inline void testAll() { typedef Opm::FluidSystems::Spe5<Scalar> FluidSystem; enum { numPhases = FluidSystem::numPhases, waterPhaseIdx = FluidSystem::waterPhaseIdx, gasPhaseIdx = FluidSystem::gasPhaseIdx, oilPhaseIdx = FluidSystem::oilPhaseIdx, numComponents = FluidSystem::numComponents, H2OIdx = FluidSystem::H2OIdx, C1Idx = FluidSystem::C1Idx, C3Idx = FluidSystem::C3Idx, C6Idx = FluidSystem::C6Idx, C10Idx = FluidSystem::C10Idx, C15Idx = FluidSystem::C15Idx, C20Idx = FluidSystem::C20Idx }; typedef Opm::NcpFlash<Scalar, FluidSystem> Flash; typedef Dune::FieldVector<Scalar, numComponents> ComponentVector; typedef Opm::CompositionalFluidState<Scalar, FluidSystem> FluidState; typedef Opm::ThreePhaseMaterialTraits<Scalar, waterPhaseIdx, oilPhaseIdx, gasPhaseIdx> MaterialTraits; typedef Opm::LinearMaterial<MaterialTraits> MaterialLaw; typedef typename MaterialLaw::Params MaterialLawParams; typedef typename FluidSystem::template ParameterCache<Scalar> ParameterCache; //////////// // Initialize the fluid system and create the capillary pressure // parameters //////////// Scalar T = 273.15 + 20; // 20 deg Celsius FluidSystem::init(/*minTemperature=*/T - 1, /*maxTemperature=*/T + 1, /*minPressure=*/1.0e4, /*maxTemperature=*/40.0e6); // set the parameters for the capillary pressure law MaterialLawParams matParams; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { matParams.setPcMinSat(phaseIdx, 0.0); matParams.setPcMaxSat(phaseIdx, 0.0); } matParams.finalize(); //////////// // Create a fluid state //////////// FluidState gasFluidState; createSurfaceGasFluidSystem<FluidSystem>(gasFluidState); FluidState fluidState; ParameterCache paramCache; // temperature fluidState.setTemperature(T); // oil pressure fluidState.setPressure(oilPhaseIdx, 4000 * 6894.7573); // 4000 PSI // oil saturation fluidState.setSaturation(oilPhaseIdx, 1.0); fluidState.setSaturation(gasPhaseIdx, 1.0 - fluidState.saturation(oilPhaseIdx)); // oil composition: SPE-5 reservoir oil fluidState.setMoleFraction(oilPhaseIdx, H2OIdx, 0.0); fluidState.setMoleFraction(oilPhaseIdx, C1Idx, 0.50); fluidState.setMoleFraction(oilPhaseIdx, C3Idx, 0.03); fluidState.setMoleFraction(oilPhaseIdx, C6Idx, 0.07); fluidState.setMoleFraction(oilPhaseIdx, C10Idx, 0.20); fluidState.setMoleFraction(oilPhaseIdx, C15Idx, 0.15); fluidState.setMoleFraction(oilPhaseIdx, C20Idx, 0.05); //makeOilSaturated<Scalar, FluidSystem>(fluidState, gasFluidState); // set the saturations and pressures of the other phases for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { if (phaseIdx != oilPhaseIdx) { fluidState.setSaturation(phaseIdx, 0.0); fluidState.setPressure(phaseIdx, fluidState.pressure(oilPhaseIdx)); } // initial guess for the composition (needed by the ComputeFromReferencePhase // constraint solver. TODO: bug in ComputeFromReferencePhase?) guessInitial<FluidSystem>(fluidState, phaseIdx); } typedef Opm::ComputeFromReferencePhase<Scalar, FluidSystem> CFRP; CFRP::solve(fluidState, paramCache, /*refPhaseIdx=*/oilPhaseIdx, /*setViscosity=*/false, /*setEnthalpy=*/false); //////////// // Calculate the total molarities of the components //////////// ComponentVector totalMolarities; for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx) totalMolarities[compIdx] = fluidState.saturation(oilPhaseIdx)*fluidState.molarity(oilPhaseIdx, compIdx); //////////// // Gradually increase the volume for and calculate the gas // formation factor, oil formation volume factor and gas formation // volume factor. //////////// FluidState flashFluidState, surfaceFluidState; flashFluidState.assign(fluidState); //Flash::guessInitial(flashFluidState, totalMolarities); Flash::template solve<MaterialLaw>(flashFluidState, matParams, paramCache, totalMolarities); Scalar surfaceAlpha = 1; surfaceAlpha = bringOilToSurface<Scalar, FluidSystem>(surfaceFluidState, surfaceAlpha, flashFluidState, /*guessInitial=*/true); Scalar rho_gRef = surfaceFluidState.density(gasPhaseIdx); Scalar rho_oRef = surfaceFluidState.density(oilPhaseIdx); std::vector<std::array<Scalar, 10> > resultTable; Scalar minAlpha = 0.98; Scalar maxAlpha = surfaceAlpha; std::cout << "alpha[-] p[Pa] S_g[-] rho_o[kg/m^3] rho_g[kg/m^3] <M_o>[kg/mol] <M_g>[kg/mol] R_s[m^3/m^3] B_g[-] B_o[-]\n"; int n = 300; for (int i = 0; i < n; ++i) { // ratio between the original and the current volume Scalar alpha = minAlpha + (maxAlpha - minAlpha)*i/(n - 1); // increasing the volume means decreasing the molartity ComponentVector curTotalMolarities = totalMolarities; curTotalMolarities /= alpha; // "flash" the modified reservoir oil Flash::template solve<MaterialLaw>(flashFluidState, matParams, paramCache, curTotalMolarities); surfaceAlpha = bringOilToSurface<Scalar, FluidSystem>(surfaceFluidState, surfaceAlpha, flashFluidState, /*guessInitial=*/false); Scalar Rs = surfaceFluidState.saturation(gasPhaseIdx) / surfaceFluidState.saturation(oilPhaseIdx); std::cout << alpha << " " << flashFluidState.pressure(oilPhaseIdx) << " " << flashFluidState.saturation(gasPhaseIdx) << " " << flashFluidState.density(oilPhaseIdx) << " " << flashFluidState.density(gasPhaseIdx) << " " << flashFluidState.averageMolarMass(oilPhaseIdx) << " " << flashFluidState.averageMolarMass(gasPhaseIdx) << " " << Rs << " " << rho_gRef/flashFluidState.density(gasPhaseIdx) << " " << rho_oRef/flashFluidState.density(oilPhaseIdx) << " " << "\n"; std::array<Scalar, 10> tmp; tmp[0] = alpha; tmp[1] = flashFluidState.pressure(oilPhaseIdx); tmp[2] = flashFluidState.saturation(gasPhaseIdx); tmp[3] = flashFluidState.density(oilPhaseIdx); tmp[4] = flashFluidState.density(gasPhaseIdx); tmp[5] = flashFluidState.averageMolarMass(oilPhaseIdx); tmp[6] = flashFluidState.averageMolarMass(gasPhaseIdx); tmp[7] = Rs; tmp[8] = rho_gRef/flashFluidState.density(gasPhaseIdx); tmp[9] = rho_oRef/flashFluidState.density(oilPhaseIdx); resultTable.push_back(tmp); } std::cout << "reference density oil [kg/m^3]: " << rho_oRef << "\n"; std::cout << "reference density gas [kg/m^3]: " << rho_gRef << "\n"; Scalar hiresThresholdPressure = resultTable[20][1]; printResult(resultTable, "Bg", /*firstIdx=*/1, /*secondIdx=*/8, /*hiresThreshold=*/hiresThresholdPressure); printResult(resultTable, "Bo", /*firstIdx=*/1, /*secondIdx=*/9, /*hiresThreshold=*/hiresThresholdPressure); printResult(resultTable, "Rs", /*firstIdx=*/1, /*secondIdx=*/7, /*hiresThreshold=*/hiresThresholdPressure); }
Scalar bringOilToSurface(FluidState& surfaceFluidState, Scalar alpha, const FluidState& reservoirFluidState, bool guessInitial) { enum { numPhases = FluidSystem::numPhases, waterPhaseIdx = FluidSystem::waterPhaseIdx, gasPhaseIdx = FluidSystem::gasPhaseIdx, oilPhaseIdx = FluidSystem::oilPhaseIdx, numComponents = FluidSystem::numComponents }; typedef Opm::NcpFlash<Scalar, FluidSystem> Flash; typedef Opm::ThreePhaseMaterialTraits<Scalar, waterPhaseIdx, oilPhaseIdx, gasPhaseIdx> MaterialTraits; typedef Opm::LinearMaterial<MaterialTraits> MaterialLaw; typedef typename MaterialLaw::Params MaterialLawParams; typedef Dune::FieldVector<Scalar, numComponents> ComponentVector; const Scalar refPressure = 1.0135e5; // [Pa] // set the parameters for the capillary pressure law MaterialLawParams matParams; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { matParams.setPcMinSat(phaseIdx, 0.0); matParams.setPcMaxSat(phaseIdx, 0.0); } matParams.finalize(); // retieve the global volumetric component molarities surfaceFluidState.setTemperature(273.15 + 20); ComponentVector molarities; for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx) molarities[compIdx] = reservoirFluidState.molarity(oilPhaseIdx, compIdx); if (guessInitial) { // we start at a fluid state with reservoir oil. for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx) { surfaceFluidState.setMoleFraction(phaseIdx, compIdx, reservoirFluidState.moleFraction(phaseIdx, compIdx)); } surfaceFluidState.setDensity(phaseIdx, reservoirFluidState.density(phaseIdx)); surfaceFluidState.setPressure(phaseIdx, reservoirFluidState.pressure(phaseIdx)); surfaceFluidState.setSaturation(phaseIdx, 0.0); } surfaceFluidState.setSaturation(oilPhaseIdx, 1.0); surfaceFluidState.setSaturation(gasPhaseIdx, 1.0 - surfaceFluidState.saturation(oilPhaseIdx)); } typename FluidSystem::template ParameterCache<Scalar> paramCache; paramCache.updateAll(surfaceFluidState); // increase volume until we are at surface pressure. use the // newton method for this ComponentVector tmpMolarities; for (int i = 0;; ++i) { if (i >= 20) throw Opm::NumericalIssue("Newton method did not converge after 20 iterations"); // calculate the deviation from the standard pressure tmpMolarities = molarities; tmpMolarities /= alpha; Flash::template solve<MaterialLaw>(surfaceFluidState, matParams, paramCache, tmpMolarities); Scalar f = surfaceFluidState.pressure(gasPhaseIdx) - refPressure; // calculate the derivative of the deviation from the standard // pressure Scalar eps = alpha*1e-10; tmpMolarities = molarities; tmpMolarities /= alpha + eps; Flash::template solve<MaterialLaw>(surfaceFluidState, matParams, paramCache, tmpMolarities); Scalar fStar = surfaceFluidState.pressure(gasPhaseIdx) - refPressure; Scalar fPrime = (fStar - f)/eps; // newton update Scalar delta = f/fPrime; alpha -= delta; if (std::abs(delta) < std::abs(alpha)*1e-9) { break; } } // calculate the final result tmpMolarities = molarities; tmpMolarities /= alpha; Flash::template solve<MaterialLaw>(surfaceFluidState, matParams, paramCache, tmpMolarities); return alpha; }