[i];
    unsigned int ni = get<0>(pri);
    double zi = get<1>(pri);
    VUI pi = get<2>(pri);
    string ps = KBase::stringVUI(pi);
    LOG(INFO) << KBase::getFormattedString(" %3u: %4u  %.2f  %s", i, ni, zi, ps.c_str());
    //printVUI(pi);
  }

  VUI bestPerm = get<2>(pairs[0]);

  bestAP.push_back(bestPerm);
  return bestAP;
}