示例#1
0
Boundary::Ptr Boundary::extract_surface_boundary_raw(
        MatrixFr& vertices, MatrixIr& faces) {
    VectorF flattened_vertices = Eigen::Map<VectorF>(vertices.data(),
            vertices.rows() * vertices.cols());
    VectorI flattened_faces = Eigen::Map<VectorI>(faces.data(),
            faces.rows() * faces.cols());
    VectorI voxels = VectorI::Zero(0);

    MeshFactory factory;
    Mesh::Ptr mesh = factory.load_data(flattened_vertices, flattened_faces,
            voxels, vertices.cols(), faces.cols(), 0).create();

    return extract_surface_boundary(*mesh);
}
示例#2
0
SelfIntersection::SelfIntersection(
        const MatrixFr& vertices, const MatrixIr& faces)
: m_faces(faces) {
    const size_t num_vertices = vertices.rows();
    const size_t dim = vertices.cols();
    const size_t num_faces = faces.rows();
    const size_t vertex_per_face = faces.cols();

    if (dim != 3) {
        throw NotImplementedError(
                "Self intersection check only support 3D");
    }
    if (vertex_per_face != 3) {
        throw NotImplementedError(
                "Self intersection check only works with triangles");
    }

    m_points.resize(num_vertices);
    for (size_t i=0; i<num_vertices; i++) {
        m_points[i] = Point_3(
                vertices(i,0),
                vertices(i,1),
                vertices(i,2));
    }
}
void GeometryCorrectionTable::apply_correction_to_in_plane_edge(
        const Vector3F& edge_dir, MatrixFr& loop) {
    VectorF bbox_min = loop.colwise().minCoeff();
    VectorF bbox_max = loop.colwise().maxCoeff();
    VectorF bbox_center = 0.5 * (bbox_min + bbox_max);

    size_t num_vts = loop.rows();
    size_t dim = loop.cols();
    assert(dim == 3);
    MatrixFr proj_loop(num_vts, dim);

    for (size_t i=0; i<num_vts; i++) {
        const VectorF& v = loop.row(i) - bbox_center.transpose();
        proj_loop.row(i) = Vector3F(v[0], v[1], 0.0);
    }
    Float target_half_height = 1e3; // Something huge to represent inf
    Float target_half_width = proj_loop.row(0).norm();

    Vector2F correction_1 = lookup(target_half_width, target_half_height);
    Vector2F correction_2 = lookup(target_half_height, target_half_width);
    Float half_width  = 0.5 * (correction_1[0] + correction_2[1])
        + 0.05 * num_offset_pixel;
    half_width = std::max(half_width, min_thickness);

    for (size_t i=0; i<num_vts; i++) {
        loop.row(i) += proj_loop.row(i) *
            (-target_half_width + half_width) / target_half_width;
    }
}
示例#4
0
void TilerEngine::remove_duplicated_vertices(WireNetwork& wire_network, Float tol) {
    const size_t num_input_vertices = wire_network.get_num_vertices();

    DuplicatedVertexRemoval remover(wire_network.get_vertices(), wire_network.get_edges());
    remover.run(tol);
    MatrixFr vertices = remover.get_vertices();
    MatrixIr edges = remover.get_faces();
    VectorI index_map = remover.get_index_map();
    assert(num_input_vertices == index_map.size());

    wire_network.set_vertices(vertices);
    wire_network.set_edges(edges);

    const size_t num_output_vertices = wire_network.get_num_vertices();
    std::vector<std::string> attr_names = wire_network.get_attribute_names();
    for (auto itr : attr_names) {
        const std::string& name = itr;
        if (wire_network.is_vertex_attribute(name)) {
            MatrixFr values = wire_network.get_attribute(name);
            MatrixFr updated_values = MatrixFr::Zero(num_output_vertices, values.cols());
            VectorF count = VectorF::Zero(num_output_vertices);
            for (size_t i=0; i<num_input_vertices; i++) {
                size_t j = index_map[i];
                updated_values.row(j) += values.row(i);
                count[j] += 1;
            }

            for (size_t i=0; i<num_output_vertices; i++) {
                assert(count[i] > 0);
                updated_values.row(i) /= count[i];
            }
            wire_network.set_attribute(name, updated_values);
        }
    }
}
示例#5
0
    CarveMeshPtr create_mesh(const MatrixFr& vertices, const MatrixIr& faces) {
        const size_t num_vertices = vertices.rows();
        const size_t num_faces = faces.rows();

        if (vertices.cols() != 3) {
            throw NotImplementedError("Only 3D mesh is supported.");
        }
        if (faces.cols() != 3) {
            throw NotImplementedError("Only triangle mesh is supported.");
        }

        std::vector<CarveVector> points;

        for (size_t i=0; i<num_vertices; i++) {
            const auto& v = vertices.row(i);
            CarveVector p;
            p.v[0] = v[0];
            p.v[1] = v[1];
            p.v[2] = v[2];
            points.push_back(p);
        }

        std::vector<int> raw_faces;
        raw_faces.reserve(num_faces * 4);
        for (size_t i=0; i<num_faces; i++) {
            raw_faces.push_back(3);
            raw_faces.push_back(faces(i,0));
            raw_faces.push_back(faces(i,1));
            raw_faces.push_back(faces(i,2));
        }

        return CarveMeshPtr(new CarveMesh(points, num_faces, raw_faces));
    }
示例#6
0
GeoMeshPtr GeogramMeshUtils::wire_network_to_geomesh(
        const MatrixFr& vertices, const Matrix2Ir& edges) {
    const size_t dim = vertices.cols();
    const size_t num_vertices = vertices.rows();
    const size_t num_edges = edges.rows();

    auto geo_mesh = std::make_shared<GeoMesh>(dim, false);
    geo_mesh->vertices.clear();
    geo_mesh->vertices.create_vertices(num_vertices);
    geo_mesh->edges.clear();
    geo_mesh->edges.create_edges(num_edges);

    for (size_t i=0; i<num_vertices; i++) {
        auto& p = geo_mesh->vertices.point(i);
        for (size_t j=0; j<dim; j++) {
            p[j] = vertices(i,j);
        }
    }

    for (size_t i=0; i<num_edges; i++) {
        geo_mesh->edges.set_vertex(i, 0, edges(i,0));
        geo_mesh->edges.set_vertex(i, 1, edges(i,1));
    }

    return geo_mesh;
}
示例#7
0
GeoMeshPtr GeogramMeshUtils::raw_to_geomesh(
        const MatrixFr& vertices, const MatrixIr& faces) {
    const size_t dim = vertices.cols();
    const size_t vertex_per_face = faces.cols();
    const size_t num_vertices = vertices.rows();
    const size_t num_faces = faces.rows();

    if (vertex_per_face != 3) {
        throw NotImplementedError("Converting non-triangle mesh to "
                "Geogram mesh is not yet implemented");
    }

    auto geo_mesh = std::make_shared<GeoMesh>(dim, false);
    geo_mesh->vertices.clear();
    geo_mesh->vertices.create_vertices(num_vertices);
    geo_mesh->facets.clear();
    geo_mesh->facets.create_triangles(num_faces);

    for (size_t i=0; i<num_vertices; i++) {
        auto& p = geo_mesh->vertices.point(i);
        for (size_t j=0; j<dim; j++) {
            p[j] = vertices(i,j);
        }
    }

    for (size_t i=0; i<num_faces; i++) {
        geo_mesh->facets.set_vertex(i, 0, faces(i,0));
        geo_mesh->facets.set_vertex(i, 1, faces(i,1));
        geo_mesh->facets.set_vertex(i, 2, faces(i,2));
    }

    return geo_mesh;
}
示例#8
0
    void save_mesh(const std::string& filename,
            const MatrixFr& vertices, const MatrixIr& faces) {
        auto flattened_vertices = MatrixUtils::flatten<VectorF>(vertices);
        auto flattened_faces = MatrixUtils::flatten<VectorI>(faces);
        VectorI voxels = VectorI::Zero(0);

        MeshWriter::Ptr writer = MeshWriter::create(filename);
        writer->write(flattened_vertices, flattened_faces, voxels,
                vertices.cols(), faces.cols(), 0);
    }
示例#9
0
 HashGrid::Ptr compute_vertex_grid(const MatrixFr& vertices, Float cell_size) {
     const size_t dim = vertices.cols();
     const size_t num_vertices = vertices.rows();
     HashGrid::Ptr grid = HashGrid::create(cell_size, dim);
     for (size_t i=0; i<num_vertices; i++) {
         const VectorF& v = vertices.row(i);
         grid->insert(i, v);
     }
     return grid;
 }
示例#10
0
void InflatorEngine::save_mesh(const std::string& filename,
        const MatrixFr& vertices, const MatrixIr& faces, VectorF debug) {
    VectorF flattened_vertices(vertices.rows() * vertices.cols());
    std::copy(vertices.data(), vertices.data() + vertices.rows() *
            vertices.cols(), flattened_vertices.data());
    VectorI flattened_faces(faces.rows() * faces.cols());
    std::copy(faces.data(), faces.data() + faces.rows() * faces.cols(),
            flattened_faces.data());
    VectorI voxels = VectorI::Zero(0);

    Mesh::Ptr mesh = MeshFactory().load_data(
            flattened_vertices, flattened_faces, voxels,
            vertices.cols(), faces.cols(), 0).create_shared();
    mesh->add_attribute("debug");
    mesh->set_attribute("debug", debug);

    MeshWriter::Ptr writer = MeshWriter::create(filename);
    writer->with_attribute("debug");
    writer->write_mesh(*mesh);
}
示例#11
0
BoundaryRemesher::BoundaryRemesher(const MatrixFr& vertices, const MatrixIr& faces)
    : m_vertices(vertices), m_faces(faces) {
        if (vertices.cols() != 3) {
            throw NotImplementedError(
                    "Only 3D meshes are supported for remeshing");
        }
        if (faces.cols() != 3) {
            throw NotImplementedError(
                    "Only triangle meshes are supported for remeshing");
        }
        assert_faces_are_valid(m_faces);
    }
示例#12
0
void CGALConvexHull3D::run(const MatrixFr& points) {
    std::list<Point_3> cgal_pts;
    const size_t num_pts = points.rows();
    const size_t dim = points.cols();
    if (dim != 3) {
        std::stringstream err_msg;
        err_msg << "Invalid dim: " << dim << "  Expect dim=3.";
        throw RuntimeError(err_msg.str());
    }

    for (size_t i=0; i<num_pts; i++) {
        const VectorF& p = points.row(i);
        cgal_pts.push_back(Point_3(p[0], p[1], p[2]));
    }

    Polyhedron_3 hull;
    CGAL::convex_hull_3(cgal_pts.begin(), cgal_pts.end(), hull);
    assert(hull.is_closed());
    assert(hull.is_pure_triangle());

    const size_t num_vertices = hull.size_of_vertices();
    const size_t num_faces = hull.size_of_facets();

    m_vertices.resize(num_vertices, dim);
    m_faces.resize(num_faces, 3);

    size_t vertex_count=0;
    for (auto itr=hull.vertices_begin(); itr!=hull.vertices_end(); itr++) {
        const Point_3& p = itr->point();
        m_vertices.coeffRef(vertex_count, 0) = p.x();
        m_vertices.coeffRef(vertex_count, 1) = p.y();
        m_vertices.coeffRef(vertex_count, 2) = p.z();
        itr->id() = vertex_count;
        vertex_count++;
    }

    size_t face_count=0;
    for (auto f_itr=hull.facets_begin(); f_itr!=hull.facets_end(); f_itr++) {
        size_t edge_count=0;
        auto h_itr = f_itr->facet_begin();
        do {
            m_faces.coeffRef(face_count, edge_count) = h_itr->vertex()->id();
            edge_count++;
            h_itr++;
        } while (h_itr != f_itr->facet_begin());
        face_count++;
    }

    compute_index_map(points);
    reorient_faces();
}
示例#13
0
Boundary::Ptr Boundary::extract_volume_boundary_raw(
        MatrixFr& vertices, MatrixIr& voxels) {
    VectorF flattened_vertices = Eigen::Map<VectorF>(vertices.data(),
            vertices.rows() * vertices.cols());
    VectorI faces = VectorI::Zero(0);
    VectorI flattened_voxels = Eigen::Map<VectorI>(voxels.data(),
            voxels.rows() * voxels.cols());

    size_t vertex_per_voxel = voxels.cols();
    size_t vertex_per_face=0;
    if (vertex_per_voxel == 4) vertex_per_face = 3;
    else if (vertex_per_voxel == 8) vertex_per_face = 4;
    else {
        throw RuntimeError("Unknown voxel type.");
    }

    MeshFactory factory;
    Mesh::Ptr mesh = factory.load_data(flattened_vertices, faces,
            flattened_voxels, vertices.cols(), vertex_per_face,
            vertex_per_voxel).create();

    return extract_volume_boundary(*mesh);
}
示例#14
0
    void reorientate_triangles(const MatrixFr& vertices, MatrixIr& faces,
            const VectorF& n) {
        assert(vertices.cols() == 3);
        assert(faces.cols() == 3);

        const VectorI& f = faces.row(0);
        const Vector3F& v0 = vertices.row(f[0]);
        const Vector3F& v1 = vertices.row(f[1]);
        const Vector3F& v2 = vertices.row(f[2]);

        Float projected_area = (v1-v0).cross(v2-v0).dot(n);
        if (projected_area < 0) {
            faces.col(2).swap(faces.col(1));
        }
    }
示例#15
0
void GeometryCorrectionTable::apply_correction_to_out_plane_edge(
        const Vector3F& edge_dir, MatrixFr& loop) {
    const Float EPS = 1e-3;
    assert(fabs(edge_dir[2]) > 0.0);
    VectorF bbox_min = loop.colwise().minCoeff();
    VectorF bbox_max = loop.colwise().maxCoeff();
    VectorF bbox_center = 0.5 * (bbox_min + bbox_max);

    size_t num_vts = loop.rows();
    size_t dim = loop.cols();
    assert(dim == 3);
    MatrixFr proj_loop(num_vts, 3);
    Vector3F proj_edge_dir(edge_dir[0], edge_dir[1], 0.0);

    if (loop.rows() != 4) {
        throw NotImplementedError(
                "Geometry correction supports only square wires");
    }

    for (size_t i=0; i<num_vts; i++) {
        VectorF v = loop.row(i) - bbox_center.transpose();
        Float edge_dir_offset = v[2] / edge_dir[2];
        VectorF proj_v = v - edge_dir * edge_dir_offset;
        proj_loop.row(i) = proj_v;
        assert(fabs(proj_v[2]) < EPS);
    }

    Float dist_01 = (proj_loop.row(0) - proj_loop.row(1)).norm();
    Float dist_12 = (proj_loop.row(1) - proj_loop.row(2)).norm();
    if (dist_01 > dist_12) {
        proj_edge_dir = (proj_loop.row(0) - proj_loop.row(1)) / dist_01;
    } else {
        proj_edge_dir = (proj_loop.row(1) - proj_loop.row(2)) / dist_12;
    }

    const VectorF& corner = proj_loop.row(0);
    Float target_half_height = proj_edge_dir.dot(corner);
    Float target_half_width =
        (corner - proj_edge_dir * target_half_height).norm();
    target_half_height = fabs(target_half_height);

    Vector2F correction_1 = lookup(target_half_width, target_half_height);
    Vector2F correction_2 = lookup(target_half_height, target_half_width);
    Float half_width  = 0.5 * (correction_1[0] + correction_2[1])
        + 0.05 * num_offset_pixel;
    Float half_height = 0.5 * (correction_1[1] + correction_2[0])
        + 0.05 * num_offset_pixel;
    half_width = std::max(half_width, min_thickness);
    half_height = std::max(half_height, min_thickness);

    for (size_t i=0; i<num_vts; i++) {
        const VectorF& proj_v = proj_loop.row(i);
        Float height = proj_edge_dir.dot(proj_v);
        VectorF width_dir = (proj_v - proj_edge_dir * height).normalized();
        assert(!isnan(width_dir[0]));
        assert(!isnan(width_dir[1]));
        assert(!isnan(width_dir[2]));

        Float height_sign = (height < 0.0)? -1: 1;
        proj_loop.row(i) = proj_edge_dir * height_sign * half_height
            + width_dir * half_width;
    }

    for (size_t i=0; i<num_vts; i++) {
        const VectorF& proj_v = proj_loop.row(i);
        loop.row(i) = (bbox_center + proj_v - edge_dir *
                edge_dir.dot(proj_v)).transpose();
    }
}