/// getMachineBasicBlocks - Populate given set using machine basic blocks which /// have machine instructions that belong to lexical scope identified by /// DebugLoc. void LexicalScopes::getMachineBasicBlocks( const DILocation *DL, SmallPtrSetImpl<const MachineBasicBlock *> &MBBs) { MBBs.clear(); LexicalScope *Scope = getOrCreateLexicalScope(DL); if (!Scope) return; if (Scope == CurrentFnLexicalScope) { for (const auto &MBB : *MF) MBBs.insert(&MBB); return; } SmallVectorImpl<InsnRange> &InsnRanges = Scope->getRanges(); for (auto &R : InsnRanges) MBBs.insert(R.first->getParent()); }
// Each LexicalScope has first instruction and last instruction to mark // beginning and end of a scope respectively. Create an inverse map that list // scopes starts (and ends) with an instruction. One instruction may start (or // end) multiple scopes. Ignore scopes that are not reachable. void DebugHandlerBase::identifyScopeMarkers() { SmallVector<LexicalScope *, 4> WorkList; WorkList.push_back(LScopes.getCurrentFunctionScope()); while (!WorkList.empty()) { LexicalScope *S = WorkList.pop_back_val(); const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); if (!Children.empty()) WorkList.append(Children.begin(), Children.end()); if (S->isAbstractScope()) continue; for (const InsnRange &R : S->getRanges()) { assert(R.first && "InsnRange does not have first instruction!"); assert(R.second && "InsnRange does not have second instruction!"); requestLabelBeforeInsn(R.first); requestLabelAfterInsn(R.second); } } }
/// getMachineBasicBlocks - Populate given set using machine basic blocks which /// have machine instructions that belong to lexical scope identified by /// DebugLoc. void LexicalScopes::getMachineBasicBlocks( const MDLocation *DL, SmallPtrSetImpl<const MachineBasicBlock *> &MBBs) { MBBs.clear(); LexicalScope *Scope = getOrCreateLexicalScope(DL); if (!Scope) return; if (Scope == CurrentFnLexicalScope) { for (const auto &MBB : *MF) MBBs.insert(&MBB); return; } SmallVectorImpl<InsnRange> &InsnRanges = Scope->getRanges(); for (SmallVectorImpl<InsnRange>::iterator I = InsnRanges.begin(), E = InsnRanges.end(); I != E; ++I) { InsnRange &R = *I; MBBs.insert(R.first->getParent()); } }
void CodeViewDebug::collectVariableInfoFromMMITable( DenseSet<InlinedVariable> &Processed) { const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget(); const TargetFrameLowering *TFI = TSI.getFrameLowering(); const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); for (const MachineModuleInfo::VariableDbgInfo &VI : MMI->getVariableDbgInfo()) { if (!VI.Var) continue; assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && "Expected inlined-at fields to agree"); Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); // If variable scope is not found then skip this variable. if (!Scope) continue; // Get the frame register used and the offset. unsigned FrameReg = 0; int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); // Calculate the label ranges. LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); for (const InsnRange &Range : Scope->getRanges()) { const MCSymbol *Begin = getLabelBeforeInsn(Range.first); const MCSymbol *End = getLabelAfterInsn(Range.second); End = End ? End : Asm->getFunctionEnd(); DefRange.Ranges.emplace_back(Begin, End); } LocalVariable Var; Var.DIVar = VI.Var; Var.DefRanges.emplace_back(std::move(DefRange)); recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); } }
/// getMachineBasicBlocks - Populate given set using machine basic blocks which /// have machine instructions that belong to lexical scope identified by /// DebugLoc. void LexicalScopes:: getMachineBasicBlocks(DebugLoc DL, SmallPtrSet<const MachineBasicBlock*, 4> &MBBs) { MBBs.clear(); LexicalScope *Scope = getOrCreateLexicalScope(DL); if (!Scope) return; if (Scope == CurrentFnLexicalScope) { for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) MBBs.insert(I); return; } SmallVector<InsnRange, 4> &InsnRanges = Scope->getRanges(); for (SmallVector<InsnRange, 4>::iterator I = InsnRanges.begin(), E = InsnRanges.end(); I != E; ++I) { InsnRange &R = *I; MBBs.insert(R.first->getParent()); } }
void UserValue::computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, LiveIntervals &LIS, LexicalScopes &LS) { SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs; // Collect all defs to be extended (Skipping undefs). for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) if (I.value() != UndefLocNo) Defs.push_back(std::make_pair(I.start(), I.value())); // Extend all defs, and possibly add new ones along the way. for (unsigned i = 0; i != Defs.size(); ++i) { SlotIndex Idx = Defs[i].first; unsigned LocNo = Defs[i].second; const MachineOperand &Loc = locations[LocNo]; if (!Loc.isReg()) { extendDef(Idx, LocNo, nullptr, nullptr, nullptr, LIS); continue; } // Register locations are constrained to where the register value is live. if (TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { LiveInterval *LI = nullptr; const VNInfo *VNI = nullptr; if (LIS.hasInterval(Loc.getReg())) { LI = &LIS.getInterval(Loc.getReg()); VNI = LI->getVNInfoAt(Idx); } SmallVector<SlotIndex, 16> Kills; extendDef(Idx, LocNo, LI, VNI, &Kills, LIS); if (LI) addDefsFromCopies(LI, LocNo, Kills, Defs, MRI, LIS); continue; } // For physregs, use the live range of the first regunit as a guide. unsigned Unit = *MCRegUnitIterator(Loc.getReg(), &TRI); LiveRange *LR = &LIS.getRegUnit(Unit); const VNInfo *VNI = LR->getVNInfoAt(Idx); // Don't track copies from physregs, it is too expensive. extendDef(Idx, LocNo, LR, VNI, nullptr, LIS); } // Erase all the undefs. for (LocMap::iterator I = locInts.begin(); I.valid();) if (I.value() == UndefLocNo) I.erase(); else ++I; // The computed intervals may extend beyond the range of the debug // location's lexical scope. In this case, splitting of an interval // can result in an interval outside of the scope being created, // causing extra unnecessary DBG_VALUEs to be emitted. To prevent // this, trim the intervals to the lexical scope. LexicalScope *Scope = LS.findLexicalScope(dl); if (!Scope) return; SlotIndex PrevEnd; LocMap::iterator I = locInts.begin(); // Iterate over the lexical scope ranges. Each time round the loop // we check the intervals for overlap with the end of the previous // range and the start of the next. The first range is handled as // a special case where there is no PrevEnd. for (const InsnRange &Range : Scope->getRanges()) { SlotIndex RStart = LIS.getInstructionIndex(*Range.first); SlotIndex REnd = LIS.getInstructionIndex(*Range.second); // At the start of each iteration I has been advanced so that // I.stop() >= PrevEnd. Check for overlap. if (PrevEnd && I.start() < PrevEnd) { SlotIndex IStop = I.stop(); unsigned LocNo = I.value(); // Stop overlaps previous end - trim the end of the interval to // the scope range. I.setStopUnchecked(PrevEnd); ++I; // If the interval also overlaps the start of the "next" (i.e. // current) range create a new interval for the remainder (which // may be further trimmed). if (RStart < IStop) I.insert(RStart, IStop, LocNo); } // Advance I so that I.stop() >= RStart, and check for overlap. I.advanceTo(RStart); if (!I.valid()) return; if (I.start() < RStart) { // Interval start overlaps range - trim to the scope range. I.setStartUnchecked(RStart); // Remember that this interval was trimmed. trimmedDefs.insert(RStart); } // The end of a lexical scope range is the last instruction in the // range. To convert to an interval we need the index of the // instruction after it. REnd = REnd.getNextIndex(); // Advance I to first interval outside current range. I.advanceTo(REnd); if (!I.valid()) return; PrevEnd = REnd; } // Check for overlap with end of final range. if (PrevEnd && I.start() < PrevEnd) I.setStopUnchecked(PrevEnd); }