void PlanEnumerator::tagMemo(size_t id) { QLOG() << "Tagging memoID " << id << endl; NodeAssignment* assign = _memo[id]; verify(NULL != assign); if (NULL != assign->pred) { PredicateAssignment* pa = assign->pred.get(); verify(NULL == pa->expr->getTag()); verify(pa->indexToAssign < pa->first.size()); pa->expr->setTag(new IndexTag(pa->first[pa->indexToAssign])); } else if (NULL != assign->orAssignment) { OrAssignment* oa = assign->orAssignment.get(); for (size_t i = 0; i < oa->subnodes.size(); ++i) { tagMemo(oa->subnodes[i]); } } else if (NULL != assign->newAnd) { AndAssignment* aa = assign->newAnd.get(); if (AndAssignment::MANDATORY == aa->state) { verify(aa->counter < aa->mandatory.size()); const OneIndexAssignment& assign = aa->mandatory[aa->counter]; for (size_t i = 0; i < assign.preds.size(); ++i) { MatchExpression* pred = assign.preds[i]; verify(NULL == pred->getTag()); pred->setTag(new IndexTag(assign.index, assign.positions[i])); } } else if (AndAssignment::PRED_CHOICES == aa->state) { verify(aa->counter < aa->predChoices.size()); const OneIndexAssignment& assign = aa->predChoices[aa->counter]; for (size_t i = 0; i < assign.preds.size(); ++i) { MatchExpression* pred = assign.preds[i]; verify(NULL == pred->getTag()); pred->setTag(new IndexTag(assign.index, assign.positions[i])); } } else { verify(AndAssignment::SUBNODES == aa->state); verify(aa->counter < aa->subnodes.size()); tagMemo(aa->subnodes[aa->counter]); } } else { verify(0); } }
// static void QueryPlannerIXSelect::stripUnneededAssignments(MatchExpression* node, const std::vector<IndexEntry>& indices) { if (MatchExpression::AND == node->matchType()) { for (size_t i = 0; i < node->numChildren(); i++) { MatchExpression* child = node->getChild(i); if (MatchExpression::EQ != child->matchType()) { continue; } if (!child->getTag()) { continue; } // We found a EQ child of an AND which is tagged. RelevantTag* rt = static_cast<RelevantTag*>(child->getTag()); // Look through all of the indices for which this predicate can be answered with // the leading field of the index. for (std::vector<size_t>::const_iterator i = rt->first.begin(); i != rt->first.end(); ++i) { size_t index = *i; if (indices[index].unique && 1 == indices[index].keyPattern.nFields()) { // Found an EQ predicate which can use a single-field unique index. // Clear assignments from the entire tree, and add back a single assignment // for 'child' to the unique index. clearAssignments(node); RelevantTag* newRt = static_cast<RelevantTag*>(child->getTag()); newRt->first.push_back(index); // Tag state has been reset in the entire subtree at 'root'; nothing // else for us to do. return; } } } } for (size_t i = 0; i < node->numChildren(); i++) { stripUnneededAssignments(node->getChild(i), indices); } }
void tagForSort(MatchExpression* tree) { if (!Indexability::nodeCanUseIndexOnOwnField(tree)) { size_t myTagValue = IndexTag::kNoIndex; for (size_t i = 0; i < tree->numChildren(); ++i) { MatchExpression* child = tree->getChild(i); tagForSort(child); IndexTag* childTag = static_cast<IndexTag*>(child->getTag()); if (NULL != childTag) { myTagValue = std::min(myTagValue, childTag->index); } } if (myTagValue != IndexTag::kNoIndex) { tree->setTag(new IndexTag(myTagValue)); } } }
/** * Traverse the subtree rooted at 'node' to remove invalid RelevantTag assignments to text index * 'idx', which has prefix paths 'prefixPaths'. */ static void stripInvalidAssignmentsToTextIndex(MatchExpression* node, size_t idx, const unordered_set<StringData, StringData::Hasher>& prefixPaths) { // If we're here, there are prefixPaths and node is either: // 1. a text pred which we can't use as we have nothing over its prefix, or // 2. a non-text pred which we can't use as we don't have a text pred AND-related. if (Indexability::nodeCanUseIndexOnOwnField(node)) { removeIndexRelevantTag(node, idx); return; } // Do not traverse tree beyond negation node. if (node->matchType() == MatchExpression::NOT || node->matchType() == MatchExpression::NOR) { return; } // For anything to use a text index with prefixes, we require that: // 1. The text pred exists in an AND, // 2. The non-text preds that use the text index's prefixes are also in that AND. if (node->matchType() != MatchExpression::AND) { // It's an OR or some kind of array operator. for (size_t i = 0; i < node->numChildren(); ++i) { stripInvalidAssignmentsToTextIndex(node->getChild(i), idx, prefixPaths); } return; } // If we're here, we're an AND. Determine whether the children satisfy the index prefix for // the text index. invariant(node->matchType() == MatchExpression::AND); bool hasText = false; // The AND must have an EQ predicate for each prefix path. When we encounter a child with a // tag we remove it from childrenPrefixPaths. All children exist if this set is empty at // the end. unordered_set<StringData, StringData::Hasher> childrenPrefixPaths = prefixPaths; for (size_t i = 0; i < node->numChildren(); ++i) { MatchExpression* child = node->getChild(i); RelevantTag* tag = static_cast<RelevantTag*>(child->getTag()); if (NULL == tag) { // 'child' could be a logical operator. Maybe there are some assignments hiding // inside. stripInvalidAssignmentsToTextIndex(child, idx, prefixPaths); continue; } bool inFirst = tag->first.end() != std::find(tag->first.begin(), tag->first.end(), idx); bool inNotFirst = tag->notFirst.end() != std::find(tag->notFirst.begin(), tag->notFirst.end(), idx); if (inFirst || inNotFirst) { // Great! 'child' was assigned to our index. if (child->matchType() == MatchExpression::TEXT) { hasText = true; } else { childrenPrefixPaths.erase(child->path()); // One fewer prefix we're looking for, possibly. Note that we could have a // suffix assignment on the index and wind up here. In this case the erase // above won't do anything since a suffix isn't a prefix. } } else { // Recurse on the children to ensure that they're not hiding any assignments // to idx. stripInvalidAssignmentsToTextIndex(child, idx, prefixPaths); } } // Our prereqs for using the text index were not satisfied so we remove the assignments from // all children of the AND. if (!hasText || !childrenPrefixPaths.empty()) { for (size_t i = 0; i < node->numChildren(); ++i) { stripInvalidAssignmentsToTextIndex(node->getChild(i), idx, prefixPaths); } } }
static void stripInvalidAssignmentsTo2dsphereIndex(MatchExpression* node, size_t idx) { if (Indexability::nodeCanUseIndexOnOwnField(node)) { removeIndexRelevantTag(node, idx); return; } const MatchExpression::MatchType nodeType = node->matchType(); // Don't bother peeking inside of negations. if (MatchExpression::NOT == nodeType || MatchExpression::NOR == nodeType) { return; } if (MatchExpression::AND != nodeType) { // It's an OR or some kind of array operator. for (size_t i = 0; i < node->numChildren(); ++i) { stripInvalidAssignmentsTo2dsphereIndex(node->getChild(i), idx); } return; } bool hasGeoField = false; for (size_t i = 0; i < node->numChildren(); ++i) { MatchExpression* child = node->getChild(i); RelevantTag* tag = static_cast<RelevantTag*>(child->getTag()); if (NULL == tag) { // 'child' could be a logical operator. Maybe there are some assignments hiding // inside. stripInvalidAssignmentsTo2dsphereIndex(child, idx); continue; } bool inFirst = tag->first.end() != std::find(tag->first.begin(), tag->first.end(), idx); bool inNotFirst = tag->notFirst.end() != std::find(tag->notFirst.begin(), tag->notFirst.end(), idx); // If there is an index assignment... if (inFirst || inNotFirst) { // And it's a geo predicate... if (MatchExpression::GEO == child->matchType() || MatchExpression::GEO_NEAR == child->matchType()) { hasGeoField = true; } } else { // Recurse on the children to ensure that they're not hiding any assignments // to idx. stripInvalidAssignmentsTo2dsphereIndex(child, idx); } } // If there isn't a geo predicate our results aren't a subset of what's in the geo index, so // if we use the index we'll miss results. if (!hasGeoField) { for (size_t i = 0; i < node->numChildren(); ++i) { stripInvalidAssignmentsTo2dsphereIndex(node->getChild(i), idx); } } }
// static Status QueryPlanner::plan(const CanonicalQuery& query, const QueryPlannerParams& params, std::vector<QuerySolution*>* out) { LOG(5) << "Beginning planning..." << endl << "=============================" << endl << "Options = " << optionString(params.options) << endl << "Canonical query:" << endl << query.toString() << "=============================" << endl; for (size_t i = 0; i < params.indices.size(); ++i) { LOG(5) << "Index " << i << " is " << params.indices[i].toString() << endl; } bool canTableScan = !(params.options & QueryPlannerParams::NO_TABLE_SCAN); // If the query requests a tailable cursor, the only solution is a collscan + filter with // tailable set on the collscan. TODO: This is a policy departure. Previously I think you // could ask for a tailable cursor and it just tried to give you one. Now, we fail if we // can't provide one. Is this what we want? if (query.getParsed().isTailable()) { if (!QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && canTableScan) { QuerySolution* soln = buildCollscanSoln(query, true, params); if (NULL != soln) { out->push_back(soln); } } return Status::OK(); } // The hint or sort can be $natural: 1. If this happens, output a collscan. If both // a $natural hint and a $natural sort are specified, then the direction of the collscan // is determined by the sign of the sort (not the sign of the hint). if (!query.getParsed().getHint().isEmpty() || !query.getParsed().getSort().isEmpty()) { BSONObj hintObj = query.getParsed().getHint(); BSONObj sortObj = query.getParsed().getSort(); BSONElement naturalHint = hintObj.getFieldDotted("$natural"); BSONElement naturalSort = sortObj.getFieldDotted("$natural"); // A hint overrides a $natural sort. This means that we don't force a table // scan if there is a $natural sort with a non-$natural hint. if (!naturalHint.eoo() || (!naturalSort.eoo() && hintObj.isEmpty())) { LOG(5) << "Forcing a table scan due to hinted $natural\n"; // min/max are incompatible with $natural. if (canTableScan && query.getParsed().getMin().isEmpty() && query.getParsed().getMax().isEmpty()) { QuerySolution* soln = buildCollscanSoln(query, false, params); if (NULL != soln) { out->push_back(soln); } } return Status::OK(); } } // Figure out what fields we care about. unordered_set<string> fields; QueryPlannerIXSelect::getFields(query.root(), "", &fields); for (unordered_set<string>::const_iterator it = fields.begin(); it != fields.end(); ++it) { LOG(5) << "Predicate over field '" << *it << "'" << endl; } // Filter our indices so we only look at indices that are over our predicates. vector<IndexEntry> relevantIndices; // Hints require us to only consider the hinted index. // If index filters in the query settings were used to override // the allowed indices for planning, we should not use the hinted index // requested in the query. BSONObj hintIndex; if (!params.indexFiltersApplied) { hintIndex = query.getParsed().getHint(); } // Snapshot is a form of a hint. If snapshot is set, try to use _id index to make a real // plan. If that fails, just scan the _id index. if (query.getParsed().isSnapshot()) { // Find the ID index in indexKeyPatterns. It's our hint. for (size_t i = 0; i < params.indices.size(); ++i) { if (isIdIndex(params.indices[i].keyPattern)) { hintIndex = params.indices[i].keyPattern; break; } } } size_t hintIndexNumber = numeric_limits<size_t>::max(); if (hintIndex.isEmpty()) { QueryPlannerIXSelect::findRelevantIndices(fields, params.indices, &relevantIndices); } else { // Sigh. If the hint is specified it might be using the index name. BSONElement firstHintElt = hintIndex.firstElement(); if (str::equals("$hint", firstHintElt.fieldName()) && String == firstHintElt.type()) { string hintName = firstHintElt.String(); for (size_t i = 0; i < params.indices.size(); ++i) { if (params.indices[i].name == hintName) { LOG(5) << "Hint by name specified, restricting indices to " << params.indices[i].keyPattern.toString() << endl; relevantIndices.clear(); relevantIndices.push_back(params.indices[i]); hintIndexNumber = i; hintIndex = params.indices[i].keyPattern; break; } } } else { for (size_t i = 0; i < params.indices.size(); ++i) { if (0 == params.indices[i].keyPattern.woCompare(hintIndex)) { relevantIndices.clear(); relevantIndices.push_back(params.indices[i]); LOG(5) << "Hint specified, restricting indices to " << hintIndex.toString() << endl; hintIndexNumber = i; break; } } } if (hintIndexNumber == numeric_limits<size_t>::max()) { return Status(ErrorCodes::BadValue, "bad hint"); } } // Deal with the .min() and .max() query options. If either exist we can only use an index // that matches the object inside. if (!query.getParsed().getMin().isEmpty() || !query.getParsed().getMax().isEmpty()) { BSONObj minObj = query.getParsed().getMin(); BSONObj maxObj = query.getParsed().getMax(); // The unfinished siblings of these objects may not be proper index keys because they // may be empty objects or have field names. When an index is picked to use for the // min/max query, these "finished" objects will always be valid index keys for the // index's key pattern. BSONObj finishedMinObj; BSONObj finishedMaxObj; // This is the index into params.indices[...] that we use. size_t idxNo = numeric_limits<size_t>::max(); // If there's an index hinted we need to be able to use it. if (!hintIndex.isEmpty()) { if (!minObj.isEmpty() && !indexCompatibleMaxMin(minObj, hintIndex)) { LOG(5) << "Minobj doesn't work with hint"; return Status(ErrorCodes::BadValue, "hint provided does not work with min query"); } if (!maxObj.isEmpty() && !indexCompatibleMaxMin(maxObj, hintIndex)) { LOG(5) << "Maxobj doesn't work with hint"; return Status(ErrorCodes::BadValue, "hint provided does not work with max query"); } const BSONObj& kp = params.indices[hintIndexNumber].keyPattern; finishedMinObj = finishMinObj(kp, minObj, maxObj); finishedMaxObj = finishMaxObj(kp, minObj, maxObj); // The min must be less than the max for the hinted index ordering. if (0 <= finishedMinObj.woCompare(finishedMaxObj, kp, false)) { LOG(5) << "Minobj/Maxobj don't work with hint"; return Status(ErrorCodes::BadValue, "hint provided does not work with min/max query"); } idxNo = hintIndexNumber; } else { // No hinted index, look for one that is compatible (has same field names and // ordering thereof). for (size_t i = 0; i < params.indices.size(); ++i) { const BSONObj& kp = params.indices[i].keyPattern; BSONObj toUse = minObj.isEmpty() ? maxObj : minObj; if (indexCompatibleMaxMin(toUse, kp)) { // In order to be fully compatible, the min has to be less than the max // according to the index key pattern ordering. The first step in verifying // this is "finish" the min and max by replacing empty objects and stripping // field names. finishedMinObj = finishMinObj(kp, minObj, maxObj); finishedMaxObj = finishMaxObj(kp, minObj, maxObj); // Now we have the final min and max. This index is only relevant for // the min/max query if min < max. if (0 >= finishedMinObj.woCompare(finishedMaxObj, kp, false)) { // Found a relevant index. idxNo = i; break; } // This index is not relevant; move on to the next. } } } if (idxNo == numeric_limits<size_t>::max()) { LOG(5) << "Can't find relevant index to use for max/min query"; // Can't find an index to use, bail out. return Status(ErrorCodes::BadValue, "unable to find relevant index for max/min query"); } LOG(5) << "Max/min query using index " << params.indices[idxNo].toString() << endl; // Make our scan and output. QuerySolutionNode* solnRoot = QueryPlannerAccess::makeIndexScan( params.indices[idxNo], query, params, finishedMinObj, finishedMaxObj); QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { out->push_back(soln); } return Status::OK(); } for (size_t i = 0; i < relevantIndices.size(); ++i) { LOG(2) << "Relevant index " << i << " is " << relevantIndices[i].toString() << endl; } // Figure out how useful each index is to each predicate. QueryPlannerIXSelect::rateIndices(query.root(), "", relevantIndices); QueryPlannerIXSelect::stripInvalidAssignments(query.root(), relevantIndices); // Unless we have GEO_NEAR, TEXT, or a projection, we may be able to apply an optimization // in which we strip unnecessary index assignments. // // Disallowed with projection because assignment to a non-unique index can allow the plan // to be covered. // // TEXT and GEO_NEAR are special because they require the use of a text/geo index in order // to be evaluated correctly. Stripping these "mandatory assignments" is therefore invalid. if (query.getParsed().getProj().isEmpty() && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT)) { QueryPlannerIXSelect::stripUnneededAssignments(query.root(), relevantIndices); } // query.root() is now annotated with RelevantTag(s). LOG(5) << "Rated tree:" << endl << query.root()->toString(); // If there is a GEO_NEAR it must have an index it can use directly. MatchExpression* gnNode = NULL; if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR, &gnNode)) { // No index for GEO_NEAR? No query. RelevantTag* tag = static_cast<RelevantTag*>(gnNode->getTag()); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { LOG(5) << "Unable to find index for $geoNear query." << endl; // Don't leave tags on query tree. query.root()->resetTag(); return Status(ErrorCodes::BadValue, "unable to find index for $geoNear query"); } LOG(5) << "Rated tree after geonear processing:" << query.root()->toString(); } // Likewise, if there is a TEXT it must have an index it can use directly. MatchExpression* textNode = NULL; if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT, &textNode)) { RelevantTag* tag = static_cast<RelevantTag*>(textNode->getTag()); // Exactly one text index required for TEXT. We need to check this explicitly because // the text stage can't be built if no text index exists or there is an ambiguity as to // which one to use. size_t textIndexCount = 0; for (size_t i = 0; i < params.indices.size(); i++) { if (INDEX_TEXT == params.indices[i].type) { textIndexCount++; } } if (textIndexCount != 1) { // Don't leave tags on query tree. query.root()->resetTag(); return Status(ErrorCodes::BadValue, "need exactly one text index for $text query"); } // Error if the text node is tagged with zero indices. if (0 == tag->first.size() && 0 == tag->notFirst.size()) { // Don't leave tags on query tree. query.root()->resetTag(); return Status(ErrorCodes::BadValue, "failed to use text index to satisfy $text query (if text index is " "compound, are equality predicates given for all prefix fields?)"); } // At this point, we know that there is only one text index and that the TEXT node is // assigned to it. invariant(1 == tag->first.size() + tag->notFirst.size()); LOG(5) << "Rated tree after text processing:" << query.root()->toString(); } // If we have any relevant indices, we try to create indexed plans. if (0 < relevantIndices.size()) { // The enumerator spits out trees tagged with IndexTag(s). PlanEnumeratorParams enumParams; enumParams.intersect = params.options & QueryPlannerParams::INDEX_INTERSECTION; enumParams.root = query.root(); enumParams.indices = &relevantIndices; PlanEnumerator isp(enumParams); isp.init(); MatchExpression* rawTree; while (isp.getNext(&rawTree) && (out->size() < params.maxIndexedSolutions)) { LOG(5) << "About to build solntree from tagged tree:" << endl << rawTree->toString(); // The tagged tree produced by the plan enumerator is not guaranteed // to be canonically sorted. In order to be compatible with the cached // data, sort the tagged tree according to CanonicalQuery ordering. std::unique_ptr<MatchExpression> clone(rawTree->shallowClone()); CanonicalQuery::sortTree(clone.get()); PlanCacheIndexTree* cacheData; Status indexTreeStatus = cacheDataFromTaggedTree(clone.get(), relevantIndices, &cacheData); if (!indexTreeStatus.isOK()) { LOG(5) << "Query is not cachable: " << indexTreeStatus.reason() << endl; } unique_ptr<PlanCacheIndexTree> autoData(cacheData); // This can fail if enumeration makes a mistake. QuerySolutionNode* solnRoot = QueryPlannerAccess::buildIndexedDataAccess( query, rawTree, false, relevantIndices, params); if (NULL == solnRoot) { continue; } QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { LOG(5) << "Planner: adding solution:" << endl << soln->toString(); if (indexTreeStatus.isOK()) { SolutionCacheData* scd = new SolutionCacheData(); scd->tree.reset(autoData.release()); soln->cacheData.reset(scd); } out->push_back(soln); } } } // Don't leave tags on query tree. query.root()->resetTag(); LOG(5) << "Planner: outputted " << out->size() << " indexed solutions.\n"; // Produce legible error message for failed OR planning with a TEXT child. // TODO: support collection scan for non-TEXT children of OR. if (out->size() == 0 && textNode != NULL && MatchExpression::OR == query.root()->matchType()) { MatchExpression* root = query.root(); for (size_t i = 0; i < root->numChildren(); ++i) { if (textNode == root->getChild(i)) { return Status(ErrorCodes::BadValue, "Failed to produce a solution for TEXT under OR - " "other non-TEXT clauses under OR have to be indexed as well."); } } } // An index was hinted. If there are any solutions, they use the hinted index. If not, we // scan the entire index to provide results and output that as our plan. This is the // desired behavior when an index is hinted that is not relevant to the query. if (!hintIndex.isEmpty()) { if (0 == out->size()) { QuerySolution* soln = buildWholeIXSoln(params.indices[hintIndexNumber], query, params); verify(NULL != soln); LOG(5) << "Planner: outputting soln that uses hinted index as scan." << endl; out->push_back(soln); } return Status::OK(); } // If a sort order is requested, there may be an index that provides it, even if that // index is not over any predicates in the query. // if (!query.getParsed().getSort().isEmpty() && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT)) { // See if we have a sort provided from an index already. // This is implied by the presence of a non-blocking solution. bool usingIndexToSort = false; for (size_t i = 0; i < out->size(); ++i) { QuerySolution* soln = (*out)[i]; if (!soln->hasBlockingStage) { usingIndexToSort = true; break; } } if (!usingIndexToSort) { for (size_t i = 0; i < params.indices.size(); ++i) { const IndexEntry& index = params.indices[i]; // Only regular (non-plugin) indexes can be used to provide a sort, and only // non-sparse indexes can be used to provide a sort. // // TODO: Sparse indexes can't normally provide a sort, because non-indexed // documents could potentially be missing from the result set. However, if the // query predicate can be used to guarantee that all documents to be returned // are indexed, then the index should be able to provide the sort. // // For example: // - Sparse index {a: 1, b: 1} should be able to provide a sort for // find({b: 1}).sort({a: 1}). SERVER-13908. // - Index {a: 1, b: "2dsphere"} (which is "geo-sparse", if // 2dsphereIndexVersion=2) should be able to provide a sort for // find({b: GEO}).sort({a:1}). SERVER-10801. if (index.type != INDEX_BTREE) { continue; } if (index.sparse) { continue; } // Partial indexes can only be used to provide a sort only if the query predicate is // compatible. if (index.filterExpr && !expression::isSubsetOf(query.root(), index.filterExpr)) { continue; } const BSONObj kp = QueryPlannerAnalysis::getSortPattern(index.keyPattern); if (providesSort(query, kp)) { LOG(5) << "Planner: outputting soln that uses index to provide sort." << endl; QuerySolution* soln = buildWholeIXSoln(params.indices[i], query, params); if (NULL != soln) { PlanCacheIndexTree* indexTree = new PlanCacheIndexTree(); indexTree->setIndexEntry(params.indices[i]); SolutionCacheData* scd = new SolutionCacheData(); scd->tree.reset(indexTree); scd->solnType = SolutionCacheData::WHOLE_IXSCAN_SOLN; scd->wholeIXSolnDir = 1; soln->cacheData.reset(scd); out->push_back(soln); break; } } if (providesSort(query, QueryPlannerCommon::reverseSortObj(kp))) { LOG(5) << "Planner: outputting soln that uses (reverse) index " << "to provide sort." << endl; QuerySolution* soln = buildWholeIXSoln(params.indices[i], query, params, -1); if (NULL != soln) { PlanCacheIndexTree* indexTree = new PlanCacheIndexTree(); indexTree->setIndexEntry(params.indices[i]); SolutionCacheData* scd = new SolutionCacheData(); scd->tree.reset(indexTree); scd->solnType = SolutionCacheData::WHOLE_IXSCAN_SOLN; scd->wholeIXSolnDir = -1; soln->cacheData.reset(scd); out->push_back(soln); break; } } } } } // geoNear and text queries *require* an index. // Also, if a hint is specified it indicates that we MUST use it. bool possibleToCollscan = !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT) && hintIndex.isEmpty(); // The caller can explicitly ask for a collscan. bool collscanRequested = (params.options & QueryPlannerParams::INCLUDE_COLLSCAN); // No indexed plans? We must provide a collscan if possible or else we can't run the query. bool collscanNeeded = (0 == out->size() && canTableScan); if (possibleToCollscan && (collscanRequested || collscanNeeded)) { QuerySolution* collscan = buildCollscanSoln(query, false, params); if (NULL != collscan) { SolutionCacheData* scd = new SolutionCacheData(); scd->solnType = SolutionCacheData::COLLSCAN_SOLN; collscan->cacheData.reset(scd); out->push_back(collscan); LOG(5) << "Planner: outputting a collscan:" << endl << collscan->toString(); } } return Status::OK(); }
// static void QueryPlanner::plan(const CanonicalQuery& query, const QueryPlannerParams& params, vector<QuerySolution*>* out) { QLOG() << "=============================\n" << "Beginning planning, options = " << optionString(params.options) << endl << "Canonical query:\n" << query.toString() << endl << "=============================" << endl; // The shortcut formerly known as IDHACK. See if it's a simple _id query. If so we might // just make an ixscan over the _id index and bypass the rest of planning entirely. if (!query.getParsed().isExplain() && !query.getParsed().showDiskLoc() && isSimpleIdQuery(query.getParsed().getFilter()) && !query.getParsed().hasOption(QueryOption_CursorTailable)) { // See if we can find an _id index. for (size_t i = 0; i < params.indices.size(); ++i) { if (isIdIndex(params.indices[i].keyPattern)) { const IndexEntry& index = params.indices[i]; QLOG() << "IDHACK using index " << index.toString() << endl; // If so, we make a simple scan to find the doc. IndexScanNode* isn = new IndexScanNode(); isn->indexKeyPattern = index.keyPattern; isn->indexIsMultiKey = index.multikey; isn->direction = 1; isn->bounds.isSimpleRange = true; BSONObj key = getKeyFromQuery(index.keyPattern, query.getParsed().getFilter()); isn->bounds.startKey = isn->bounds.endKey = key; isn->bounds.endKeyInclusive = true; isn->computeProperties(); QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, isn); if (NULL != soln) { out->push_back(soln); QLOG() << "IDHACK solution is:\n" << (*out)[0]->toString() << endl; // And that's it. return; } } } } for (size_t i = 0; i < params.indices.size(); ++i) { QLOG() << "idx " << i << " is " << params.indices[i].toString() << endl; } bool canTableScan = !(params.options & QueryPlannerParams::NO_TABLE_SCAN); // If the query requests a tailable cursor, the only solution is a collscan + filter with // tailable set on the collscan. TODO: This is a policy departure. Previously I think you // could ask for a tailable cursor and it just tried to give you one. Now, we fail if we // can't provide one. Is this what we want? if (query.getParsed().hasOption(QueryOption_CursorTailable)) { if (!QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && canTableScan) { QuerySolution* soln = buildCollscanSoln(query, true, params); if (NULL != soln) { out->push_back(soln); } } return; } // The hint can be $natural: 1. If this happens, output a collscan. It's a weird way of // saying "table scan for two, please." if (!query.getParsed().getHint().isEmpty()) { BSONElement natural = query.getParsed().getHint().getFieldDotted("$natural"); if (!natural.eoo()) { QLOG() << "forcing a table scan due to hinted $natural\n"; if (canTableScan) { QuerySolution* soln = buildCollscanSoln(query, false, params); if (NULL != soln) { out->push_back(soln); } } return; } } // NOR and NOT we can't handle well with indices. If we see them here, they weren't // rewritten to remove the negation. Just output a collscan for those. if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::NOT) || QueryPlannerCommon::hasNode(query.root(), MatchExpression::NOR)) { // If there's a near predicate, we can't handle this. // TODO: Should canonicalized query detect this? if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR)) { warning() << "Can't handle NOT/NOR with GEO_NEAR"; return; } QLOG() << "NOT/NOR in plan, just outtping a collscan\n"; if (canTableScan) { QuerySolution* soln = buildCollscanSoln(query, false, params); if (NULL != soln) { out->push_back(soln); } } return; } // Figure out what fields we care about. unordered_set<string> fields; QueryPlannerIXSelect::getFields(query.root(), "", &fields); for (unordered_set<string>::const_iterator it = fields.begin(); it != fields.end(); ++it) { QLOG() << "predicate over field " << *it << endl; } // Filter our indices so we only look at indices that are over our predicates. vector<IndexEntry> relevantIndices; // Hints require us to only consider the hinted index. BSONObj hintIndex = query.getParsed().getHint(); // Snapshot is a form of a hint. If snapshot is set, try to use _id index to make a real // plan. If that fails, just scan the _id index. if (query.getParsed().isSnapshot()) { // Find the ID index in indexKeyPatterns. It's our hint. for (size_t i = 0; i < params.indices.size(); ++i) { if (isIdIndex(params.indices[i].keyPattern)) { hintIndex = params.indices[i].keyPattern; break; } } } size_t hintIndexNumber = numeric_limits<size_t>::max(); if (!hintIndex.isEmpty()) { // Sigh. If the hint is specified it might be using the index name. BSONElement firstHintElt = hintIndex.firstElement(); if (str::equals("$hint", firstHintElt.fieldName()) && String == firstHintElt.type()) { string hintName = firstHintElt.String(); for (size_t i = 0; i < params.indices.size(); ++i) { if (params.indices[i].name == hintName) { QLOG() << "hint by name specified, restricting indices to " << params.indices[i].keyPattern.toString() << endl; relevantIndices.clear(); relevantIndices.push_back(params.indices[i]); hintIndexNumber = i; hintIndex = params.indices[i].keyPattern; break; } } } else { for (size_t i = 0; i < params.indices.size(); ++i) { if (0 == params.indices[i].keyPattern.woCompare(hintIndex)) { relevantIndices.clear(); relevantIndices.push_back(params.indices[i]); QLOG() << "hint specified, restricting indices to " << hintIndex.toString() << endl; hintIndexNumber = i; break; } } } if (hintIndexNumber == numeric_limits<size_t>::max()) { // This is supposed to be an error. warning() << "Can't find hint for " << hintIndex.toString(); return; } } else { QLOG() << "Finding relevant indices\n"; QueryPlannerIXSelect::findRelevantIndices(fields, params.indices, &relevantIndices); } for (size_t i = 0; i < relevantIndices.size(); ++i) { QLOG() << "relevant idx " << i << " is " << relevantIndices[i].toString() << endl; } // Figure out how useful each index is to each predicate. // query.root() is now annotated with RelevantTag(s). QueryPlannerIXSelect::rateIndices(query.root(), "", relevantIndices); QLOG() << "rated tree" << endl; QLOG() << query.root()->toString() << endl; // If there is a GEO_NEAR it must have an index it can use directly. // XXX: move into data access? MatchExpression* gnNode = NULL; if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR, &gnNode)) { // No index for GEO_NEAR? No query. RelevantTag* tag = static_cast<RelevantTag*>(gnNode->getTag()); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { return; } GeoNearMatchExpression* gnme = static_cast<GeoNearMatchExpression*>(gnNode); vector<size_t> newFirst; // 2d + GEO_NEAR is annoying. Because 2d's GEO_NEAR isn't streaming we have to embed // the full query tree inside it as a matcher. for (size_t i = 0; i < tag->first.size(); ++i) { // GEO_NEAR has a non-2d index it can use. We can deal w/that in normal planning. if (!is2DIndex(relevantIndices[tag->first[i]].keyPattern)) { newFirst.push_back(i); continue; } // If we're here, GEO_NEAR has a 2d index. We create a 2dgeonear plan with the // entire tree as a filter, if possible. GeoNear2DNode* solnRoot = new GeoNear2DNode(); solnRoot->nq = gnme->getData(); if (MatchExpression::GEO_NEAR != query.root()->matchType()) { // root is an AND, clone and delete the GEO_NEAR child. MatchExpression* filterTree = query.root()->shallowClone(); verify(MatchExpression::AND == filterTree->matchType()); bool foundChild = false; for (size_t i = 0; i < filterTree->numChildren(); ++i) { if (MatchExpression::GEO_NEAR == filterTree->getChild(i)->matchType()) { foundChild = true; filterTree->getChildVector()->erase(filterTree->getChildVector()->begin() + i); break; } } verify(foundChild); solnRoot->filter.reset(filterTree); } solnRoot->numWanted = query.getParsed().getNumToReturn(); if (0 == solnRoot->numWanted) { solnRoot->numWanted = 100; } solnRoot->indexKeyPattern = relevantIndices[tag->first[i]].keyPattern; // Remove the 2d index. 2d can only be the first field, and we know there is // only one GEO_NEAR, so we don't care if anyone else was assigned it; it'll // only be first for gnNode. tag->first.erase(tag->first.begin() + i); QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { out->push_back(soln); } } // Continue planning w/non-2d indices tagged for this pred. tag->first.swap(newFirst); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { return; } } // Likewise, if there is a TEXT it must have an index it can use directly. MatchExpression* textNode; if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT, &textNode)) { RelevantTag* tag = static_cast<RelevantTag*>(textNode->getTag()); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { return; } } // If we have any relevant indices, we try to create indexed plans. if (0 < relevantIndices.size()) { // The enumerator spits out trees tagged with IndexTag(s). PlanEnumerator isp(query.root(), &relevantIndices); isp.init(); MatchExpression* rawTree; while (isp.getNext(&rawTree)) { QLOG() << "about to build solntree from tagged tree:\n" << rawTree->toString() << endl; // This can fail if enumeration makes a mistake. QuerySolutionNode* solnRoot = QueryPlannerAccess::buildIndexedDataAccess(query, rawTree, false, relevantIndices); if (NULL == solnRoot) { continue; } QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { QLOG() << "Planner: adding solution:\n" << soln->toString() << endl; out->push_back(soln); } } } QLOG() << "Planner: outputted " << out->size() << " indexed solutions.\n"; // An index was hinted. If there are any solutions, they use the hinted index. If not, we // scan the entire index to provide results and output that as our plan. This is the // desired behavior when an index is hinted that is not relevant to the query. if (!hintIndex.isEmpty() && (0 == out->size())) { QuerySolution* soln = buildWholeIXSoln(params.indices[hintIndexNumber], query, params); if (NULL != soln) { QLOG() << "Planner: outputting soln that uses hinted index as scan." << endl; out->push_back(soln); } return; } // If a sort order is requested, there may be an index that provides it, even if that // index is not over any predicates in the query. // // XXX XXX: Can we do this even if the index is sparse? Might we miss things? if (!query.getParsed().getSort().isEmpty() && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT)) { // See if we have a sort provided from an index already. bool usingIndexToSort = false; for (size_t i = 0; i < out->size(); ++i) { QuerySolution* soln = (*out)[i]; if (!soln->hasSortStage) { usingIndexToSort = true; break; } } if (!usingIndexToSort) { for (size_t i = 0; i < params.indices.size(); ++i) { const BSONObj& kp = params.indices[i].keyPattern; if (providesSort(query, kp)) { QLOG() << "Planner: outputting soln that uses index to provide sort." << endl; QuerySolution* soln = buildWholeIXSoln(params.indices[i], query, params); if (NULL != soln) { out->push_back(soln); break; } } if (providesSort(query, QueryPlannerCommon::reverseSortObj(kp))) { QLOG() << "Planner: outputting soln that uses (reverse) index " << "to provide sort." << endl; QuerySolution* soln = buildWholeIXSoln(params.indices[i], query, params, -1); if (NULL != soln) { out->push_back(soln); break; } } } } } // TODO: Do we always want to offer a collscan solution? // XXX: currently disabling the always-use-a-collscan in order to find more planner bugs. if ( !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT) && ((params.options & QueryPlannerParams::INCLUDE_COLLSCAN) || (0 == out->size() && canTableScan))) { QuerySolution* collscan = buildCollscanSoln(query, false, params); if (NULL != collscan) { out->push_back(collscan); QLOG() << "Planner: outputting a collscan:\n"; QLOG() << collscan->toString() << endl; } } }
// static Status QueryPlanner::plan(const CanonicalQuery& query, const QueryPlannerParams& params, std::vector<QuerySolution*>* out) { QLOG() << "=============================\n" << "Beginning planning, options = " << optionString(params.options) << endl << "Canonical query:\n" << query.toString() << endl << "=============================" << endl; for (size_t i = 0; i < params.indices.size(); ++i) { QLOG() << "idx " << i << " is " << params.indices[i].toString() << endl; } bool canTableScan = !(params.options & QueryPlannerParams::NO_TABLE_SCAN); // If the query requests a tailable cursor, the only solution is a collscan + filter with // tailable set on the collscan. TODO: This is a policy departure. Previously I think you // could ask for a tailable cursor and it just tried to give you one. Now, we fail if we // can't provide one. Is this what we want? if (query.getParsed().hasOption(QueryOption_CursorTailable)) { if (!QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && canTableScan) { QuerySolution* soln = buildCollscanSoln(query, true, params); if (NULL != soln) { out->push_back(soln); } } return Status::OK(); } // The hint can be $natural: 1. If this happens, output a collscan. It's a weird way of // saying "table scan for two, please." if (!query.getParsed().getHint().isEmpty()) { BSONElement natural = query.getParsed().getHint().getFieldDotted("$natural"); if (!natural.eoo()) { QLOG() << "forcing a table scan due to hinted $natural\n"; // min/max are incompatible with $natural. if (canTableScan && query.getParsed().getMin().isEmpty() && query.getParsed().getMax().isEmpty()) { QuerySolution* soln = buildCollscanSoln(query, false, params); if (NULL != soln) { out->push_back(soln); } } return Status::OK(); } } // Figure out what fields we care about. unordered_set<string> fields; QueryPlannerIXSelect::getFields(query.root(), "", &fields); for (unordered_set<string>::const_iterator it = fields.begin(); it != fields.end(); ++it) { QLOG() << "predicate over field " << *it << endl; } // Filter our indices so we only look at indices that are over our predicates. vector<IndexEntry> relevantIndices; // Hints require us to only consider the hinted index. BSONObj hintIndex = query.getParsed().getHint(); // Snapshot is a form of a hint. If snapshot is set, try to use _id index to make a real // plan. If that fails, just scan the _id index. if (query.getParsed().isSnapshot()) { // Find the ID index in indexKeyPatterns. It's our hint. for (size_t i = 0; i < params.indices.size(); ++i) { if (isIdIndex(params.indices[i].keyPattern)) { hintIndex = params.indices[i].keyPattern; break; } } } size_t hintIndexNumber = numeric_limits<size_t>::max(); if (hintIndex.isEmpty()) { QueryPlannerIXSelect::findRelevantIndices(fields, params.indices, &relevantIndices); } else { // Sigh. If the hint is specified it might be using the index name. BSONElement firstHintElt = hintIndex.firstElement(); if (str::equals("$hint", firstHintElt.fieldName()) && String == firstHintElt.type()) { string hintName = firstHintElt.String(); for (size_t i = 0; i < params.indices.size(); ++i) { if (params.indices[i].name == hintName) { QLOG() << "hint by name specified, restricting indices to " << params.indices[i].keyPattern.toString() << endl; relevantIndices.clear(); relevantIndices.push_back(params.indices[i]); hintIndexNumber = i; hintIndex = params.indices[i].keyPattern; break; } } } else { for (size_t i = 0; i < params.indices.size(); ++i) { if (0 == params.indices[i].keyPattern.woCompare(hintIndex)) { relevantIndices.clear(); relevantIndices.push_back(params.indices[i]); QLOG() << "hint specified, restricting indices to " << hintIndex.toString() << endl; hintIndexNumber = i; break; } } } if (hintIndexNumber == numeric_limits<size_t>::max()) { return Status(ErrorCodes::BadValue, "bad hint"); } } // Deal with the .min() and .max() query options. If either exist we can only use an index // that matches the object inside. if (!query.getParsed().getMin().isEmpty() || !query.getParsed().getMax().isEmpty()) { BSONObj minObj = query.getParsed().getMin(); BSONObj maxObj = query.getParsed().getMax(); // This is the index into params.indices[...] that we use. size_t idxNo = numeric_limits<size_t>::max(); // If there's an index hinted we need to be able to use it. if (!hintIndex.isEmpty()) { if (!minObj.isEmpty() && !indexCompatibleMaxMin(minObj, hintIndex)) { QLOG() << "minobj doesnt work w hint"; return Status(ErrorCodes::BadValue, "hint provided does not work with min query"); } if (!maxObj.isEmpty() && !indexCompatibleMaxMin(maxObj, hintIndex)) { QLOG() << "maxobj doesnt work w hint"; return Status(ErrorCodes::BadValue, "hint provided does not work with max query"); } idxNo = hintIndexNumber; } else { // No hinted index, look for one that is compatible (has same field names and // ordering thereof). for (size_t i = 0; i < params.indices.size(); ++i) { const BSONObj& kp = params.indices[i].keyPattern; BSONObj toUse = minObj.isEmpty() ? maxObj : minObj; if (indexCompatibleMaxMin(toUse, kp)) { idxNo = i; break; } } } if (idxNo == numeric_limits<size_t>::max()) { QLOG() << "Can't find relevant index to use for max/min query"; // Can't find an index to use, bail out. return Status(ErrorCodes::BadValue, "unable to find relevant index for max/min query"); } // maxObj can be empty; the index scan just goes until the end. minObj can't be empty // though, so if it is, we make a minKey object. if (minObj.isEmpty()) { BSONObjBuilder bob; bob.appendMinKey(""); minObj = bob.obj(); } else { // Must strip off the field names to make an index key. minObj = stripFieldNames(minObj); } if (!maxObj.isEmpty()) { // Must strip off the field names to make an index key. maxObj = stripFieldNames(maxObj); } QLOG() << "max/min query using index " << params.indices[idxNo].toString() << endl; // Make our scan and output. QuerySolutionNode* solnRoot = QueryPlannerAccess::makeIndexScan(params.indices[idxNo], query, params, minObj, maxObj); QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { out->push_back(soln); } return Status::OK(); } for (size_t i = 0; i < relevantIndices.size(); ++i) { QLOG() << "relevant idx " << i << " is " << relevantIndices[i].toString() << endl; } // Figure out how useful each index is to each predicate. // query.root() is now annotated with RelevantTag(s). QueryPlannerIXSelect::rateIndices(query.root(), "", relevantIndices); QLOG() << "rated tree" << endl; QLOG() << query.root()->toString() << endl; // If there is a GEO_NEAR it must have an index it can use directly. // XXX: move into data access? MatchExpression* gnNode = NULL; if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR, &gnNode)) { // No index for GEO_NEAR? No query. RelevantTag* tag = static_cast<RelevantTag*>(gnNode->getTag()); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { QLOG() << "unable to find index for $geoNear query" << endl; return Status(ErrorCodes::BadValue, "unable to find index for $geoNear query"); } GeoNearMatchExpression* gnme = static_cast<GeoNearMatchExpression*>(gnNode); vector<size_t> newFirst; // 2d + GEO_NEAR is annoying. Because 2d's GEO_NEAR isn't streaming we have to embed // the full query tree inside it as a matcher. for (size_t i = 0; i < tag->first.size(); ++i) { // GEO_NEAR has a non-2d index it can use. We can deal w/that in normal planning. if (!is2DIndex(relevantIndices[tag->first[i]].keyPattern)) { newFirst.push_back(i); continue; } // If we're here, GEO_NEAR has a 2d index. We create a 2dgeonear plan with the // entire tree as a filter, if possible. GeoNear2DNode* solnRoot = new GeoNear2DNode(); solnRoot->nq = gnme->getData(); if (NULL != query.getProj()) { solnRoot->addPointMeta = query.getProj()->wantGeoNearPoint(); solnRoot->addDistMeta = query.getProj()->wantGeoNearDistance(); } if (MatchExpression::GEO_NEAR != query.root()->matchType()) { // root is an AND, clone and delete the GEO_NEAR child. MatchExpression* filterTree = query.root()->shallowClone(); verify(MatchExpression::AND == filterTree->matchType()); bool foundChild = false; for (size_t i = 0; i < filterTree->numChildren(); ++i) { if (MatchExpression::GEO_NEAR == filterTree->getChild(i)->matchType()) { foundChild = true; filterTree->getChildVector()->erase(filterTree->getChildVector()->begin() + i); break; } } verify(foundChild); solnRoot->filter.reset(filterTree); } solnRoot->numWanted = query.getParsed().getNumToReturn(); if (0 == solnRoot->numWanted) { solnRoot->numWanted = 100; } solnRoot->indexKeyPattern = relevantIndices[tag->first[i]].keyPattern; // Remove the 2d index. 2d can only be the first field, and we know there is // only one GEO_NEAR, so we don't care if anyone else was assigned it; it'll // only be first for gnNode. tag->first.erase(tag->first.begin() + i); QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { out->push_back(soln); } } // Continue planning w/non-2d indices tagged for this pred. tag->first.swap(newFirst); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { return Status::OK(); } } // Likewise, if there is a TEXT it must have an index it can use directly. MatchExpression* textNode; if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT, &textNode)) { RelevantTag* tag = static_cast<RelevantTag*>(textNode->getTag()); if (0 == tag->first.size() && 0 == tag->notFirst.size()) { return Status::OK(); } } // If we have any relevant indices, we try to create indexed plans. if (0 < relevantIndices.size()) { // The enumerator spits out trees tagged with IndexTag(s). PlanEnumeratorParams enumParams; enumParams.intersect = params.options & QueryPlannerParams::INDEX_INTERSECTION; enumParams.root = query.root(); enumParams.indices = &relevantIndices; PlanEnumerator isp(enumParams); isp.init(); MatchExpression* rawTree; // XXX: have limit on # of indexed solns we'll consider. We could have a perverse // query and index that could make n^2 very unpleasant. while (isp.getNext(&rawTree)) { QLOG() << "about to build solntree from tagged tree:\n" << rawTree->toString() << endl; // This can fail if enumeration makes a mistake. QuerySolutionNode* solnRoot = QueryPlannerAccess::buildIndexedDataAccess(query, rawTree, false, relevantIndices); if (NULL == solnRoot) { continue; } QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, solnRoot); if (NULL != soln) { QLOG() << "Planner: adding solution:\n" << soln->toString() << endl; out->push_back(soln); } } } QLOG() << "Planner: outputted " << out->size() << " indexed solutions.\n"; // An index was hinted. If there are any solutions, they use the hinted index. If not, we // scan the entire index to provide results and output that as our plan. This is the // desired behavior when an index is hinted that is not relevant to the query. if (!hintIndex.isEmpty()) { if (0 == out->size()) { QuerySolution* soln = buildWholeIXSoln(params.indices[hintIndexNumber], query, params); verify(NULL != soln); QLOG() << "Planner: outputting soln that uses hinted index as scan." << endl; out->push_back(soln); } return Status::OK(); } // If a sort order is requested, there may be an index that provides it, even if that // index is not over any predicates in the query. // if (!query.getParsed().getSort().isEmpty() && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT)) { // See if we have a sort provided from an index already. bool usingIndexToSort = false; for (size_t i = 0; i < out->size(); ++i) { QuerySolution* soln = (*out)[i]; if (!soln->hasSortStage) { usingIndexToSort = true; break; } } if (!usingIndexToSort) { for (size_t i = 0; i < params.indices.size(); ++i) { const IndexEntry& index = params.indices[i]; if (index.sparse) { continue; } const BSONObj kp = LiteParsedQuery::normalizeSortOrder(index.keyPattern); if (providesSort(query, kp)) { QLOG() << "Planner: outputting soln that uses index to provide sort." << endl; QuerySolution* soln = buildWholeIXSoln(params.indices[i], query, params); if (NULL != soln) { out->push_back(soln); break; } } if (providesSort(query, QueryPlannerCommon::reverseSortObj(kp))) { QLOG() << "Planner: outputting soln that uses (reverse) index " << "to provide sort." << endl; QuerySolution* soln = buildWholeIXSoln(params.indices[i], query, params, -1); if (NULL != soln) { out->push_back(soln); break; } } } } } // TODO: Do we always want to offer a collscan solution? // XXX: currently disabling the always-use-a-collscan in order to find more planner bugs. if ( !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT) && hintIndex.isEmpty() && ((params.options & QueryPlannerParams::INCLUDE_COLLSCAN) || (0 == out->size() && canTableScan))) { QuerySolution* collscan = buildCollscanSoln(query, false, params); if (NULL != collscan) { out->push_back(collscan); QLOG() << "Planner: outputting a collscan:\n"; QLOG() << collscan->toString() << endl; } } return Status::OK(); }
bool PlanEnumerator::prepMemo(MatchExpression* node) { if (Indexability::nodeCanUseIndexOnOwnField(node)) { // We only get here if our parent is an OR, an array operator, or we're the root. // If we have no index tag there are no indices we can use. if (NULL == node->getTag()) { return false; } RelevantTag* rt = static_cast<RelevantTag*>(node->getTag()); // In order to definitely use an index it must be prefixed with our field. // We don't consider notFirst indices here because we must be AND-related to a node // that uses the first spot in that index, and we currently do not know that // unless we're in an AND node. if (0 == rt->first.size()) { return false; } // We know we can use an index, so grab a memo spot. size_t myMemoID; NodeAssignment* assign; allocateAssignment(node, &assign, &myMemoID); assign->pred.reset(new PredicateAssignment()); assign->pred->expr = node; assign->pred->first.swap(rt->first); return true; } else if (MatchExpression::OR == node->matchType()) { // For an OR to be indexed, all its children must be indexed. for (size_t i = 0; i < node->numChildren(); ++i) { if (!prepMemo(node->getChild(i))) { return false; } } // If we're here we're fully indexed and can be in the memo. size_t myMemoID; NodeAssignment* assign; allocateAssignment(node, &assign, &myMemoID); OrAssignment* orAssignment = new OrAssignment(); for (size_t i = 0; i < node->numChildren(); ++i) { orAssignment->subnodes.push_back(_nodeToId[node->getChild(i)]); } assign->orAssignment.reset(orAssignment); return true; } else if (MatchExpression::AND == node->matchType() || Indexability::arrayUsesIndexOnChildren(node)) { // map from idx id to children that have a pred over it. unordered_map<IndexID, vector<MatchExpression*> > idxToFirst; unordered_map<IndexID, vector<MatchExpression*> > idxToNotFirst; vector<MemoID> subnodes; for (size_t i = 0; i < node->numChildren(); ++i) { MatchExpression* child = node->getChild(i); if (Indexability::nodeCanUseIndexOnOwnField(child)) { RelevantTag* rt = static_cast<RelevantTag*>(child->getTag()); for (size_t j = 0; j < rt->first.size(); ++j) { idxToFirst[rt->first[j]].push_back(child); } for (size_t j = 0 ; j< rt->notFirst.size(); ++j) { idxToNotFirst[rt->notFirst[j]].push_back(child); } } else { if (prepMemo(child)) { verify(_nodeToId.end() != _nodeToId.find(child)); size_t childID = _nodeToId[child]; subnodes.push_back(childID); } } } if (idxToFirst.empty() && (subnodes.size() == 0)) { return false; } AndAssignment* newAndAssignment = new AndAssignment(); newAndAssignment->subnodes.swap(subnodes); // At this point we know how many indices the AND's predicate children are over. newAndAssignment->predChoices.resize(idxToFirst.size()); // This iterates through the predChoices. size_t predChoicesIdx = 0; // For each FIRST, we assign nodes to it. for (unordered_map<IndexID, vector<MatchExpression*> >::iterator it = idxToFirst.begin(); it != idxToFirst.end(); ++it) { OneIndexAssignment* assign = &newAndAssignment->predChoices[predChoicesIdx]; ++predChoicesIdx; // Fill out the OneIndexAssignment with the preds that are over the first field. assign->index = it->first; // We can swap because we're never touching idxToFirst again after this loop over it. assign->preds.swap(it->second); // If it's a multikey index, we can't intersect the bounds, so we only want one pred. if ((*_indices)[it->first].multikey) { // XXX: pick a better pred than the first one that happens to wander in. // XXX: see and3.js, indexq.js, arrayfind7.js QLOG() << "Index " << (*_indices)[it->first].keyPattern.toString() << " is multikey but has >1 pred possible, should be smarter" << " here and pick the best one" << endl; assign->preds.resize(1); } assign->positions.resize(assign->preds.size(), 0); // // Compound analysis here and below. // // Don't compound on multikey indices. (XXX: not whole story...) if ((*_indices)[it->first].multikey) { continue; } // Grab the expressions that are notFirst for the index whose assignments we're filling out. unordered_map<size_t, vector<MatchExpression*> >::const_iterator compoundIt = idxToNotFirst.find(it->first); if (compoundIt == idxToNotFirst.end()) { continue; } const vector<MatchExpression*>& tryCompound = compoundIt->second; // Walk over the key pattern trying to find BSONObjIterator kpIt((*_indices)[it->first].keyPattern); // Skip the first elt as it's already assigned. kpIt.next(); size_t posInIdx = 0; while (kpIt.more()) { BSONElement keyElt = kpIt.next(); ++posInIdx; bool fieldAssigned = false; for (size_t j = 0; j < tryCompound.size(); ++j) { MatchExpression* maybe = tryCompound[j]; // Sigh we grab the full path from the relevant tag. RelevantTag* rt = static_cast<RelevantTag*>(maybe->getTag()); if (keyElt.fieldName() == rt->path) { assign->preds.push_back(maybe); assign->positions.push_back(posInIdx); fieldAssigned = true; } } // If we have (a,b,c) and we can't assign something to 'b' don't try // to assign something to 'c'. if (!fieldAssigned) { break; } } } // Some predicates *require* an index. We stuff these in 'mandatory' inside of the // AndAssignment. // // TODO: We can compute this "on the fly" above somehow, but it's clearer to see what's // going on when we do this as a separate step. // // TODO: Consider annotating mandatory indices in the planner as part of the available // index tagging. // Note we're not incrementing 'i' in the loop. We may erase the i-th element. for (size_t i = 0; i < newAndAssignment->predChoices.size();) { const OneIndexAssignment& oie = newAndAssignment->predChoices[i]; bool hasPredThatRequiresIndex = false; for (size_t j = 0; j < oie.preds.size(); ++j) { MatchExpression* expr = oie.preds[j]; if (MatchExpression::GEO_NEAR == expr->matchType()) { hasPredThatRequiresIndex = true; break; } if (MatchExpression::TEXT == expr->matchType()) { hasPredThatRequiresIndex = true; break; } } if (hasPredThatRequiresIndex) { newAndAssignment->mandatory.push_back(oie); newAndAssignment->predChoices.erase(newAndAssignment->predChoices.begin() + i); } else { ++i; } } newAndAssignment->resetEnumeration(); size_t myMemoID; NodeAssignment* assign; allocateAssignment(node, &assign, &myMemoID); // Takes ownership. assign->newAnd.reset(newAndAssignment); return true; } // Don't know what the node is at this point. return false; }