示例#1
0
void testSigmoid(real illegal) {
  MatrixPtr A = std::make_shared<Matrix>(10, 10);
  MatrixPtr B = std::make_shared<Matrix>(10, 10);
  A->randomizeUniform();
  B->randomizeUniform();

  SetTensorValue(*A, illegal);

  A->sigmoid(*B);
}
示例#2
0
TEST(Matrix, SparseMatrixTranspose) {
  for (auto height : {10, 50, 100}) {
    for (auto width : {10, 50, 100}) {
      auto nnz = height * width;
      for (auto valueType : {FLOAT_VALUE, NO_VALUE}) {
        for (auto format : {SPARSE_CSR, SPARSE_CSC}) {
          for (auto sparseRate : {0.1, 0.2, 0.5}) {
            MatrixPtr matA = Matrix::createSparseMatrix(
                height, width, size_t(nnz * sparseRate), valueType, format);
            MatrixPtr matB(new CpuSparseMatrix(
                width, height, size_t(nnz * sparseRate), valueType, format));
            matA->randomizeUniform();
            matA->transpose(matB, false);

            /*dense matrix transpose*/
            CpuMatrixPtr matC(new CpuMatrix(height, width));
            matC->copyFrom(*matA);
            MatrixPtr matD(new CpuMatrix(width, height));
            matC->transpose(matD, false);

            /*check result*/
            checkSMatrixEqual2Dense(
                std::dynamic_pointer_cast<CpuSparseMatrix>(matB),
                std::dynamic_pointer_cast<CpuMatrix>(matD));
          }
        }
      }
    }
  }
}
示例#3
0
void testBilinearFwdBwd(int numSamples,
                        int imgSizeH,
                        int imgSizeW,
                        int channels) {
  int inWidth = imgSizeH * imgSizeW * channels;
  int outWidth = 2 * imgSizeH * 2 * imgSizeW * channels;
  real ratioH = 0.5;
  real ratioW = 0.5;

  // forward
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);
  MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false);

  input->randomizeUniform();
  inputGpu->copyFrom(*input);

  {
    // nvprof: GPU Proflier
    REGISTER_GPU_PROFILER("testBilinearFwdBwd");
    target->bilinearForward(*input,
                            imgSizeH,
                            imgSizeW,
                            2 * imgSizeH,
                            2 * imgSizeW,
                            channels,
                            ratioH,
                            ratioW);
    targetGpu->bilinearForward(*inputGpu,
                               imgSizeH,
                               imgSizeW,
                               2 * imgSizeH,
                               2 * imgSizeW,
                               channels,
                               ratioH,
                               ratioW);
  }

  // check
  targetCheck->copyFrom(*targetGpu);
  MatrixCheckErr(*target, *targetCheck);

  // backward
  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);

  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpuGrad =
      GpuMatrix::create(numSamples, outWidth, false, true);
  MatrixPtr targetCheckGrad =
      CpuMatrix::create(numSamples, inWidth, false, false);

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

  inputGrad->bilinearBackward(*targetGrad,
                              2 * imgSizeH,
                              2 * imgSizeW,
                              imgSizeH,
                              imgSizeW,
                              channels,
                              ratioH,
                              ratioW);
  inputGpuGrad->bilinearBackward(*targetGpuGrad,
                                 2 * imgSizeH,
                                 2 * imgSizeW,
                                 imgSizeH,
                                 imgSizeW,
                                 channels,
                                 ratioH,
                                 ratioW);

  // check
  targetCheckGrad->copyFrom(*inputGpuGrad);
  MatrixCheckErr(*inputGrad, *targetCheckGrad);
}
示例#4
0
void prepareData(DataBatch* batch, const int* numPerSlotType, bool iid,
                 bool useGpu) {
  batch->clear();
  int64_t size = uniformRandom(100) + 10;
  batch->setSize(size);

  ICpuGpuVectorPtr sequenceStartPositions;
  ICpuGpuVectorPtr subSequenceStartPositions;
  if (!iid) {
    int numSeqs = uniformRandom(10) + 1;
    sequenceStartPositions =
        ICpuGpuVector::create(numSeqs + 1, /* useGpu= */ false);
    int* buf = sequenceStartPositions->getMutableData(false);
    subSequenceStartPositions =
        ICpuGpuVector::create(numSeqs + 1, /* useGpu= */ false);
    int* subBuf = subSequenceStartPositions->getMutableData(false);
    int64_t pos = 0;
    int maxLen = 2 * size / numSeqs;
    for (int i = 0; i < numSeqs; ++i) {
      int len =
          uniformRandom(min<int64_t>(maxLen, size - pos - numSeqs + i)) + 1;
      buf[i] = pos;
      subBuf[i] = pos;
      pos += len;
      VLOG(1) << " len=" << len;
    }
    buf[numSeqs] = size;
    subBuf[numSeqs] = size;
  }

  vector<Argument>& arguments = batch->getStreams();
  for (int i = 0; i < numPerSlotType[SlotDef::VECTOR_DENSE]; ++i) {
    int64_t dim = rand() % 10 + 4;  // NOLINT rand_r
    MatrixPtr mat = Matrix::create(size, dim, /* trans= */ false, false);
    mat->randomizeUniform();
    Argument arg;
    arg.value = mat;
    arg.sequenceStartPositions = sequenceStartPositions;
    arguments.push_back(arg);
  }
  for (int i = 0; i < numPerSlotType[SlotDef::VECTOR_SPARSE_NON_VALUE]; ++i) {
    MatrixPtr mat =
        makeRandomSparseMatrix(size, kSpraseMatrixDim, false, useGpu);
    Argument arg;
    arg.value = mat;
    arg.sequenceStartPositions = sequenceStartPositions;
    arg.subSequenceStartPositions = subSequenceStartPositions;
    arguments.push_back(arg);
  }
  for (int i = 0; i < numPerSlotType[SlotDef::VECTOR_SPARSE_VALUE]; ++i) {
    MatrixPtr mat =
        makeRandomSparseMatrix(size, kSpraseMatrixDim, true, useGpu);
    Argument arg;
    arg.value = mat;
    arg.sequenceStartPositions = sequenceStartPositions;
    arguments.push_back(arg);
  }
  for (int i = 0; i < numPerSlotType[SlotDef::STRING]; ++i) {
    int64_t dim = rand() % 10 + 4;  // NOLINT rand_r
    SVectorPtr vec = std::make_shared<std::vector<std::string>>();
    for (int j = 0; j < size; ++j) {
      vec->push_back(randStr(dim));
    }
    Argument arg;
    arg.strs = vec;
    arg.sequenceStartPositions = sequenceStartPositions;
    arguments.push_back(arg);
  }
  for (int i = 0; i < numPerSlotType[SlotDef::INDEX]; ++i) {
    int64_t dim = rand() % 10 + 4;  // NOLINT rand_r
    IVectorPtr vec = IVector::create(size, /* useGpu= */ false);
    int* buf = vec->getData();
    for (int j = 0; j < size; ++j) {
      buf[j] = uniformRandom(dim);
    }
    Argument arg;
    arg.ids = vec;
    arg.sequenceStartPositions = sequenceStartPositions;
    arguments.push_back(arg);
  }
}