示例#1
0
MStatus sgBulgeDeformer::deform(MDataBlock& dataBlock, MItGeometry& iter, const MMatrix& mtx, unsigned int index)
{
	MStatus status;

	float bulgeWeight = dataBlock.inputValue(aBulgeWeight).asFloat();
	double bulgeRadius = dataBlock.inputValue(aBulgeRadius).asDouble();

	MArrayDataHandle hArrInputs = dataBlock.inputArrayValue(aBulgeInputs);

	MPointArray allPositions;
	iter.allPositions(allPositions);

	if (mem_resetElements)
	{
		unsigned int elementCount = hArrInputs.elementCount();
		mem_meshInfosInner.resize(mem_maxLogicalIndex);
		mem_meshInfosOuter.resize(mem_maxLogicalIndex);

		for (unsigned int i = 0; i < elementCount; i++, hArrInputs.next())
		{
			MDataHandle hInput = hArrInputs.inputValue();
			MDataHandle hMatrix = hInput.child(aMatrix);
			MDataHandle hMesh   = hInput.child(aMesh);

			MMatrix mtxMesh = hMatrix.asMatrix();
			MObject oMesh   = hMesh.asMesh();

			MFnMeshData meshDataInner, meshDataOuter;
			MObject oMeshInner = meshDataInner.create();
			MObject oMeshOuter = meshDataOuter.create();
			MFnMesh fnMesh;
			fnMesh.copy(oMesh, oMeshInner);
			fnMesh.copy(oMesh, oMeshOuter);

			sgMeshInfo* newMeshInfoInner = new sgMeshInfo(oMeshInner, hMatrix.asMatrix());
			sgMeshInfo* newMeshInfoOuter = new sgMeshInfo(oMeshOuter, hMatrix.asMatrix());

			mem_meshInfosInner[hArrInputs.elementIndex()] = newMeshInfoInner;
			mem_meshInfosOuter[hArrInputs.elementIndex()] = newMeshInfoOuter;
		}
	}
	
	for (unsigned int i = 0; i < elementCount; i++)
	{
		mem_meshInfosInner[i]->setBulge(bulgeWeight, MSpace::kWorld );
	}
	
	MFloatArray weightList;
	weightList.setLength(allPositions.length());
	for (unsigned int i = 0; i < weightList.length(); i++)
		weightList[i] = 0.0f;
	MMatrixArray inputMeshMatrixInverses;
	inputMeshMatrixInverses.setLength(elementCount);
	for (unsigned int i = 0; i < elementCount; i++)
	{
		inputMeshMatrixInverses[i] = mem_meshInfosInner[i]->matrix();
	}

	for (unsigned int i = 0; i < allPositions.length(); i++)
	{
		float resultWeight = 0;
		for (unsigned int infoIndex = 0; infoIndex < elementCount; infoIndex++)
		{
			MPoint localPoint = allPositions[i] * mtx* inputMeshMatrixInverses[infoIndex];
			MPoint innerPoint = mem_meshInfosInner[infoIndex]->getClosestPoint(localPoint);
			MPoint outerPoint = mem_meshInfosOuter[infoIndex]->getClosestPoint(localPoint);
			MVector innerVector = innerPoint - localPoint;
			MVector outerVector = outerPoint - localPoint;

			if (innerVector * outerVector < 0)
			{
				double innerLength = innerVector.length();
				double outerLength = outerVector.length();
				double allLength = innerLength + outerLength;

				float numerator = float( innerLength * outerLength );
				float denominator = float( pow(allLength / 2.0, 2) );

				resultWeight = numerator / denominator;
			}
		}
		weightList[i] = resultWeight;
	}

	for (unsigned int i = 0; i < allPositions.length(); i++)
	{
		allPositions[i] += weightList[i] * MVector(0, 1, 0);
	}
	
	iter.setAllPositions(allPositions);

	return MS::kSuccess;
}
bool ToMayaSkinClusterConverter::doConversion( IECore::ConstObjectPtr from, MObject &to, IECore::ConstCompoundObjectPtr operands ) const
{
    MStatus s;

    IECore::ConstSmoothSkinningDataPtr skinningData = IECore::runTimeCast<const IECore::SmoothSkinningData>( from );
    assert( skinningData );

    const std::vector<std::string> &influenceNames = skinningData->influenceNames()->readable();
    const std::vector<Imath::M44f> &influencePoseData  = skinningData->influencePose()->readable();
    const std::vector<int> &pointIndexOffsets  = skinningData->pointIndexOffsets()->readable();
    const std::vector<int> &pointInfluenceCounts = skinningData->pointInfluenceCounts()->readable();
    const std::vector<int> &pointInfluenceIndices = skinningData->pointInfluenceIndices()->readable();
    const std::vector<float> &pointInfluenceWeights = skinningData->pointInfluenceWeights()->readable();

    MFnDependencyNode fnSkinClusterNode( to, &s );
    MFnSkinCluster fnSkinCluster( to, &s );
    if ( s != MS::kSuccess )
    {
        /// \todo: optional parameter to allow custom node types and checks for the necessary attributes
        /// \todo: create a new skinCluster if we want a kSkinClusterFilter and this isn't one
        throw IECore::Exception( ( boost::format( "ToMayaSkinClusterConverter: \"%s\" is not a valid skinCluster" ) % fnSkinClusterNode.name() ).str() );
    }

    const unsigned origNumInfluences = influenceNames.size();
    unsigned numInfluences = origNumInfluences;
    std::vector<bool> ignoreInfluence( origNumInfluences, false );
    std::vector<int> indexMap( origNumInfluences, -1 );
    const bool ignoreMissingInfluences = m_ignoreMissingInfluencesParameter->getTypedValue();
    const bool ignoreBindPose = m_ignoreBindPoseParameter->getTypedValue();

    // gather the influence objects
    MObject mObj;
    MDagPath path;
    MSelectionList influenceList;
    MDagPathArray influencePaths;
    for ( unsigned i=0, index=0; i < origNumInfluences; i++ )
    {
        MString influenceName( influenceNames[i].c_str() );
        s = influenceList.add( influenceName );
        if ( !s )
        {
            if ( ignoreMissingInfluences )
            {
                ignoreInfluence[i] = true;
                MGlobal::displayWarning( MString( "ToMayaSkinClusterConverter: \"" + influenceName + "\" is not a valid influence" ) );
                continue;
            }

            throw IECore::Exception( ( boost::format( "ToMayaSkinClusterConverter: \"%s\" is not a valid influence" ) % influenceName ).str() );
        }

        influenceList.getDependNode( index, mObj );
        MFnIkJoint fnInfluence( mObj, &s );
        if ( !s )
        {
            if ( ignoreMissingInfluences )
            {
                ignoreInfluence[i] = true;
                influenceList.remove( index );
                MGlobal::displayWarning( MString( "ToMayaSkinClusterConverter: \"" + influenceName + "\" is not a valid influence" ) );
                continue;
            }

            throw IECore::Exception( ( boost::format( "ToMayaSkinClusterConverter: \"%s\" is not a valid influence" ) % influenceName ).str() );
        }

        fnInfluence.getPath( path );
        influencePaths.append( path );
        indexMap[i] = index;
        index++;
    }

    MPlugArray connectedPlugs;

    bool existingBindPose = true;
    MPlug bindPlug = fnSkinClusterNode.findPlug( "bindPose", true, &s );
    if ( !bindPlug.connectedTo( connectedPlugs, true, false ) )
    {
        existingBindPose = false;
        if ( !ignoreBindPose )
        {
            throw IECore::Exception( ( boost::format( "ToMayaSkinClusterConverter: \"%s\" does not have a valid bindPose" ) % fnSkinClusterNode.name() ).str() );
        }
    }

    MPlug bindPoseMatrixArrayPlug;
    MPlug bindPoseMemberArrayPlug;
    if ( existingBindPose )
    {
        MFnDependencyNode fnBindPose( connectedPlugs[0].node() );
        if ( fnBindPose.typeName() != "dagPose" )
        {
            throw IECore::Exception( ( boost::format( "ToMayaSkinClusterConverter: \"%s\" is not a valid bindPose" ) % fnBindPose.name() ).str() );
        }

        bindPoseMatrixArrayPlug = fnBindPose.findPlug( "worldMatrix", true, &s );
        bindPoseMemberArrayPlug = fnBindPose.findPlug( "members", true, &s );
    }

    /// \todo: optional parameter to reset the skinCluster's geomMatrix plug

    // break existing influence connections to the skinCluster
    MDGModifier dgModifier;
    MMatrixArray ignoredPreMatrices;
    MPlug matrixArrayPlug = fnSkinClusterNode.findPlug( "matrix", true, &s );
    MPlug bindPreMatrixArrayPlug = fnSkinClusterNode.findPlug( "bindPreMatrix", true, &s );
    for ( unsigned i=0; i < matrixArrayPlug.numConnectedElements(); i++ )
    {
        MPlug matrixPlug = matrixArrayPlug.connectionByPhysicalIndex( i, &s );
        matrixPlug.connectedTo( connectedPlugs, true, false );
        if ( !connectedPlugs.length() )
        {
            continue;
        }

        MFnIkJoint fnInfluence( connectedPlugs[0].node() );
        fnInfluence.getPath( path );
        if ( ignoreMissingInfluences && !influenceList.hasItem( path ) )
        {
            MPlug preMatrixPlug = bindPreMatrixArrayPlug.elementByLogicalIndex( i );
            preMatrixPlug.getValue( mObj );
            MFnMatrixData matFn( mObj );
            ignoredPreMatrices.append( matFn.matrix() );
            ignoreInfluence.push_back( false );
            indexMap.push_back( influenceList.length() );
            influenceList.add( connectedPlugs[0].node() );
            numInfluences++;
        }
        dgModifier.disconnect( connectedPlugs[0], matrixPlug );
    }
    MPlug lockArrayPlug = fnSkinClusterNode.findPlug( "lockWeights", true, &s );
    for ( unsigned i=0; i < lockArrayPlug.numConnectedElements(); i++ )
    {
        MPlug lockPlug = lockArrayPlug.connectionByPhysicalIndex( i, &s );
        lockPlug.connectedTo( connectedPlugs, true, false );
        if ( connectedPlugs.length() )
        {
            dgModifier.disconnect( connectedPlugs[0], lockPlug );
        }
    }
    MPlug paintPlug = fnSkinClusterNode.findPlug( "paintTrans", true, &s );
    paintPlug.connectedTo( connectedPlugs, true, false );
    if ( connectedPlugs.length() )
    {
        dgModifier.disconnect( connectedPlugs[0], paintPlug );
    }

    // break existing influence connections to the bind pose
    if ( existingBindPose )
    {
        for ( unsigned i=0; i < bindPoseMatrixArrayPlug.numConnectedElements(); i++ )
        {
            MPlug matrixPlug = bindPoseMatrixArrayPlug.connectionByPhysicalIndex( i, &s );
            matrixPlug.connectedTo( connectedPlugs, true, false );
            if ( connectedPlugs.length() )
            {
                dgModifier.disconnect( connectedPlugs[0], matrixPlug );
            }
        }
        for ( unsigned i=0; i < bindPoseMemberArrayPlug.numConnectedElements(); i++ )
        {
            MPlug memberPlug = bindPoseMemberArrayPlug.connectionByPhysicalIndex( i, &s );
            memberPlug.connectedTo( connectedPlugs, true, false );
            if ( connectedPlugs.length() )
            {
                dgModifier.disconnect( connectedPlugs[0], memberPlug );
            }
        }
    }

    if ( !dgModifier.doIt() )
    {
        dgModifier.undoIt();
        throw IECore::Exception( "ToMayaSkinClusterConverter: Unable to break the influence connections" );
    }

    // make connections from influences to skinCluster and bindPose
    for ( unsigned i=0; i < numInfluences; i++ )
    {
        if ( ignoreInfluence[i] )
        {
            continue;
        }

        int index = indexMap[i];
        s = influenceList.getDependNode( index, mObj );
        MFnIkJoint fnInfluence( mObj, &s );
        MPlug influenceMatrixPlug = fnInfluence.findPlug( "worldMatrix", true, &s ).elementByLogicalIndex( 0, &s );
        MPlug influenceMessagePlug = fnInfluence.findPlug( "message", true, &s );
        MPlug influenceBindPosePlug = fnInfluence.findPlug( "bindPose", true, &s );
        MPlug influenceLockPlug = fnInfluence.findPlug( "lockInfluenceWeights", true, &s );
        if ( !s )
        {
            // add the lockInfluenceWeights attribute if it doesn't exist
            MFnNumericAttribute nAttr;
            MObject attribute = nAttr.create( "lockInfluenceWeights", "liw", MFnNumericData::kBoolean, false );
            fnInfluence.addAttribute( attribute );
            influenceLockPlug = fnInfluence.findPlug( "lockInfluenceWeights", true, &s );
        }

        // connect influence to the skinCluster
        MPlug matrixPlug = matrixArrayPlug.elementByLogicalIndex( index );
        MPlug lockPlug = lockArrayPlug.elementByLogicalIndex( index );
        dgModifier.connect( influenceMatrixPlug, matrixPlug );
        dgModifier.connect( influenceLockPlug, lockPlug );

        // connect influence to the bindPose
        if ( !ignoreBindPose )
        {
            MPlug bindPoseMatrixPlug = bindPoseMatrixArrayPlug.elementByLogicalIndex( index );
            MPlug memberPlug = bindPoseMemberArrayPlug.elementByLogicalIndex( index );
            dgModifier.connect( influenceMessagePlug, bindPoseMatrixPlug );
            dgModifier.connect( influenceBindPosePlug, memberPlug );
        }
    }
    unsigned firstIndex = find( ignoreInfluence.begin(), ignoreInfluence.end(), false ) - ignoreInfluence.begin();
    influenceList.getDependNode( firstIndex, mObj );
    MFnDependencyNode fnInfluence( mObj );
    MPlug influenceMessagePlug = fnInfluence.findPlug( "message", true, &s );
    dgModifier.connect( influenceMessagePlug, paintPlug );
    if ( !dgModifier.doIt() )
    {
        dgModifier.undoIt();
        throw IECore::Exception( "ToMayaSkinClusterConverter: Unable to create the influence connections" );
    }

    // use influencePoseData as bindPreMatrix
    for ( unsigned i=0; i < numInfluences; i++ )
    {
        if ( ignoreInfluence[i] )
        {
            continue;
        }

        MMatrix preMatrix = ( i < origNumInfluences ) ? IECore::convert<MMatrix>( influencePoseData[i] ) : ignoredPreMatrices[i-origNumInfluences];
        MPlug preMatrixPlug = bindPreMatrixArrayPlug.elementByLogicalIndex( indexMap[i], &s );
        s = preMatrixPlug.getValue( mObj );
        if ( s )
        {
            MFnMatrixData matFn( mObj );
            matFn.set( preMatrix );
            mObj = matFn.object();
        }
        else
        {
            MFnMatrixData matFn;
            mObj = matFn.create( preMatrix );
        }

        preMatrixPlug.setValue( mObj );
    }

    // remove unneeded bindPreMatrix children
    unsigned existingElements = bindPreMatrixArrayPlug.numElements();
    for ( unsigned i=influenceList.length(); i < existingElements; i++ )
    {
        MPlug preMatrixPlug = bindPreMatrixArrayPlug.elementByLogicalIndex( i, &s );
        /// \todo: surely there is a way to accomplish this in c++...
        MGlobal::executeCommand( ( boost::format( "removeMultiInstance %s" ) % preMatrixPlug.name() ).str().c_str() );
    }

    // get the geometry
    MObjectArray outputGeoObjs;
    if ( !fnSkinCluster.getOutputGeometry( outputGeoObjs ) )
    {
        throw IECore::Exception( ( boost::format( "ToMayaSkinClusterConverter: skinCluster \"%s\" does not have any output geometry!" ) % fnSkinCluster.name() ).str() );
    }
    MFnDagNode dagFn( outputGeoObjs[0] );
    MDagPath geoPath;
    dagFn.getPath( geoPath );

    // loop through all the points of the geometry and set the weights
    MItGeometry geoIt( outputGeoObjs[0] );
    MPlug weightListArrayPlug = fnSkinClusterNode.findPlug( "weightList", true, &s );
    for ( unsigned pIndex=0; !geoIt.isDone(); geoIt.next(), pIndex++ )
    {
        MPlug pointWeightsPlug = weightListArrayPlug.elementByLogicalIndex( pIndex, &s ).child( 0 );

        // remove existing influence weight plugs
        MIntArray existingInfluenceIndices;
        pointWeightsPlug.getExistingArrayAttributeIndices( existingInfluenceIndices );
        for( unsigned i=0; i < existingInfluenceIndices.length(); i++ )
        {
            MPlug influenceWeightPlug = pointWeightsPlug.elementByLogicalIndex( existingInfluenceIndices[i], &s );
            MGlobal::executeCommand( ( boost::format( "removeMultiInstance -break 1 %s" ) % influenceWeightPlug.name() ).str().c_str() );
        }

        // add new influence weight plugs
        int firstIndex = pointIndexOffsets[pIndex];
        for( int i=0; i < pointInfluenceCounts[pIndex]; i++ )
        {
            int influenceIndex = pointInfluenceIndices[ firstIndex + i ];
            if ( ignoreInfluence[ influenceIndex ] )
            {
                continue;
            }

            int skinClusterInfluenceIndex = fnSkinCluster.indexForInfluenceObject( influencePaths[ indexMap[ influenceIndex ] ] );
            MPlug influenceWeightPlug = pointWeightsPlug.elementByLogicalIndex( skinClusterInfluenceIndex, &s );
            influenceWeightPlug.setValue( pointInfluenceWeights[ firstIndex + i ] );
        }
    }

    return true;
}
示例#3
0
MStatus
HRBFSkinCluster::deform( MDataBlock& block,
                      MItGeometry& iter,
                      const MMatrix& m,
                      unsigned int multiIndex)
//
// Method: deform1
//
// Description:   Deforms the point with a simple smooth skinning algorithm
//
// Arguments:
//   block      : the datablock of the node
//   iter       : an iterator for the geometry to be deformed
//   m          : matrix to transform the point into world space
//   multiIndex : the index of the geometry that we are deforming
//
//
{
	MStatus returnStatus;

	// get HRBF status
	MDataHandle HRBFstatusData = block.inputValue(rebuildHRBF, &returnStatus);
	McheckErr(returnStatus, "Error getting rebuildHRBF handle\n");
	int rebuildHRBFStatusNow = HRBFstatusData.asInt();
	// handle signaling to the rest of deform that HRBFs must be rebuild
	bool signalRebuildHRBF = false;
	signalRebuildHRBF = (rebuildHRBFStatus != rebuildHRBFStatusNow);
	MMatrixArray bindTFs; // store just the bind transforms in here.
	MMatrixArray boneTFs; // ALWAYS store just the bone transforms in here.

	// get HRBF export status
	MDataHandle exportCompositionData = block.inputValue(exportComposition, &returnStatus);
	McheckErr(returnStatus, "Error getting exportComposition handle\n");
	int exportCompositionStatusNow = exportCompositionData.asInt();

	MDataHandle HRBFExportSamplesData = block.inputValue(exportHRBFSamples, &returnStatus);
	McheckErr(returnStatus, "Error getting exportHRBFSamples handle\n");
	std::string exportHRBFSamplesStatusNow = HRBFExportSamplesData.asString().asChar();

	MDataHandle HRBFExportValuesData = block.inputValue(exportHRBFValues, &returnStatus);
	McheckErr(returnStatus, "Error getting exportHRBFValues handle\n");
	std::string exportHRBFValuesStatusNow = HRBFExportValuesData.asString().asChar();

	// get skinning type
	MDataHandle useDQData = block.inputValue(useDQ, &returnStatus);
	McheckErr(returnStatus, "Error getting useDQ handle\n");
	int useDQNow = useDQData.asInt();

	// determine if we're using HRBF
	MDataHandle useHRBFData = block.inputValue(useHRBF, &returnStatus);
	McheckErr(returnStatus, "Error getting useHRBFData handle\n");
	int useHRBFnow = useHRBFData.asInt();

	// get envelope because why not
	MDataHandle envData = block.inputValue(envelope, &returnStatus);
	float env = envData.asFloat();

	// get point in space for evaluating HRBF
	MDataHandle checkHRBFAtData = block.inputValue(checkHRBFAt, &returnStatus);
	McheckErr(returnStatus, "Error getting useDQ handle\n");
	double* data = checkHRBFAtData.asDouble3();

	// get the influence transforms
	//
	MArrayDataHandle transformsHandle = block.inputArrayValue( matrix ); // tell block what we want
	int numTransforms = transformsHandle.elementCount();
	if ( numTransforms == 0 ) { // no transforms, no problems
		return MS::kSuccess;
	}
	MMatrixArray transforms; // fetch transform matrices -> actual joint matrices
	for ( int i=0; i<numTransforms; ++i ) {
		MMatrix worldTF = MFnMatrixData(transformsHandle.inputValue().data()).matrix();
		transforms.append(worldTF);
		boneTFs.append(worldTF);
		transformsHandle.next();
	}
	// inclusive matrices inverse of the driving transform at time of bind
	// matrices for transforming vertices to joint local space
	MArrayDataHandle bindHandle = block.inputArrayValue( bindPreMatrix ); // tell block what we want
	if ( bindHandle.elementCount() > 0 ) {
		for ( int i=0; i<numTransforms; ++i ) {
			MMatrix bind = MFnMatrixData(bindHandle.inputValue().data()).matrix();
			transforms[i] = bind * transforms[i];
			bindHandle.next();
			if (signalRebuildHRBF) bindTFs.append(bind);
		}
	}

	MArrayDataHandle weightListHandle = block.inputArrayValue(weightList);
	if (weightListHandle.elementCount() == 0) {
		// no weights - nothing to do
		std::cout << "no weights!" << std::endl;
		//rebuildHRBFStatus = rebuildHRBFStatusNow - 1; // HRBFs will need to rebuilt no matter what
		return MS::kSuccess;
	}

	// print HRBF samples if requested
	if (exportHRBFSamplesStatusNow != exportHRBFSamplesStatus) {
		std::cout << "instructed to export HRBF samples: " << exportHRBFSamplesStatusNow.c_str() << std::endl;
		exportHRBFSamplesStatus = exportHRBFSamplesStatusNow;
		// TODO: handle exporting HRBFs to the text file format
		hrbfMan->debugSamplesToConsole(exportHRBFSamplesStatus);
	}

	// print HRBF values if requested
	if (exportHRBFValuesStatusNow != exportHRBFValuesStatus) {
		std::cout << "instructed to export HRBF values: " << exportHRBFValuesStatusNow.c_str() << std::endl;
		exportHRBFValuesStatus = exportHRBFValuesStatusNow;
		// TODO: handle exporting HRBFs to the text file format
		hrbfMan->debugValuesToConsole(exportHRBFValuesStatus);
	}

	// print HRBF composition if requested
	if (exportCompositionStatusNow != exportCompositionStatus) {
		std::cout << "instructed to export HRBF composition." << std::endl;
		exportCompositionStatus = exportCompositionStatusNow;
		// TODO: handle exporting HRBFs to the text file format
		hrbfMan->debugCompositionToConsole(boneTFs, numTransforms);
	}

	// check the HRBF value if the new point is significantly different
	MPoint checkHRBFHereNow(data[0], data[1], data[2]);
	if ((checkHRBFHereNow - checkHRBFHere).length() > 0.0001) {
		if (hrbfMan->m_HRBFs.size() == numTransforms) {
			std::cout << "checking HRBF at x:" << data[0] << " y: " << data[1] << " z: " << data[2] << std::endl;
			hrbfMan->compose(boneTFs);
			float val = 0.0f;
			float dx = 0.0f;
			float dy = 0.0f;
			float dz = 0.0f;
			float grad = 0.0f;

			hrbfMan->mf_vals->trilinear(data[0], data[1], data[2], val);
			hrbfMan->mf_gradX->trilinear(data[0], data[1], data[2], dx);
			hrbfMan->mf_gradY->trilinear(data[0], data[1], data[2], dy);
			hrbfMan->mf_gradZ->trilinear(data[0], data[1], data[2], dz);
			hrbfMan->mf_gradMag->trilinear(data[0], data[1], data[2], grad);
			std::cout << "val: " << val << " dx: " << dx << " dy: " << dy << " dz: " << dz << " grad: " << grad << std::endl;
			checkHRBFHere = checkHRBFHereNow;
		}
	}

	// rebuild HRBFs if needed
	if (signalRebuildHRBF) {
		std::cout << "instructed to rebuild HRBFs" << std::endl;
		rebuildHRBFStatus = rebuildHRBFStatusNow;

		MArrayDataHandle parentIDCsHandle = block.inputArrayValue(jointParentIdcs); // tell block what we want
		std::vector<int> jointParentIndices(numTransforms);
		if (parentIDCsHandle.elementCount() > 0) {
			for (int i = 0; i<numTransforms; ++i) {
				jointParentIndices[i] = parentIDCsHandle.inputValue().asInt();
				parentIDCsHandle.next();
			}
		}

		MArrayDataHandle jointNamesHandle = block.inputArrayValue(jointNames); // tell block what we want
		std::vector<std::string> jointNames(numTransforms);
		if (jointNamesHandle.elementCount() > 0) {
			for (int i = 0; i<numTransforms; ++i) {
				jointNames[i] = jointNamesHandle.inputValue().asString().asChar();
				jointNamesHandle.next();
			}
		}

		// debug
		//std::cout << "got joint hierarchy info! it's:" << std::endl;
		//for (int i = 0; i < numTransforms; ++i) {
		//	std::cout << i << ": " << jointNames[i].c_str() << " : " << jointParentIndices[i] << std::endl;
		//}
		std::cout << "rebuilding HRBFs... " << std::endl;
		hrbfMan->buildHRBFs(jointParentIndices, jointNames, bindTFs, boneTFs, 
			weightListHandle, iter, weights);
		std::cout << "done rebuilding!" << std::endl;
		weightListHandle.jumpToElement(0); // reset this, it's an iterator. trust me.
		iter.reset(); // reset this iterator so we can go do normal skinning
	}


	// perform traditional skinning
	if (useDQNow != 0) {
		returnStatus = skinDQ(transforms, numTransforms, weightListHandle, iter);
	}
	else {
		returnStatus = skinLB(transforms, numTransforms, weightListHandle, iter);
	}

	// do HRBF corrections
	if (useHRBFnow != 0) {
		if (hrbfMan->m_HRBFs.size() == numTransforms) {
			hrbfMan->compose(boneTFs);
			iter.reset();
			hrbfMan->correct(iter);
		}
	}

	return returnStatus;
}