bool testRawDataAcces() { bool passed = true; Eigen::Matrix<Scalar, 4, 1> raw = {0, 1, 0, 0}; Eigen::Map<RxSO3Type const> map_of_const_rxso3(raw.data()); SOPHUS_TEST_APPROX(passed, map_of_const_rxso3.quaternion().coeffs().eval(), raw, Constants<Scalar>::epsilon()); SOPHUS_TEST_EQUAL(passed, map_of_const_rxso3.quaternion().coeffs().data(), raw.data()); Eigen::Map<RxSO3Type const> const_shallow_copy = map_of_const_rxso3; SOPHUS_TEST_EQUAL(passed, const_shallow_copy.quaternion().coeffs().eval(), map_of_const_rxso3.quaternion().coeffs().eval()); Eigen::Matrix<Scalar, 4, 1> raw2 = {1, 0, 0, 0}; Eigen::Map<RxSO3Type> map_of_rxso3(raw.data()); Eigen::Quaternion<Scalar> quat; quat.coeffs() = raw2; map_of_rxso3.setQuaternion(quat); SOPHUS_TEST_APPROX(passed, map_of_rxso3.quaternion().coeffs().eval(), raw2, Constants<Scalar>::epsilon()); SOPHUS_TEST_EQUAL(passed, map_of_rxso3.quaternion().coeffs().data(), raw.data()); SOPHUS_TEST_NEQ(passed, map_of_rxso3.quaternion().coeffs().data(), quat.coeffs().data()); Eigen::Map<RxSO3Type> shallow_copy = map_of_rxso3; SOPHUS_TEST_EQUAL(passed, shallow_copy.quaternion().coeffs().eval(), map_of_rxso3.quaternion().coeffs().eval()); RxSO3Type const const_so3(quat); for (int i = 0; i < 4; ++i) { SOPHUS_TEST_EQUAL(passed, const_so3.data()[i], raw2.data()[i]); } RxSO3Type so3(quat); for (int i = 0; i < 4; ++i) { so3.data()[i] = raw[i]; } for (int i = 0; i < 4; ++i) { SOPHUS_TEST_EQUAL(passed, so3.data()[i], raw.data()[i]); } for (int i = 0; i < 10; ++i) { Matrix3<Scalar> M = Matrix3<Scalar>::Random(); for (Scalar scale : {Scalar(0.01), Scalar(0.99), Scalar(1), Scalar(10)}) { Matrix3<Scalar> R = makeRotationMatrix(M); Matrix3<Scalar> sR = scale * R; SOPHUS_TEST(passed, isScaledOrthogonalAndPositive(sR), "isScaledOrthogonalAndPositive(sR): % *\n%", scale, R); Matrix3<Scalar> sR_cols_swapped; sR_cols_swapped << sR.col(1), sR.col(0), sR.col(2); SOPHUS_TEST(passed, !isScaledOrthogonalAndPositive(sR_cols_swapped), "isScaledOrthogonalAndPositive(-sR): % *\n%", scale, R); } } return passed; }
void PointMesher<T>::Mesher::createFaceAttributes(const Matrix vList, const Matrix fList, Matrix& fAttrList, Labels& fAttrLabels) const { // Initialization Matrix3 vp; Vector3 vc; Vector3 vn; for (int i = 0; i < fList.cols(); i++) { // Get triangle vp.col(0) = vList.col(int(fList(0, i))); vp.col(1) = vList.col(int(fList(1, i))); vp.col(2) = vList.col(int(fList(2, i))); // Compute triangle centroid vc = this->computeCentroid(vp); // Compute normal at centroid vn = this->computeNormal(vp); // Generate data structure fAttrList.block(0, i, 3, 1) = vc; fAttrList.block(3, i, 3, 1) = vn; } fAttrLabels[0].text = "FaceCentroids"; fAttrLabels[0].span = 3; fAttrLabels[1].text = "FaceNormals"; fAttrLabels[1].span = 3; }
typename PointMesher<T>::Vector3 PointMesher<T>::Mesher::computeNormal(Matrix3 matrixIn) const { Vector3 v1 = matrixIn.col(1) - matrixIn.col(0); Vector3 v2 = matrixIn.col(2) - matrixIn.col(0); Vector3 vn = v1.cross(v2); return vn.normalized(); }
template<typename Scalar> void orthomethods_3() { typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar,3,3> Matrix3; typedef Matrix<Scalar,3,1> Vector3; typedef Matrix<Scalar,4,1> Vector4; Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(), v2 = Vector3::Random(); // cross product VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(v1.dot(v1.cross(v2)), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v2), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(v2.dot(v1.cross(v2)), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(Vector3::Random()).dot(v1), Scalar(1)); Matrix3 mat3; mat3 << v0.normalized(), (v0.cross(v1)).normalized(), (v0.cross(v1).cross(v0)).normalized(); VERIFY(mat3.isUnitary()); mat3.setRandom(); VERIFY_IS_APPROX(v0.cross(mat3*v1), -(mat3*v1).cross(v0)); VERIFY_IS_APPROX(v0.cross(mat3.lazyProduct(v1)), -(mat3.lazyProduct(v1)).cross(v0)); // colwise/rowwise cross product mat3.setRandom(); Vector3 vec3 = Vector3::Random(); Matrix3 mcross; int i = internal::random<int>(0,2); mcross = mat3.colwise().cross(vec3); VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3)); VERIFY_IS_MUCH_SMALLER_THAN((mat3.adjoint() * mat3.colwise().cross(vec3)).diagonal().cwiseAbs().sum(), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN((mat3.adjoint() * mat3.colwise().cross(Vector3::Random())).diagonal().cwiseAbs().sum(), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN((vec3.adjoint() * mat3.colwise().cross(vec3)).cwiseAbs().sum(), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN((vec3.adjoint() * Matrix3::Random().colwise().cross(vec3)).cwiseAbs().sum(), Scalar(1)); mcross = mat3.rowwise().cross(vec3); VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3)); // cross3 Vector4 v40 = Vector4::Random(), v41 = Vector4::Random(), v42 = Vector4::Random(); v40.w() = v41.w() = v42.w() = 0; v42.template head<3>() = v40.template head<3>().cross(v41.template head<3>()); VERIFY_IS_APPROX(v40.cross3(v41), v42); VERIFY_IS_MUCH_SMALLER_THAN(v40.cross3(Vector4::Random()).dot(v40), Scalar(1)); // check mixed product typedef Matrix<RealScalar, 3, 1> RealVector3; RealVector3 rv1 = RealVector3::Random(); VERIFY_IS_APPROX(v1.cross(rv1.template cast<Scalar>()), v1.cross(rv1)); VERIFY_IS_APPROX(rv1.template cast<Scalar>().cross(v1), rv1.cross(v1)); }
void Vert::calc_curvature() { Edge *e = edge; Matrix3 m = Matrix3(); double wij_sum = 0.0; do { Vector tij = ((Matrix3::identity() - Matrix3(normal(), normal())) * e->pair->vect()).unit(); double kij = 2 * normal().dot(e->pair->vect()) / pow(e->pair->vect().length(),2); double wij = 0.0; if (e->face != NULL) { wij += e->face->area(); } if (e->pair->face != NULL) { wij += e->pair->face->area(); } wij_sum += wij; m = m + wij * kij * Matrix3(tij, tij); e = e->pair->prev; } while (e != edge); m = m / wij_sum; Vector e1 = Vector(1, 0, 0); Vector wvi; if ((e1 - normal()).length() > (e1 + normal()).length()) { wvi = (e1 - normal()).unit(); } else { wvi = (e1 + normal()).unit(); } Matrix3 qvi = Matrix3::identity() - 2 * Matrix3(wvi,wvi); Matrix3 m2 = qvi.transpose() * m * qvi; double m11 = m2.values[4], m12 = m2.values[7], m22 = m2.values[8], beta = (m22 - m11) / 2 / m12, t = sign(beta) / (abs(beta) + sqrt(pow(beta, 2) + 1)), c = 1.0 / sqrt(pow(t,2) + 1), s = c * t, m11_p = pow(c,2) * m11 + pow(s,2) * m22 - 2 * c * s * m12, m22_p = pow(s,2) * m11 + pow(c,2) * m22 + 2 * c * s * m12, phi = atan(t), k1_p = 3 * m11_p - m22_p, k2_p = 3 * m22_p - m11_p; if (k1_p < k2_p) { mem_max_curvature_mag = k1_p; mem_max_curvature_dir = cos(phi) * qvi.col(1) - sin(phi) * qvi.col(2); mem_min_curvature_mag = k2_p; mem_min_curvature_dir = sin(phi) * qvi.col(1) + cos(phi) * qvi.col(2); } else { mem_max_curvature_mag = k2_p; mem_max_curvature_dir = sin(phi) * qvi.col(1) + cos(phi) * qvi.col(2); mem_min_curvature_mag = k1_p; mem_min_curvature_dir = cos(phi) * qvi.col(1) - sin(phi) * qvi.col(2); } }
template<typename Scalar> void geometry(void) { /* this test covers the following files: Cross.h Quaternion.h, Transform.cpp */ typedef Matrix<Scalar,2,2> Matrix2; typedef Matrix<Scalar,3,3> Matrix3; typedef Matrix<Scalar,4,4> Matrix4; typedef Matrix<Scalar,2,1> Vector2; typedef Matrix<Scalar,3,1> Vector3; typedef Matrix<Scalar,4,1> Vector4; typedef Quaternion<Scalar> Quaternionx; typedef AngleAxis<Scalar> AngleAxisx; typedef Transform<Scalar,2> Transform2; typedef Transform<Scalar,3> Transform3; typedef Scaling<Scalar,2> Scaling2; typedef Scaling<Scalar,3> Scaling3; typedef Translation<Scalar,2> Translation2; typedef Translation<Scalar,3> Translation3; Scalar largeEps = test_precision<Scalar>(); if (ei_is_same_type<Scalar,float>::ret) largeEps = 1e-2f; Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(), v2 = Vector3::Random(); Vector2 u0 = Vector2::Random(); Matrix3 matrot1; Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); // cross product VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1)); Matrix3 m; m << v0.normalized(), (v0.cross(v1)).normalized(), (v0.cross(v1).cross(v0)).normalized(); VERIFY(m.isUnitary()); // Quaternion: Identity(), setIdentity(); Quaternionx q1, q2; q2.setIdentity(); VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); q1.coeffs().setRandom(); VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); // unitOrthogonal VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1)); VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1)); VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1)); VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0); VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m); q1 = AngleAxisx(a, v0.normalized()); q2 = AngleAxisx(a, v1.normalized()); // angular distance Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle()); if (refangle>Scalar(M_PI)) refangle = Scalar(2)*Scalar(M_PI) - refangle; if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) { VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps)); } // rotation matrix conversion VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); VERIFY_IS_APPROX(q1 * q2 * v2, q1.toRotationMatrix() * q2.toRotationMatrix() * v2); VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox( q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); q2 = q1.toRotationMatrix(); VERIFY_IS_APPROX(q1*v1,q2*v1); matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) * AngleAxisx(Scalar(0.2), Vector3::UnitY()) * AngleAxisx(Scalar(0.3), Vector3::UnitZ()); VERIFY_IS_APPROX(matrot1 * v1, AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix() * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix() * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1))); // angle-axis conversion AngleAxisx aa = q1; VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); // from two vector creation VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); // inverse and conjugate VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); // AngleAxis VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(), Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix()); AngleAxisx aa1; m = q1.toRotationMatrix(); aa1 = m; VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), Quaternionx(m).toRotationMatrix()); // Transform // TODO complete the tests ! a = 0; while (ei_abs(a)<Scalar(0.1)) a = ei_random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI)); q1 = AngleAxisx(a, v0.normalized()); Transform3 t0, t1, t2; // first test setIdentity() and Identity() t0.setIdentity(); VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); t0.matrix().setZero(); t0 = Transform3::Identity(); VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); t0.linear() = q1.toRotationMatrix(); t1.setIdentity(); t1.linear() = q1.toRotationMatrix(); v0 << 50, 2, 1;//= ei_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5)); t0.scale(v0); t1.prescale(v0); VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x()); //VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x())); t0.setIdentity(); t1.setIdentity(); v1 << 1, 2, 3; t0.linear() = q1.toRotationMatrix(); t0.pretranslate(v0); t0.scale(v1); t1.linear() = q1.conjugate().toRotationMatrix(); t1.prescale(v1.cwise().inverse()); t1.translate(-v0); VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>())); t1.fromPositionOrientationScale(v0, q1, v1); VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); VERIFY_IS_APPROX(t1*v1, t0*v1); t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix()); t1.setIdentity(); t1.scale(v0).rotate(q1); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1)); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix()); // More transform constructors, operator=, operator*= Matrix3 mat3 = Matrix3::Random(); Matrix4 mat4; mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose(); Transform3 tmat3(mat3), tmat4(mat4); tmat4.matrix()(3,3) = Scalar(1); VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); Scalar a3 = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); Vector3 v3 = Vector3::Random().normalized(); AngleAxisx aa3(a3, v3); Transform3 t3(aa3); Transform3 t4; t4 = aa3; VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); t4.rotate(AngleAxisx(-a3,v3)); VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); t4 *= aa3; VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); v3 = Vector3::Random(); Translation3 tv3(v3); Transform3 t5(tv3); t4 = tv3; VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); t4.translate(-v3); VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); t4 *= tv3; VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); Scaling3 sv3(v3); Transform3 t6(sv3); t4 = sv3; VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); t4.scale(v3.cwise().inverse()); VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); t4 *= sv3; VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); // matrix * transform VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix()); // chained Transform product VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix()); // check that Transform product doesn't have aliasing problems t5 = t4; t5 = t5*t5; VERIFY_IS_APPROX(t5, t4*t4); // 2D transformation Transform2 t20, t21; Vector2 v20 = Vector2::Random(); Vector2 v21 = Vector2::Random(); for (int k=0; k<2; ++k) if (ei_abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3); t21.setIdentity(); t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix(); VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(), t21.pretranslate(v20).scale(v21).matrix()); t21.setIdentity(); t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix(); VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) ); // Transform - new API // 3D t0.setIdentity(); t0.rotate(q1).scale(v0).translate(v0); // mat * scaling and mat * translation t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // mat * transformation and scaling * translation t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0)); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); t0.setIdentity(); t0.prerotate(q1).prescale(v0).pretranslate(v0); // translation * scaling and transformation * mat t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // scaling * mat and translation * mat t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1)); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); t0.setIdentity(); t0.scale(v0).translate(v0).rotate(q1); // translation * mat and scaling * transformation t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1)); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // transformation * scaling t0.scale(v0); t1 = t1 * Scaling3(v0); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // transformation * translation t0.translate(v0); t1 = t1 * Translation3(v0); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // translation * transformation t0.pretranslate(v0); t1 = Translation3(v0) * t1; VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // transform * quaternion t0.rotate(q1); t1 = t1 * q1; VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // translation * quaternion t0.translate(v1).rotate(q1); t1 = t1 * (Translation3(v1) * q1); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // scaling * quaternion t0.scale(v1).rotate(q1); t1 = t1 * (Scaling3(v1) * q1); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // quaternion * transform t0.prerotate(q1); t1 = q1 * t1; VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // quaternion * translation t0.rotate(q1).translate(v1); t1 = t1 * (q1 * Translation3(v1)); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // quaternion * scaling t0.rotate(q1).scale(v1); t1 = t1 * (q1 * Scaling3(v1)); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // translation * vector t0.setIdentity(); t0.translate(v0); VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1); // scaling * vector t0.setIdentity(); t0.scale(v0); VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1); // test transform inversion t0.setIdentity(); t0.translate(v0); t0.linear().setRandom(); VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse()); t0.setIdentity(); t0.translate(v0).rotate(q1); VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse()); // test extract rotation and scaling t0.setIdentity(); t0.translate(v0).rotate(q1).scale(v1); VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1); Matrix3 mat_rotation, mat_scaling; t0.setIdentity(); t0.translate(v0).rotate(q1).scale(v1); t0.computeRotationScaling(&mat_rotation, &mat_scaling); VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); t0.computeScalingRotation(&mat_scaling, &mat_rotation); VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); // test casting Transform<float,3> t1f = t1.template cast<float>(); VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1); Transform<double,3> t1d = t1.template cast<double>(); VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1); Translation3 tr1(v0); Translation<float,3> tr1f = tr1.template cast<float>(); VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1); Translation<double,3> tr1d = tr1.template cast<double>(); VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1); Scaling3 sc1(v0); Scaling<float,3> sc1f = sc1.template cast<float>(); VERIFY_IS_APPROX(sc1f.template cast<Scalar>(),sc1); Scaling<double,3> sc1d = sc1.template cast<double>(); VERIFY_IS_APPROX(sc1d.template cast<Scalar>(),sc1); Quaternion<float> q1f = q1.template cast<float>(); VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); Quaternion<double> q1d = q1.template cast<double>(); VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); AngleAxis<float> aa1f = aa1.template cast<float>(); VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1); AngleAxis<double> aa1d = aa1.template cast<double>(); VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1); Rotation2D<Scalar> r2d1(ei_random<Scalar>()); Rotation2D<float> r2d1f = r2d1.template cast<float>(); VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1); Rotation2D<double> r2d1d = r2d1.template cast<double>(); VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1); m = q1; // m.col(1) = Vector3(0,ei_random<Scalar>(),ei_random<Scalar>()).normalized(); // m.col(0) = Vector3(-1,0,0).normalized(); // m.col(2) = m.col(0).cross(m.col(1)); #define VERIFY_EULER(I,J,K, X,Y,Z) { \ Vector3 ea = m.eulerAngles(I,J,K); \ Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \ VERIFY_IS_APPROX(m, m1); \ VERIFY_IS_APPROX(m, Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \ } VERIFY_EULER(0,1,2, X,Y,Z); VERIFY_EULER(0,1,0, X,Y,X); VERIFY_EULER(0,2,1, X,Z,Y); VERIFY_EULER(0,2,0, X,Z,X); VERIFY_EULER(1,2,0, Y,Z,X); VERIFY_EULER(1,2,1, Y,Z,Y); VERIFY_EULER(1,0,2, Y,X,Z); VERIFY_EULER(1,0,1, Y,X,Y); VERIFY_EULER(2,0,1, Z,X,Y); VERIFY_EULER(2,0,2, Z,X,Z); VERIFY_EULER(2,1,0, Z,Y,X); VERIFY_EULER(2,1,2, Z,Y,Z); // colwise/rowwise cross product mat3.setRandom(); Vector3 vec3 = Vector3::Random(); Matrix3 mcross; int i = ei_random<int>(0,2); mcross = mat3.colwise().cross(vec3); VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3)); mcross = mat3.rowwise().cross(vec3); VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3)); }
// Original comment: // Triangulation happens in 2d. We could inverse transform the polygon around the normal direction, or we just use the two // most signficant axes. Here we find the two longest axes and use them to triangulate. Inverse transforming them would // introduce more doubling point error and isn't worth it. // // SC says: // This doesn't work: the vertices can be collinear when projected onto the plane of the two longest axes of the bounding box. // Example (from real data): // // v[0] = (-13.7199, 4.45725, -8.00059) // v[1] = (-0.115787, 12.3116, -4.96109) // v[2] = (0.88992, 12.8922, -3.80342) // v[3] = (-0.115787, 12.3116, -2.64576) // v[4] = (-13.7199, 4.45725, 0.393742) // v[5] = (-13.7199, 4.45725, -0.856258) // v[6] = (-12.5335, 5.14221, -3.80342) // v[7] = (-13.7199, 4.45725, -6.75059) // // Instead, we will project onto the plane of the polygon. long Polygon3::triangulate(Array<long> & tri_indices, Real epsilon) const { if (epsilon < 0) epsilon = Math::eps<Real>(); if (vertices.size() < 3) { tri_indices.clear(); } else if (vertices.size() == 3) { tri_indices.resize(3); tri_indices[0] = vertices[0].index; tri_indices[1] = vertices[1].index; tri_indices[2] = vertices[2].index; } else if (vertices.size() > 3) { tri_indices.clear(); size_t n = vertices.size(); proj_vertices.resize(n); Vector3 normal = computeNormal(); Matrix3 basis = Math::orthonormalBasis(normal); Vector3 axis0 = basis.col(0); Vector3 axis1 = basis.col(1); Vector3 v0 = vertices[0].position; // a reference point for the plane of the polygon for (size_t i = 0; i < n; ++i) { Vector3 v = vertices[i].position - v0; proj_vertices[i] = Vector2(v.dot(axis0), v.dot(axis1)); } Array<size_t> indices(n); bool flipped = false; if (projArea() > 0) { for (size_t v = 0; v < n; ++v) indices[v] = v; } else { for (size_t v = 0; v < n; ++v) indices[v] = (n - 1) - v; flipped = true; } size_t nv = n; size_t count = 2 * nv; for (size_t v = nv - 1; nv > 2; ) { if ((count--) <= 0) break; size_t u = v; if (nv <= u) u = 0; v = u + 1; if (nv <= v) v = 0; size_t w = v + 1; if (nv <= w) w = 0; if (snip(u, v, w, nv, indices, epsilon)) { size_t a = indices[u]; size_t b = indices[v]; size_t c = indices[w]; if (flipped) { tri_indices.push_back(vertices[c].index); tri_indices.push_back(vertices[b].index); tri_indices.push_back(vertices[a].index); } else { tri_indices.push_back(vertices[a].index); tri_indices.push_back(vertices[b].index); tri_indices.push_back(vertices[c].index); } size_t s = v, t = v + 1; for ( ; t < nv; ++s, ++t) indices[s] = indices[t]; nv--; count = 2 * nv; } } } return (long)tri_indices.size() / 3; }