void MCAssembler::writeFragmentPadding(const MCFragment &F, uint64_t FSize, MCObjectWriter *OW) const { // Should NOP padding be written out before this fragment? unsigned BundlePadding = F.getBundlePadding(); if (BundlePadding > 0) { assert(isBundlingEnabled() && "Writing bundle padding with disabled bundling"); assert(F.hasInstructions() && "Writing bundle padding for a fragment without instructions"); unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize); if (F.alignToBundleEnd() && TotalLength > getBundleAlignSize()) { // If the padding itself crosses a bundle boundary, it must be emitted // in 2 pieces, since even nop instructions must not cross boundaries. // v--------------v <- BundleAlignSize // v---------v <- BundlePadding // ---------------------------- // | Prev |####|####| F | // ---------------------------- // ^-------------------^ <- TotalLength unsigned DistanceToBoundary = TotalLength - getBundleAlignSize(); if (!getBackend().writeNopData(DistanceToBoundary, OW)) report_fatal_error("unable to write NOP sequence of " + Twine(DistanceToBoundary) + " bytes"); BundlePadding -= DistanceToBoundary; } if (!getBackend().writeNopData(BundlePadding, OW)) report_fatal_error("unable to write NOP sequence of " + Twine(BundlePadding) + " bytes"); } }
/// \brief Write the fragment \p F to the output file. static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment &F) { MCObjectWriter *OW = &Asm.getWriter(); // FIXME: Embed in fragments instead? uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F); // Should NOP padding be written out before this fragment? unsigned BundlePadding = F.getBundlePadding(); if (BundlePadding > 0) { assert(Asm.isBundlingEnabled() && "Writing bundle padding with disabled bundling"); assert(F.hasInstructions() && "Writing bundle padding for a fragment without instructions"); unsigned TotalLength = BundlePadding + static_cast<unsigned>(FragmentSize); if (F.alignToBundleEnd() && TotalLength > Asm.getBundleAlignSize()) { // If the padding itself crosses a bundle boundary, it must be emitted // in 2 pieces, since even nop instructions must not cross boundaries. // v--------------v <- BundleAlignSize // v---------v <- BundlePadding // ---------------------------- // | Prev |####|####| F | // ---------------------------- // ^-------------------^ <- TotalLength unsigned DistanceToBoundary = TotalLength - Asm.getBundleAlignSize(); if (!Asm.getBackend().writeNopData(DistanceToBoundary, OW)) report_fatal_error("unable to write NOP sequence of " + Twine(DistanceToBoundary) + " bytes"); BundlePadding -= DistanceToBoundary; } if (!Asm.getBackend().writeNopData(BundlePadding, OW)) report_fatal_error("unable to write NOP sequence of " + Twine(BundlePadding) + " bytes"); } // This variable (and its dummy usage) is to participate in the assert at // the end of the function. uint64_t Start = OW->getStream().tell(); (void) Start; ++stats::EmittedFragments; switch (F.getKind()) { case MCFragment::FT_Align: { ++stats::EmittedAlignFragments; const MCAlignFragment &AF = cast<MCAlignFragment>(F); assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); uint64_t Count = FragmentSize / AF.getValueSize(); // FIXME: This error shouldn't actually occur (the front end should emit // multiple .align directives to enforce the semantics it wants), but is // severe enough that we want to report it. How to handle this? if (Count * AF.getValueSize() != FragmentSize) report_fatal_error("undefined .align directive, value size '" + Twine(AF.getValueSize()) + "' is not a divisor of padding size '" + Twine(FragmentSize) + "'"); // See if we are aligning with nops, and if so do that first to try to fill // the Count bytes. Then if that did not fill any bytes or there are any // bytes left to fill use the Value and ValueSize to fill the rest. // If we are aligning with nops, ask that target to emit the right data. if (AF.hasEmitNops()) { if (!Asm.getBackend().writeNopData(Count, OW)) report_fatal_error("unable to write nop sequence of " + Twine(Count) + " bytes"); break; } // Otherwise, write out in multiples of the value size. for (uint64_t i = 0; i != Count; ++i) { switch (AF.getValueSize()) { default: llvm_unreachable("Invalid size!"); case 1: OW->Write8 (uint8_t (AF.getValue())); break; case 2: OW->Write16(uint16_t(AF.getValue())); break; case 4: OW->Write32(uint32_t(AF.getValue())); break; case 8: OW->Write64(uint64_t(AF.getValue())); break; } } break; } case MCFragment::FT_Data: ++stats::EmittedDataFragments; writeFragmentContents(F, OW); break; case MCFragment::FT_Relaxable: ++stats::EmittedRelaxableFragments; writeFragmentContents(F, OW); break; case MCFragment::FT_CompactEncodedInst: ++stats::EmittedCompactEncodedInstFragments; writeFragmentContents(F, OW); break; case MCFragment::FT_Fill: { ++stats::EmittedFillFragments; const MCFillFragment &FF = cast<MCFillFragment>(F); assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!"); for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) { switch (FF.getValueSize()) { default: llvm_unreachable("Invalid size!"); case 1: OW->Write8 (uint8_t (FF.getValue())); break; case 2: OW->Write16(uint16_t(FF.getValue())); break; case 4: OW->Write32(uint32_t(FF.getValue())); break; case 8: OW->Write64(uint64_t(FF.getValue())); break; } } break; } case MCFragment::FT_LEB: { const MCLEBFragment &LF = cast<MCLEBFragment>(F); OW->WriteBytes(LF.getContents().str()); break; } case MCFragment::FT_Org: { ++stats::EmittedOrgFragments; const MCOrgFragment &OF = cast<MCOrgFragment>(F); for (uint64_t i = 0, e = FragmentSize; i != e; ++i) OW->Write8(uint8_t(OF.getValue())); break; } case MCFragment::FT_Dwarf: { const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); OW->WriteBytes(OF.getContents().str()); break; } case MCFragment::FT_DwarfFrame: { const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); OW->WriteBytes(CF.getContents().str()); break; } } assert(OW->getStream().tell() - Start == FragmentSize && "The stream should advance by fragment size"); }