void task_baro(void* p){ /*baro code*/ while(1) { float pressure = ps.readPressureMillibars(); //dprintf("raw pressure is %d",(int) ((float)ps.readPressureRaw()/ 4096)); float altitude = ps.pressureToAltitudeMeters(pressure); float temperature = ps.readTemperatureC(); //dprintf("p: "); //dprintf("%d",pressure); //dprintf(" mbar\ta: "); //dprintf("%d",(int)altitude); //dprintf(" m\tt: "); //dprintf("%d",temperature); //dprintf(" deg C"); // dprintf("%d is pressure, %d is altitude, %d is temperature",(int) pressure,(int) altitude,(int) temperature); //dprintf("%d alt",(int)altitude); /* Serial.print("p: "); Serial.print(pressure); Serial.print(" mbar\ta: "); Serial.print(altitude); Serial.print(" m\tt: "); Serial.print(temperature); Serial.println(" deg C"); */ //delay(1000); vTaskDelay(taskDelay); //delay(100); } /*baro code*/ }
int main() { pc.printf("Starting \r\n"); setup(); //initializes sensors t.start(); timeLastPoll = t.read_ms(); while(button){ altitude = ps.pressureToAltitudeMeters(ps.readPressureMillibars()); gyr.read(); acc.read(); fprintf(fp, "%f, %d, %d, %d \r\n", altitude,gyr.g.x,gyr.g.y,gyr.g.z); pc.printf("%d Att: %2.2f \tGyr: %d %d %d \tAcc: %d %d %d \tT: %d\r\n", iter, altitude, gyr.g.x,gyr.g.y,gyr.g.z, acc.a.x,acc.a.y,acc.a.z, t.read_ms()-timeLastPoll); while( (t.read_ms() - timeLastPoll) < MBED_POLLING_PERIOD){ } // pc.printf("Loop Time: %d",t.read_ms()-timeLastPoll); timeLastPoll = t.read_ms(); iter++; } fclose(fp); pc.printf("File successfully written! \r\n"); printf("End of Program. \r\n"); }
void setup(){ setupBLE(); setupSensor(); startingAltitude = ps.pressureToAltitudeMeters(ps.readPressureMillibars()); //consider calibrating sensor //successful start up LED sequence gled = 1; bled = 0; wait(0.4); gled = 0; bled = 1; wait(0.4); gled = 1; bled = 0; wait(0.4); gled = 1; bled = 1; }
void setupSensor(){ // Sensor Set Up rled = 1; gled = 1; bled = 1; autoSD.ready_datalogger(); // Prepares a datalog filename according to index.txt pc.printf("Index: %d\r\n",autoSD.curr_index()); fp = fopen(autoSD.filepath, "w"); if (fp == NULL) { pc.printf("Unable to write the file \r\n"); while(1){ bled = !bled; wait_ms(100);} } if(!ps.init()){ //enable pressure sensor pc.printf("Unable to talk to Barometer\r\n"); while(1){ rled = !rled; wait_ms(100);} } else{ ps.enableFIFO(); } if(!gyr.init()){ pc.printf("Unable to talk to Gyroscope\r\n"); while(1){ rled = !rled; wait_ms(100);} } else{ gyr.enableFIFO(); } if(!acc.init()){ pc.printf("Unable to talk to Accelerometer\r\n"); while(1){ rled = !rled; wait_ms(100);} } else{ acc.enableFIFO(); } pc.printf("Sensor set up successfully\r\n"); }
void setup(){ Serial.begin(115200); Wire.begin(); //gyro code gyro.init();//gyro code gyro.enableDefault(); //gyro code ps.enableDefault(); //baro code handshaken = 0; /*accelerometer code*/ compass.init(); compass.enableDefault(); /*accelerometer code*/ /*sonar code*/ pinMode(TRIGGER_PIN, OUTPUT); pinMode(ECHO_PIN, INPUT); pinMode(TRIGGER_PIN2, OUTPUT); pinMode(ECHO_PIN2, INPUT); pinMode(TRIGGER_PIN3, OUTPUT); pinMode(ECHO_PIN3, INPUT); pinMode(TRIGGER_PIN4, OUTPUT); pinMode(ECHO_PIN4, INPUT); pinMode(TRIGGER_PIN5, OUTPUT); pinMode(ECHO_PIN5, INPUT); /*sonar code*/ pinMode(MOTOR, OUTPUT); /* Calibration values; the default values of +/-32767 for each axis lead to an assumed magnetometer bias of 0. Use the ACCalibrate program to determine appropriate values for your particular unit. */ //compass.m_min = (LSM303::vector<int16_t>){-32767, -32767, -32767}; //compass.m_max = (LSM303::vector<int16_t>){+32767, +32767, +32767}; //LSM303::vector<int16_t> running_min = {-2872, -3215, -1742}, running_max = {+3019, +3108, +3570}; //calibration init data for compass compass.m_min = (LSM303::vector<int16_t>){-2872, -3215, -1742}; compass.m_max = (LSM303::vector<int16_t>) {+3019, +3108, +3570}; }
int main() { pc.printf("Starting \r\n"); setup(); //initializes all hardware sensors t.start(); while(button){ timeLastPoll = t.read_ms(); altitude = ps.pressureToAltitudeMeters(ps.readPressureMillibars()); acc.readFIFO(); gyr.readFIFO(); // pc.printf("%d Att: %2.2f \tGyr: %2.2f %2.2f %2.2f \tAcc: %2.2f %2.2f %2.2f \tT: %d\r\n", // iter, // altitude, // gyr.g.x,gyr.g.y,gyr.g.z, // acc.a.x,acc.a.y,acc.a.z, // t.read_ms()-timeLastPoll); if (iter != 0){ calcMotionData(a); } else{ calcMotionData(1.0); } r_altitude = roundData(altitude); r_incline = roundData(incline); r_dist = roundData(tot_dist/50.0); r_speed = roundData(speed); // pc.printf("%d \t%d \t%d \t%d\r\n",r_altitude,r_incline,r_dist,r_speed); fprintf(fp, "%d, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %d, %d, %d \r\n", (t.read_ms() - timeLastPoll), altitude, gyr.g.x,gyr.g.y,gyr.g.z, acc.a.x,acc.a.y,acc.a.z, incline,tot_dist,speed, r_incline, r_dist, r_speed); static unsigned long lastSendTime = millis(); if (lastSendTime + 250 < millis()) { BTModu.sendData(String("x")+packageData2String(r_altitude)+ packageData2String(r_incline)+ packageData2String(r_dist)+ packageData2String(r_speed) ); lastSendTime += 250; } saveLastData(); while( (t.read_ms() - timeLastPoll) < MBED_POLLING_PERIOD_MS){ gled = 0; } // pc.printf("LT: %d\r\n",t.read_ms()-timeLastPoll); gled = 1; iter++; } fclose(fp); pc.printf("File successfully written! \r\n"); printf("End of Program. \r\n"); }
void task_poll_sensor(void* p){ while(1){ //unsigned int uS = sonar.ping(); // Send ping, get ping time in microseconds (uS). //unsigned int uS2 = sonar2.ping(); /* Serial.print("Sonar 1: "); Serial.print(sonar.convert_cm(uS)); // Convert ping time to distance and print result (0 = outside set distance range, no ping echo) Serial.println("cm"); Serial.print("Sonar 2: "); Serial.print(sonar2.convert_cm(uS2)); Serial.println("cm");*/ // dprintf("%d",(int)sonar.convert_cm(uS)); // vTaskDelay(1000); // dprintf("%d",(int)sonar.convert_cm(uS2)); /* if(sonar.convert_cm(uS)<50){ digitalWrite(MOTOR, HIGH); // sets the LED on delay(100); // waits for a second //digitalWrite(MOTOR, LOW); // sets the LED off //delay(1000); // waits for a second }else{ digitalWrite(MOTOR, LOW); delay(100); } */ /* digitalWrite(TRIGGER_PIN, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN, LOW); pinMode(ECHO_PIN,INPUT); duration = pulseIn(ECHO_PIN, HIGH,100000); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; // dprintf("%d 1", (int)distance); digitalWrite(TRIGGER_PIN2, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN2, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN2, LOW); pinMode(ECHO_PIN2,INPUT); duration = pulseIn(ECHO_PIN2, HIGH,100000); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; // dprintf("%d 2", (int)distance); digitalWrite(TRIGGER_PIN3, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN3, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN3, LOW); pinMode(ECHO_PIN3,INPUT); duration = pulseIn(ECHO_PIN3, HIGH,100000); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; // dprintf("%d 3", (int)distance); digitalWrite(TRIGGER_PIN4, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN4, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN4, LOW); pinMode(ECHO_PIN4,INPUT); duration = pulseIn(ECHO_PIN4, HIGH,100000); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; // dprintf("%d 4", (int)distance); digitalWrite(TRIGGER_PIN5, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN5, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN5, LOW); pinMode(ECHO_PIN5,INPUT); duration = pulseIn(ECHO_PIN5, HIGH,100000); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; // dprintf("%d 5", (int)distance); //Calculate the distance (in cm) based on the speed of sound. /*distance = duration/58.2;*/ float distance1,distance2,distance3,distance4,distance5; distance1 = sonar_read(TRIGGER_PIN,ECHO_PIN); distance2= sonar_read(TRIGGER_PIN2,ECHO_PIN2); distance3 = sonar_read(TRIGGER_PIN3,ECHO_PIN3); distance4 = sonar_read(TRIGGER_PIN4,ECHO_PIN4); distance5 = sonar_read(TRIGGER_PIN5,ECHO_PIN5); dprintf("%d %d %d %d %d",(int)distance1,(int)distance2,(int)distance3,(int)distance4,(int)distance5); /*dprintf("%d", (int) sonar_read(TRIGGER_PIN,ECHO_PIN)); dprintf("%d", (int) sonar_read(TRIGGER_PIN2,ECHO_PIN2)); dprintf("%d", (int) sonar_read(TRIGGER_PIN3,ECHO_PIN3)); dprintf("%d", (int) sonar_read(TRIGGER_PIN4,ECHO_PIN4)); dprintf("%d", (int) sonar_read(TRIGGER_PIN5,ECHO_PIN5));*/ /*sonar final code digitalWrite(TRIGGER_PIN, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN, LOW); pinMode(ECHO_PIN,INPUT); duration = pulseIn(ECHO_PIN, HIGH,100000); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; */ /* pinMode(ECHO_PIN,INPUT); digitalWrite(TRIGGER_PIN,HIGH); delayMicroseconds(1000); digitalWrite(TRIGGER_PIN,LOW); duration = pulseIn(ECHO_PIN,HIGH); distance = (duration/2)/29.1;*/ /* if(distance>10 && distance < 60){ digitalWrite(MOTOR, HIGH); // sets the LED on // delay(100); // waits for a second //digitalWrite(MOTOR, LOW); // sets the LED off //delay(1000); // waits for a second }else{ digitalWrite(MOTOR, LOW); // delay(100); }*/ // dprintf("%d",(int)distance); /*********************************** ** reading sensors ************************************/ compass.read(); dprintf("%d", int(compass.heading())); //dprintf("%d z",(int)(compass.a.z/16.0)); /*if(compass.a.z/16.0<-1000){ distFromStart += 33; step++; dprintf("%d step",step); }*/ /* float heading = compass.heading(); float XaVal, YaVal, ZaVal, fXa, fYa,fZa, pitch, roll,pitch_print, roll_print; const float alpha = 0.15; XaVal = compass.a.x/16.0; //Acceleration data registers contain a left-aligned 12-bit number, so values should be shifted right by 4 bits (divided by 16) YaVal = compass.a.y/16.0; //unit is in cm/s2 ZaVal = compass.a.z/16.0; /*********************************** ** keypad ************************************/ char key = keypad.getKey(); //print out the key that is pressed if (key != NO_KEY){ // Serial.print("You have pressed "); Serial.println(key); } /*********************************** ** altitude ************************************/ float pressure = ps.readPressureMillibars() + 248.5; float altitude = ps.pressureToAltitudeMeters(pressure); //dprintf("alt %d , pres %d",(int)altitude,(int)pressure); // Serial.print("Pressure is "); // Serial.print(pressure); // Serial.println(" mbar"); // Serial.print("Altitude is "); // Serial.print(altitude);// causes error // Serial.println(" m."); //dprintf("%d",(int)pressure); //dprintf("%d",(int)altitude); /****************************************************** ** gyro meter reading ******************************************************/ gyro.read(); /*Serial.println("Gyro meter "); Serial.print("X: "); Serial.print((int)gyro.g.x * 8.75 /1000); Serial.println(" degree/second"); Serial.print("Y: "); Serial.print((int)gyro.g.y * 8.75 /1000); Serial.println(" degree/second"); Serial.print("Z: "); Serial.print((int)gyro.g.z * 8.75 /1000); Serial.println(" degree/second"); Serial.println("");*/ //dprintf("x: %d",(int)(gyro.g.x * 8.75 /1000)); //dprintf("y: %d",(int)(gyro.g.y * 8.75 /1000)); //dprintf("z: %d",(int)(gyro.g.z * 8.75 /1000)); /******************************************************************* get Headings When given no arguments, the heading() function returns the angular difference in the horizontal plane between a default vector and north, in degrees. /* When given no arguments, the heading() function returns the angular difference in the horizontal plane between a default vector and north, in degrees. The default vector is chosen by the library to point along the surface of the PCB, in the direction of the top of the text on the silkscreen. This is the +X axis on the Pololu LSM303D carrier and the -Y axis on the Pololu LSM303DLHC, LSM303DLM, and LSM303DLH carriers. To use a different vector as a reference, use the version of heading() that takes a vector argument; for example, use compass.heading((LSM303::vector<int>){0, 0, 1}); to use the +Z axis as a reference. *******************************************************************/ // String direction = ""; /*if(heading>=340 || heading <= 20) dprintf("North"); // direction = "North"; else if (heading>=70 && heading <= 110) dprintf("East"); // direction = "East"; else if (heading>=160 && heading <= 200) dprintf("South"); //direction = "South"; else if (heading>=250 && heading <= 290) dprintf("West"); // direction = "West"; else if (heading>20 && heading < 70) dprintf("North East"); // direction = "North East"; else if (heading>110 && heading < 160) dprintf("South East"); // direction = "South East"; else if (heading>200 && heading < 250) dprintf("South West");// direction = "South West"; else if (heading>290 && heading < 340) dprintf("North West"); // direction = "North West"; // Serial.print("Heading is "); //Serial.println(direction); //Serial.println("degree."); /****************************************************** ** Method 1 to calculate distance: using steps ******************************************************/ // a step and distance using Z-ACCELERATION /* if(ZaVal<-950){ distFromStart+=33; //1 step is 33 cm step++; } /* Serial.print("X accel is ");Serial.print(XaVal); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Y accel is ");Serial.print(YaVal); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Z accel is ");Serial.print(ZaVal);Serial.print(" cm/s2"); Serial.println(" "); Serial.print("1. You have walked "); Serial.print(step); Serial.print(" steps and distance is "); Serial.print(distFromStart); Serial.println(" cm from start");*/ /*dprintf("x accel %d", (int)XaVal); dprintf("y accel %d",(int) YaVal); dprintf("z accel %d", (int)ZaVal); */ /****************************************************** ** pitch and roll ******************************************************/ // Low-Pass filter accelerometer /* fXa = XaVal * alpha + (fXa * (1.0 - alpha)); fYa = YaVal * alpha + (fYa * (1.0 - alpha)); fZa = ZaVal * alpha + (fZa * (1.0 - alpha)); /* Serial.print("Low pass X accel is ");Serial.print(fXa); Serifal.print(" cm/s2"); Serial.println(" "); Serial.print("Low pass Y accel is ");Serial.print(fYa); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Low pass Z accel is ");Serial.print(fZa);Serial.print(" cm/s2"); Serial.println(" "); */ /* roll = atan2(fYa, sqrt(fXa*fXa + fZa*fZa)); pitch = atan2(fXa, sqrt(fYa*fYa + fZa*fZa)); roll_print = roll*180.0/M_PI; pitch_print = pitch*180.0/M_PI; /* Serial.print("pitch(Y) is "); Serial.print(pitch_print); Serial.println("degree "); Serial.print("roll(X) is "); Serial.print(roll_print); Serial.println("degree ");*/ /****************************************************** ** Method 2 to calculate distance: using accelerations ******************************************************/ /* newTime = millis(); deltaTime = newTime - oldTime; XaVal = XaVal - (1000 * (sin(pitch)));//offsetting pitch // estimate the average acceleration since the previous sample, by averaging the two samples long avgAccel = (oldXaVal + XaVal) / 2; //if ((XaVal < 50 && XaVal > -50) && (oldXaVal < 50 && oldXaVal > -50)) // avgAccel = 0; /* working Serial.print("the avgAccel is "); Serial.print(avgAccel); Serial.println(" cm/s2");*/ // integrate the average accel and add it to the previous speed to calculate the new speed // long newVelocity = oldVelocity + (avgAccel * deltaTime/1000); //estimate the average speed since the previous sample, by averaging the two speeds //long avgVelocity = (oldVelocity + newVelocity) / 2; // if ((XaVal < 50 && XaVal > -50) && (oldXaVal < 50 && oldXaVal > -50)) // avgVelocity = 0; // integrate the average speed and add it to the previous displacement to get the new displacement /* long newDisplacement = oldDis + (avgVelocity * deltaTime/1000); oldTime = newTime; oldVelocity = newVelocity ; oldDis = newDisplacement; oldXaVal = XaVal;*/ /*working Serial.print("2. You have walked "); Serial.print(newDisplacement); Serial.println("cm from start"); */ /****************************************************** ** IR sensor meter reading ******************************************************/ sensorValue = analogRead(sensorIR); cm = 10650.08 * pow(sensorValue,-0.935) - 10; /* Serial.print("IR sensor reads "); Serial.print(cm); Serial.println(" Cm");*/ //delay(100); vTaskDelay(100); } }
void task_sensor_poll(void* p){ while(1){ /*********************************** ** reading sensors ************************************/ compass.read(); /* float heading = compass.heading(); float XaVal, YaVal, ZaVal, fXa, fYa,fZa, pitch, roll,pitch_print, roll_print; const float alpha = 0.15; XaVal = compass.a.x/16.0; //Acceleration data registers contain a left-aligned 12-bit number, so values should be shifted right by 4 bits (divided by 16) YaVal = compass.a.y/16.0; //unit is in cm/s2 ZaVal = compass.a.z/16.0; /* /*********************************** ** keypad ************************************/ char key = keypad.getKey(); //print out the key that is pressed if (key != NO_KEY){ Serial.print("You have pressed "); Serial.println(key); } /*********************************** ** altitude ************************************/ float pressure = ps.readPressureMillibars() + 248.5; float altitude = ps.pressureToAltitudeMeters(pressure); /* Serial.print("Pressure is "); Serial.print(pressure); Serial.println(" mbar"); Serial.print("Altitude is "); Serial.print(altitude); Serial.println(" m."); /****************************************************** ** gyro meter reading ******************************************************/ gyro.read(); /* Serial.println("Gyro meter "); Serial.print("X: "); Serial.print((int)gyro.g.x * 8.75 /1000); Serial.println(" degree/second"); Serial.print("Y: "); Serial.print((int)gyro.g.y * 8.75 /1000); Serial.println(" degree/second"); Serial.print("Z: "); Serial.print((int)gyro.g.z * 8.75 /1000); Serial.println(" degree/second"); Serial.println(""); /******************************************************************* get Headings When given no arguments, the heading() function returns the angular difference in the horizontal plane between a default vector and north, in degrees. /* When given no arguments, the heading() function returns the angular difference in the horizontal plane between a default vector and north, in degrees. The default vector is chosen by the library to point along the surface of the PCB, in the direction of the top of the text on the silkscreen. This is the +X axis on the Pololu LSM303D carrier and the -Y axis on the Pololu LSM303DLHC, LSM303DLM, and LSM303DLH carriers. To use a different vector as a reference, use the version of heading() that takes a vector argument; for example, use compass.heading((LSM303::vector<int>){0, 0, 1}); to use the +Z axis as a reference. *******************************************************************/ /* String direction = ""; if(heading>=340 || heading <= 20) direction = "North"; else if (heading>=70 && heading <= 110) direction = "East"; else if (heading>=160 && heading <= 200) direction = "South"; else if (heading>=250 && heading <= 290) direction = "West"; else if (heading>20 && heading < 70) direction = "North East"; else if (heading>110 && heading < 160) direction = "South East"; else if (heading>200 && heading < 250) direction = "South West"; else if (heading>290 && heading < 340) direction = "North West"; Serial.print("Heading is "); Serial.println(direction); //Serial.println("degree."); /****************************************************** ** Method 1 to calculate distance: using steps ******************************************************/ // a step and distance using Z-ACCELERATION /* if(ZaVal<-965){ distFromStart+=33; //1 step is 33 cm step++; } Serial.print("X accel is ");Serial.print(XaVal); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Y accel is ");Serial.print(YaVal); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Z accel is ");Serial.print(ZaVal);Serial.print(" cm/s2"); Serial.println(" "); Serial.print("1. You have walked "); Serial.print(step); Serial.print(" steps and distance is "); Serial.print(distFromStart); Serial.println(" cm from start"); /****************************************************** ** pitch and roll ******************************************************/ // Low-Pass filter accelerometer /* fXa = XaVal * alpha + (fXa * (1.0 - alpha)); fYa = YaVal * alpha + (fYa * (1.0 - alpha)); fZa = ZaVal * alpha + (fZa * (1.0 - alpha)); Serial.print("Low pass X accel is ");Serial.print(fXa); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Low pass Y accel is ");Serial.print(fYa); Serial.print(" cm/s2"); Serial.println(" "); Serial.print("Low pass Z accel is ");Serial.print(fZa);Serial.print(" cm/s2"); Serial.println(" "); roll = atan2(fYa, sqrt(fXa*fXa + fZa*fZa)); pitch = atan2(fXa, sqrt(fYa*fYa + fZa*fZa)); roll_print = roll*180.0/M_PI; pitch_print = pitch*180.0/M_PI; Serial.print("pitch(Y) is "); Serial.print(pitch_print); Serial.println("degree "); Serial.print("roll(X) is "); Serial.print(roll_print); Serial.println("degree "); /****************************************************** ** Method 2 to calculate distance: using accelerations ******************************************************/ //newTime = millis(); /* deltaTime = newTime - oldTime; XaVal = XaVal - (1000 * (sin(pitch)));//offsetting pitch // estimate the average acceleration since the previous sample, by averaging the two samples long avgAccel = (oldXaVal + XaVal) / 2; //if ((XaVal < 50 && XaVal > -50) && (oldXaVal < 50 && oldXaVal > -50)) // avgAccel = 0; /* Serial.print("the avgAccel is "); Serial.print(avgAccel); Serial.println(" cm/s2"); // integrate the average accel and add it to the previous speed to calculate the new speed long newVelocity = oldVelocity + (avgAccel * deltaTime/1000); //estimate the average speed since the previous sample, by averaging the two speeds long avgVelocity = (oldVelocity + newVelocity) / 2; // if ((XaVal < 50 && XaVal > -50) && (oldXaVal < 50 && oldXaVal > -50)) // avgVelocity = 0; // integrate the average speed and add it to the previous displacement to get the new displacement long newDisplacement = oldDis + (avgVelocity * deltaTime/1000); oldTime = newTime; oldVelocity = newVelocity ; oldDis = newDisplacement; oldXaVal = XaVal; Serial.print("2. You have walked "); Serial.print(newDisplacement); Serial.println("cm from start"); /****************************************************** ** IR sensor meter reading ******************************************************/ sensorValue = analogRead(sensorIR); cm = 10650.08 * pow(sensorValue,-0.935) - 10; /* Serial.print("IR sensor reads "); Serial.print(cm); Serial.println(" Cm"); /*********************************** ** reading sensors ************************************/ /* //digitalWrite(ECHO_PIN2 ,LOW); unsigned int uS2 = sonar2.ping(); Serial.print("Sonar 2: "); Serial.print(sonar2.convert_cm(uS2)); Serial.println("cm"); if(sonar2.convert_cm(uS2)<50){ digitalWrite(MOTOR, HIGH); // waits for a second // sets the LED off //delay(1000); // waits for a second } else{ digitalWrite(MOTOR, LOW); } //delay(100); */ /* The following trigPin/echoPin cycle is used to determine the distance of the nearest object by bouncing soundwaves off of it. */ digitalWrite(TRIGGER_PIN, LOW); delayMicroseconds(2); digitalWrite(TRIGGER_PIN, HIGH); delayMicroseconds(10); digitalWrite(TRIGGER_PIN, LOW); duration = pulseIn(ECHO_PIN, HIGH); //Calculate the distance (in cm) based on the speed of sound. distance = duration/58.2; dprintf("%d",(int)distance); /* Serial.print("sonar distance is "); Serial.println(distance); Serial.println();*/ if (distance >= 10 && distance <= 70){ /* Send a negative number to computer and Turn LED ON to indicate "out of range" */ //Serial.println("-1"); digitalWrite(MOTOR, HIGH); } else { /* Send the distance to the computer using Serial protocol, and turn LED OFF to indicate successful reading. */ //Serial.println(distance); digitalWrite(MOTOR, LOW); } //Delay 50ms before next reading. delay(50); } }