//! Draw the sky grid in the current frame void SkyGrid::draw(const StelCore* core) const { const StelProjectorP prj = core->getProjection(frameType, frameType!=StelCore::FrameAltAz ? StelCore::RefractionAuto : StelCore::RefractionOff); if (!fader.getInterstate()) return; bool withDecimalDegree = StelApp::getInstance().getFlagShowDecimalDegrees();; // Look for all meridians and parallels intersecting with the disk bounding the viewport // Check whether the pole are in the viewport bool northPoleInViewport = false; bool southPoleInViewport = false; Vec3f win; if (prj->project(Vec3f(0,0,1), win) && prj->checkInViewport(win)) northPoleInViewport = true; if (prj->project(Vec3f(0,0,-1), win) && prj->checkInViewport(win)) southPoleInViewport = true; // Get the longitude and latitude resolution at the center of the viewport Vec3d centerV; prj->unProject(prj->getViewportPosX()+prj->getViewportWidth()/2., prj->getViewportPosY()+prj->getViewportHeight()/2.+1., centerV); double lon2, lat2; StelUtils::rectToSphe(&lon2, &lat2, centerV); const double gridStepParallelRad = M_PI/180.*getClosestResolutionDMS(prj->getPixelPerRadAtCenter()); double gridStepMeridianRad; if (northPoleInViewport || southPoleInViewport) gridStepMeridianRad = (frameType==StelCore::FrameAltAz || frameType==StelCore::FrameGalactic) ? M_PI/180.* 10. : M_PI/180.* 15.; else { const double closestResLon = (frameType==StelCore::FrameAltAz || frameType==StelCore::FrameGalactic) ? getClosestResolutionDMS(prj->getPixelPerRadAtCenter()*std::cos(lat2)) : getClosestResolutionHMS(prj->getPixelPerRadAtCenter()*std::cos(lat2)); gridStepMeridianRad = M_PI/180.* ((northPoleInViewport || southPoleInViewport) ? 15. : closestResLon); } // Get the bounding halfspace const SphericalCap& viewPortSphericalCap = prj->getBoundingCap(); // Compute the first grid starting point. This point is close to the center of the screen // and lies at the intersection of a meridian and a parallel lon2 = gridStepMeridianRad*((int)(lon2/gridStepMeridianRad+0.5)); lat2 = gridStepParallelRad*((int)(lat2/gridStepParallelRad+0.5)); Vec3d firstPoint; StelUtils::spheToRect(lon2, lat2, firstPoint); firstPoint.normalize(); // Q_ASSERT(viewPortSphericalCap.contains(firstPoint)); // Initialize a painter and set OpenGL state StelPainter sPainter(prj); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Normal transparency mode // OpenGL ES 2.0 doesn't have GL_LINE_SMOOTH #ifdef GL_LINE_SMOOTH if (QOpenGLContext::currentContext()->format().renderableType()==QSurfaceFormat::OpenGL) glEnable(GL_LINE_SMOOTH); #endif // make text colors just a bit brighter. (But if >1, QColor::setRgb fails and makes text invisible.) Vec4f textColor(qMin(1.0f, 1.25f*color[0]), qMin(1.0f, 1.25f*color[1]), qMin(1.0f, 1.25f*color[2]), fader.getInterstate()); sPainter.setColor(color[0],color[1],color[2], fader.getInterstate()); sPainter.setFont(font); ViewportEdgeIntersectCallbackData userData(&sPainter); userData.textColor = textColor; userData.frameType = frameType; ///////////////////////////////////////////////// // Draw all the meridians (great circles) SphericalCap meridianSphericalCap(Vec3d(1,0,0), 0); Mat4d rotLon = Mat4d::zrotation(gridStepMeridianRad); Vec3d fpt = firstPoint; Vec3d p1, p2; int maxNbIter = (int)(M_PI/gridStepMeridianRad); int i; for (i=0; i<maxNbIter; ++i) { StelUtils::rectToSphe(&lon2, &lat2, fpt); userData.raAngle = lon2; meridianSphericalCap.n = fpt^Vec3d(0,0,1); meridianSphericalCap.n.normalize(); if (!SphericalCap::intersectionPoints(viewPortSphericalCap, meridianSphericalCap, p1, p2)) { if (viewPortSphericalCap.d<meridianSphericalCap.d && viewPortSphericalCap.contains(meridianSphericalCap.n)) { // The meridian is fully included in the viewport, draw it in 3 sub-arcs to avoid length > 180. const Mat4d& rotLon120 = Mat4d::rotation(meridianSphericalCap.n, 120.*M_PI/180.); Vec3d rotFpt=fpt; rotFpt.transfo4d(rotLon120); Vec3d rotFpt2=rotFpt; rotFpt2.transfo4d(rotLon120); sPainter.drawGreatCircleArc(fpt, rotFpt, NULL, viewportEdgeIntersectCallback, &userData); sPainter.drawGreatCircleArc(rotFpt, rotFpt2, NULL, viewportEdgeIntersectCallback, &userData); sPainter.drawGreatCircleArc(rotFpt2, fpt, NULL, viewportEdgeIntersectCallback, &userData); fpt.transfo4d(rotLon); continue; } else break; } Vec3d middlePoint = p1+p2; middlePoint.normalize(); if (!viewPortSphericalCap.contains(middlePoint)) middlePoint*=-1.; // Draw the arc in 2 sub-arcs to avoid lengths > 180 deg sPainter.drawGreatCircleArc(p1, middlePoint, NULL, viewportEdgeIntersectCallback, &userData); sPainter.drawGreatCircleArc(p2, middlePoint, NULL, viewportEdgeIntersectCallback, &userData); fpt.transfo4d(rotLon); } if (i!=maxNbIter) { rotLon = Mat4d::zrotation(-gridStepMeridianRad); fpt = firstPoint; fpt.transfo4d(rotLon); for (int j=0; j<maxNbIter-i; ++j) { StelUtils::rectToSphe(&lon2, &lat2, fpt); userData.raAngle = lon2; meridianSphericalCap.n = fpt^Vec3d(0,0,1); meridianSphericalCap.n.normalize(); if (!SphericalCap::intersectionPoints(viewPortSphericalCap, meridianSphericalCap, p1, p2)) break; Vec3d middlePoint = p1+p2; middlePoint.normalize(); if (!viewPortSphericalCap.contains(middlePoint)) middlePoint*=-1; sPainter.drawGreatCircleArc(p1, middlePoint, NULL, viewportEdgeIntersectCallback, &userData); sPainter.drawGreatCircleArc(p2, middlePoint, NULL, viewportEdgeIntersectCallback, &userData); fpt.transfo4d(rotLon); } } ///////////////////////////////////////////////// // Draw all the parallels (small circles) SphericalCap parallelSphericalCap(Vec3d(0,0,1), 0); rotLon = Mat4d::rotation(firstPoint^Vec3d(0,0,1), gridStepParallelRad); fpt = firstPoint; maxNbIter = (int)(M_PI/gridStepParallelRad)-1; for (i=0; i<maxNbIter; ++i) { StelUtils::rectToSphe(&lon2, &lat2, fpt); if (withDecimalDegree) userData.text = StelUtils::radToDecDegStr(lat2); else userData.text = StelUtils::radToDmsStrAdapt(lat2); parallelSphericalCap.d = fpt[2]; if (parallelSphericalCap.d>0.9999999) break; const Vec3d rotCenter(0,0,parallelSphericalCap.d); if (!SphericalCap::intersectionPoints(viewPortSphericalCap, parallelSphericalCap, p1, p2)) { if ((viewPortSphericalCap.d<parallelSphericalCap.d && viewPortSphericalCap.contains(parallelSphericalCap.n)) || (viewPortSphericalCap.d<-parallelSphericalCap.d && viewPortSphericalCap.contains(-parallelSphericalCap.n))) { // The parallel is fully included in the viewport, draw it in 3 sub-arcs to avoid lengths >= 180 deg static const Mat4d rotLon120 = Mat4d::zrotation(120.*M_PI/180.); Vec3d rotFpt=fpt; rotFpt.transfo4d(rotLon120); Vec3d rotFpt2=rotFpt; rotFpt2.transfo4d(rotLon120); sPainter.drawSmallCircleArc(fpt, rotFpt, rotCenter, viewportEdgeIntersectCallback, &userData); sPainter.drawSmallCircleArc(rotFpt, rotFpt2, rotCenter, viewportEdgeIntersectCallback, &userData); sPainter.drawSmallCircleArc(rotFpt2, fpt, rotCenter, viewportEdgeIntersectCallback, &userData); fpt.transfo4d(rotLon); continue; } else break; } // Draw the arc in 2 sub-arcs to avoid lengths > 180 deg Vec3d middlePoint = p1-rotCenter+p2-rotCenter; middlePoint.normalize(); middlePoint*=(p1-rotCenter).length(); middlePoint+=rotCenter; if (!viewPortSphericalCap.contains(middlePoint)) { middlePoint-=rotCenter; middlePoint*=-1.; middlePoint+=rotCenter; } sPainter.drawSmallCircleArc(p1, middlePoint, rotCenter, viewportEdgeIntersectCallback, &userData); sPainter.drawSmallCircleArc(p2, middlePoint, rotCenter, viewportEdgeIntersectCallback, &userData); fpt.transfo4d(rotLon); } if (i!=maxNbIter) { rotLon = Mat4d::rotation(firstPoint^Vec3d(0,0,1), -gridStepParallelRad); fpt = firstPoint; fpt.transfo4d(rotLon); for (int j=0; j<maxNbIter-i; ++j) { StelUtils::rectToSphe(&lon2, &lat2, fpt); if (withDecimalDegree) userData.text = StelUtils::radToDecDegStr(lat2); else userData.text = StelUtils::radToDmsStrAdapt(lat2); parallelSphericalCap.d = fpt[2]; const Vec3d rotCenter(0,0,parallelSphericalCap.d); if (!SphericalCap::intersectionPoints(viewPortSphericalCap, parallelSphericalCap, p1, p2)) { if ((viewPortSphericalCap.d<parallelSphericalCap.d && viewPortSphericalCap.contains(parallelSphericalCap.n)) || (viewPortSphericalCap.d<-parallelSphericalCap.d && viewPortSphericalCap.contains(-parallelSphericalCap.n))) { // The parallel is fully included in the viewport, draw it in 3 sub-arcs to avoid lengths >= 180 deg static const Mat4d rotLon120 = Mat4d::zrotation(120.*M_PI/180.); Vec3d rotFpt=fpt; rotFpt.transfo4d(rotLon120); Vec3d rotFpt2=rotFpt; rotFpt2.transfo4d(rotLon120); sPainter.drawSmallCircleArc(fpt, rotFpt, rotCenter, viewportEdgeIntersectCallback, &userData); sPainter.drawSmallCircleArc(rotFpt, rotFpt2, rotCenter, viewportEdgeIntersectCallback, &userData); sPainter.drawSmallCircleArc(rotFpt2, fpt, rotCenter, viewportEdgeIntersectCallback, &userData); fpt.transfo4d(rotLon); continue; } else break; } // Draw the arc in 2 sub-arcs to avoid lengths > 180 deg Vec3d middlePoint = p1-rotCenter+p2-rotCenter; middlePoint.normalize(); middlePoint*=(p1-rotCenter).length(); middlePoint+=rotCenter; if (!viewPortSphericalCap.contains(middlePoint)) { middlePoint-=rotCenter; middlePoint*=-1.; middlePoint+=rotCenter; } sPainter.drawSmallCircleArc(p1, middlePoint, rotCenter, viewportEdgeIntersectCallback, &userData); sPainter.drawSmallCircleArc(p2, middlePoint, rotCenter, viewportEdgeIntersectCallback, &userData); fpt.transfo4d(rotLon); } } // OpenGL ES 2.0 doesn't have GL_LINE_SMOOTH #ifdef GL_LINE_SMOOTH if (QOpenGLContext::currentContext()->format().renderableType()==QSurfaceFormat::OpenGL) glDisable(GL_LINE_SMOOTH); #endif }