GaussianMessage EqualityNode::functionPrecision(int to, const MessageBox &msgs) { size_t size = msgs.begin()->second.size(); GaussianMessage result(size, GaussianMessage::GAUSSIAN_PRECISION); Matrix &mean = result.mean(); Matrix &prec = result.precision(); for (MessageBox::const_iterator it = msgs.begin(); it != msgs.end(); ++it) { const int from = it->first; const GaussianMessage &msg = it->second; if (from == to) continue; const Matrix &msgMean = msg.mean(); const Matrix &msgPrec = msg.precision(); prec += msgPrec; mean += msgPrec * msgMean; } // TODO: mult(in1, in2, out) mean = pinv(prec) * mean; return result; }
GaussianMessage EqualityNode::functionVariance(int to, const MessageBox &msgs) { if (msgs.empty()) throw std::runtime_error("EqualityNode::functionVariance(): no messages"); // TODO: assert on various sizes of messages size_t size = msgs.begin()->second.size(); GaussianMessage result(size); Matrix &mean = result.mean(); Matrix &variance = result.variance(); Matrix sum(size, 1); for (MessageBox::const_iterator it = msgs.begin(); it != msgs.end(); ++it) { const int from = it->first; const GaussianMessage &msg = it->second; // skipping the message itself if (from == to) continue; const Matrix &msgMean = msg.mean(); const Matrix &msgVar = msg.variance(); // W_i = V^-1 = tmp^-1 Matrix msgPrec = inv(msgVar); // W_j += W_i variance += msgPrec; // tmp_sum += W_i m_i sum += msgPrec * msgMean; } // V_j = W_j^-1 variance.inv(); // TODO: mult(variance, sum, out) mean = variance * sum; return result; }