int main(int, char **) { FILE *o = fopen("paper/figs/constrained-water.dat", "w"); Functional f = OfEffectivePotential(SaftFluidSlow(water_prop.lengthscale, water_prop.epsilonAB, water_prop.kappaAB, water_prop.epsilon_dispersion, water_prop.lambda_dispersion, water_prop.length_scaling, 0)); double mu_satp = find_chemical_potential(f, water_prop.kT, water_prop.liquid_density); Lattice lat(Cartesian(width,0,0), Cartesian(0,width,0), Cartesian(0,0,zmax)); GridDescription gd(lat, 0.1); Grid potential(gd); Grid constraint(gd); constraint.Set(notinwall); f = constrain(constraint, OfEffectivePotential(SaftFluidSlow(water_prop.lengthscale, water_prop.epsilonAB, water_prop.kappaAB, water_prop.epsilon_dispersion, water_prop.lambda_dispersion, water_prop.length_scaling, mu_satp))); Minimizer min = Precision(0, PreconditionedConjugateGradient(f, gd, water_prop.kT, &potential, QuadraticLineMinimizer)); potential = water_prop.liquid_density*constraint + water_prop.vapor_density*VectorXd::Ones(gd.NxNyNz); //potential = water_prop.liquid_density*VectorXd::Ones(gd.NxNyNz); potential = -water_prop.kT*potential.cwise().log(); const int numiters = 50; for (int i=0;i<numiters && min.improve_energy(true);i++) { fflush(stdout); Grid density(gd, EffectivePotentialToDensity()(water_prop.kT, gd, potential)); density.epsNative1d("paper/figs/1d-constrained-plot.eps", Cartesian(0,0,0), Cartesian(0,0,zmax), water_prop.liquid_density, 1, "Y axis: , x axis: "); } min.print_info(); double energy = min.energy()/width/width; printf("Energy is %.15g\n", energy); double N = 0; { Grid density(gd, EffectivePotentialToDensity()(water_prop.kT, gd, potential)); for (int i=0;i<gd.NxNyNz;i++) N += density[i]*gd.dvolume; } N = N/width/width; printf("N is %.15g\n", N); Grid density(gd, EffectivePotentialToDensity()(water_prop.kT, gd, potential)); density.epsNative1d("paper/figs/1d-constrained-plot.eps", Cartesian(0,0,0), Cartesian(0,0,zmax), water_prop.liquid_density, 1, "Y axis: , x axis: "); //potential.epsNative1d("hard-wall-potential.eps", Cartesian(0,0,0), Cartesian(0,0,zmax), 1, 1); fclose(o); }
int main(int argc, char *argv[]) { if (argc > 1) { if (sscanf(argv[1], "%lg", &diameter) != 1) { printf("Got bad argument: %s\n", argv[1]); return 1; } diameter *= nm; using_default_diameter = false; printf("Diameter is %g bohr\n", diameter); } const double ptransition =(3.0*M_PI-4.0)*(diameter/2.0)/2.0; const double dmax = ptransition + 0.6*nm; double zmax = 2*diameter+dmax+2*nm; double ymax = 2*diameter+dmax+2*nm; char *datname = new char[1024]; snprintf(datname, 1024, "papers/water-saft/figs/four-rods-in-water-%04.1fnm.dat", diameter/nm); FILE *o = fopen(datname, "w"); delete[] datname; Functional f = OfEffectivePotential(WaterSaft(new_water_prop.lengthscale, new_water_prop.epsilonAB, new_water_prop.kappaAB, new_water_prop.epsilon_dispersion, new_water_prop.lambda_dispersion, new_water_prop.length_scaling, 0)); double n_1atm = pressure_to_density(f, new_water_prop.kT, atmospheric_pressure, 0.001, 0.01); double mu_satp = find_chemical_potential(f, new_water_prop.kT, n_1atm); f = OfEffectivePotential(WaterSaft(new_water_prop.lengthscale, new_water_prop.epsilonAB, new_water_prop.kappaAB, new_water_prop.epsilon_dispersion, new_water_prop.lambda_dispersion, new_water_prop.length_scaling, mu_satp)); const double EperVolume = f(new_water_prop.kT, -new_water_prop.kT*log(n_1atm)); const double EperCell = EperVolume*(zmax*ymax - 4*0.25*M_PI*diameter*diameter)*width; //Functional X = Xassociation(new_water_prop.lengthscale, new_water_prop.epsilonAB, // new_water_prop.kappaAB, new_water_prop.epsilon_dispersion, // new_water_prop.lambda_dispersion, // new_water_prop.length_scaling); Functional S = OfEffectivePotential(EntropySaftFluid2(new_water_prop.lengthscale, new_water_prop.epsilonAB, new_water_prop.kappaAB, new_water_prop.epsilon_dispersion, new_water_prop.lambda_dispersion, new_water_prop.length_scaling)); //dmax, dstep already in bohrs (so it doesn't need to be converted from nm) double dstep = 0.25*nm; for (distance=0.0*nm; distance<=dmax; distance += dstep) { if ((distance >= ptransition - 0.5*nm) && (distance <= ptransition + 0.05*nm)) { if (distance >= ptransition - 0.25*nm) { dstep = 0.03*nm; } else { dstep = 0.08*nm; } } else { dstep = 0.25*nm; } Lattice lat(Cartesian(width,0,0), Cartesian(0,ymax,0), Cartesian(0,0,zmax)); GridDescription gd(lat, 0.2); printf("Grid is %d x %d x %d\n", gd.Nx, gd.Ny, gd.Nz); Grid potential(gd); Grid constraint(gd); constraint.Set(notinwall); f = OfEffectivePotential(WaterSaft(new_water_prop.lengthscale, new_water_prop.epsilonAB, new_water_prop.kappaAB, new_water_prop.epsilon_dispersion, new_water_prop.lambda_dispersion, new_water_prop.length_scaling, mu_satp)); f = constrain(constraint, f); printf("Diameter is %g bohr (%g nm)\n", diameter, diameter/nm); printf("Distance between rods = %g bohr (%g nm)\n", distance, distance/nm); potential = new_water_prop.liquid_density*constraint + 400*new_water_prop.vapor_density*VectorXd::Ones(gd.NxNyNz); //potential = new_water_prop.liquid_density*VectorXd::Ones(gd.NxNyNz); potential = -new_water_prop.kT*potential.cwise().log(); const double surface_tension = 5e-5; // crude guess from memory... const double surfprecision = 1e-5*(4*M_PI*diameter)*width*surface_tension; // five digits accuracy const double bulkprecision = 1e-12*fabs(EperCell); // but there's a limit on our precision for small rods const double precision = bulkprecision + surfprecision; printf("Precision limit from surface tension is to %g based on %g and %g\n", precision, surfprecision, bulkprecision); Minimizer min = Precision(precision, PreconditionedConjugateGradient(f, gd, new_water_prop.kT, &potential, QuadraticLineMinimizer)); const int numiters = 200; for (int i=0;i<numiters && min.improve_energy(false);i++) { fflush(stdout); // { // double peak = peak_memory()/1024.0/1024; // double current = current_memory()/1024.0/1024; // printf("Peak memory use is %g M (current is %g M)\n", peak, current); // } } Grid potential2(gd); Grid constraint2(gd); constraint2.Set(notinmiddle); potential2 = new_water_prop.liquid_density*(constraint2.cwise()*constraint) + 400*new_water_prop.vapor_density*VectorXd::Ones(gd.NxNyNz); potential2 = -new_water_prop.kT*potential2.cwise().log(); Minimizer min2 = Precision(1e-12, PreconditionedConjugateGradient(f, gd, new_water_prop.kT, &potential2, QuadraticLineMinimizer)); for (int i=0;i<numiters && min2.improve_energy(false);i++) { fflush(stdout); // { // double peak = peak_memory()/1024.0/1024; // double current = current_memory()/1024.0/1024; // printf("Peak memory use is %g M (current is %g M)\n", peak, current); // } } char *plotnameslice = new char[1024]; snprintf(plotnameslice, 1024, "papers/water-saft/figs/four-rods-%04.1f-%04.2f.dat", diameter/nm, distance/nm); printf("The bulk energy per cell should be %g\n", EperCell); double energy; if (min.energy() < min2.energy()) { energy = (min.energy() - EperCell)/width; Grid density(gd, EffectivePotentialToDensity()(new_water_prop.kT, gd, potential)); printf("Using liquid in middle initially.\n"); plot_grids_yz_directions(plotnameslice, density); { double peak = peak_memory()/1024.0/1024; double current = current_memory()/1024.0/1024; printf("Peak memory use is %g M (current is %g M)\n", peak, current); } } else { energy = (min2.energy() - EperCell)/width; Grid density(gd, EffectivePotentialToDensity()(new_water_prop.kT, gd, potential2)); printf("Using vapor in middle initially.\n"); plot_grids_yz_directions(plotnameslice, density); { double peak = peak_memory()/1024.0/1024; double current = current_memory()/1024.0/1024; printf("Peak memory use is %g M (current is %g M)\n", peak, current); } } printf("Liquid energy is %.15g. Vapor energy is %.15g\n", min.energy(), min2.energy()); fprintf(o, "%g\t%.15g\n", distance/nm, energy); //Grid entropy(gd, S(new_water_prop.kT, potential)); //Grid Xassoc(gd, X(new_water_prop.kT, density)); //plot_grids_y_direction(plotnameslice, density, energy_density, entropy, Xassoc); //Grid energy_density(gd, f(new_water_prop.kT, gd, potential)); delete[] plotnameslice; } fclose(o); { double peak = peak_memory()/1024.0/1024; double current = current_memory()/1024.0/1024; printf("Peak memory use is %g M (current is %g M)\n", peak, current); } }
int main(int argc, char *argv[]) { clock_t start_time = clock(); if (argc > 1) { if (sscanf(argv[1], "%lg", &diameter) != 1) { printf("Got bad argument: %s\n", argv[1]); return 1; } diameter *= nm; using_default_diameter = false; } printf("Diameter is %g bohr = %g nm\n", diameter, diameter/nm); const double padding = 1*nm; xmax = ymax = zmax = diameter + 2*padding; char *datname = (char *)malloc(1024); sprintf(datname, "papers/hughes-saft/figs/sphere-%04.2fnm-energy.dat", diameter/nm); Functional f = OfEffectivePotential(SaftFluid2(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling, 0)); double n_1atm = pressure_to_density(f, hughes_water_prop.kT, atmospheric_pressure, 0.001, 0.01); double mu_satp = find_chemical_potential(f, hughes_water_prop.kT, n_1atm); f = OfEffectivePotential(SaftFluid2(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling, mu_satp)); Functional S = OfEffectivePotential(EntropySaftFluid2(new_water_prop.lengthscale, new_water_prop.epsilonAB, new_water_prop.kappaAB, new_water_prop.epsilon_dispersion, new_water_prop.lambda_dispersion, new_water_prop.length_scaling)); const double EperVolume = f(hughes_water_prop.kT, -hughes_water_prop.kT*log(n_1atm)); const double EperNumber = EperVolume/n_1atm; const double SperNumber = S(hughes_water_prop.kT, -hughes_water_prop.kT*log(n_1atm))/n_1atm; const double EperCell = EperVolume*(zmax*ymax*xmax - (M_PI/6)*diameter*diameter*diameter); //for (diameter=0*nm; diameter<3.0*nm; diameter+= .1*nm) { Lattice lat(Cartesian(xmax,0,0), Cartesian(0,ymax,0), Cartesian(0,0,zmax)); GridDescription gd(lat, 0.2); Grid potential(gd); Grid constraint(gd); constraint.Set(notinwall); f = OfEffectivePotential(SaftFluid2(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling, mu_satp)); f = constrain(constraint, f); //constraint.epsNativeSlice("papers/hughes-saft/figs/sphere-constraint.eps", // Cartesian(0,ymax,0), Cartesian(0,0,zmax), // Cartesian(0,ymax/2,zmax/2)); //printf("Constraint has become a graph!\n"); potential = hughes_water_prop.liquid_density*constraint + 100*hughes_water_prop.vapor_density*VectorXd::Ones(gd.NxNyNz); //potential = hughes_water_prop.liquid_density*VectorXd::Ones(gd.NxNyNz); potential = -hughes_water_prop.kT*potential.cwise().log(); double energy; { const double surface_tension = 5e-5; // crude guess from memory... const double surfprecision = 1e-4*M_PI*diameter*diameter*surface_tension; // four digits precision const double bulkprecision = 1e-12*fabs(EperCell); // but there's a limit on our precision for small spheres const double precision = bulkprecision + surfprecision; Minimizer min = Precision(precision, PreconditionedConjugateGradient(f, gd, hughes_water_prop.kT, &potential, QuadraticLineMinimizer)); printf("\nDiameter of sphere = %g bohr (%g nm)\n", diameter, diameter/nm); const int numiters = 200; for (int i=0;i<numiters && min.improve_energy(true);i++) { //fflush(stdout); //Grid density(gd, EffectivePotentialToDensity()(hughes_water_prop.kT, gd, potential)); //density.epsNativeSlice("papers/hughes-saft/figs/sphere.eps", // Cartesian(0,ymax,0), Cartesian(0,0,zmax), // Cartesian(0,ymax/2,zmax/2)); //sleep(3); double peak = peak_memory()/1024.0/1024; double current = current_memory()/1024.0/1024; printf("Peak memory use is %g M (current is %g M)\n", peak, current); } double peak = peak_memory()/1024.0/1024; double current = current_memory()/1024.0/1024; printf("Peak memory use is %g M (current is %g M)\n", peak, current); energy = min.energy(); printf("Total energy is %.15g\n", energy); // Here we free the minimizer with its associated data structures. } { double peak = peak_memory()/1024.0/1024; double current = current_memory()/1024.0/1024; printf("Peak memory use is %g M (current is %g M)\n", peak, current); } double entropy = S.integral(hughes_water_prop.kT, potential); Grid density(gd, EffectivePotentialToDensity()(hughes_water_prop.kT, gd, potential)); printf("Number of water molecules is %g\n", density.integrate()); printf("The bulk energy per cell should be %g\n", EperCell); printf("The bulk energy based on number should be %g\n", EperNumber*density.integrate()); printf("The bulk entropy is %g/N\n", SperNumber); Functional otherS = EntropySaftFluid2(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling); printf("The bulk entropy (haskell) = %g/N\n", otherS(hughes_water_prop.kT, n_1atm)/n_1atm); //printf("My entropy is %g when I would expect %g\n", entropy, entropy - SperNumber*density.integrate()); double hentropy = otherS.integral(hughes_water_prop.kT, density); otherS.print_summary(" ", hentropy, "total entropy"); printf("My haskell entropy is %g, when I would expect = %g, difference is %g\n", hentropy, otherS(hughes_water_prop.kT, n_1atm)*density.integrate()/n_1atm, hentropy - otherS(hughes_water_prop.kT, n_1atm)*density.integrate()/n_1atm); FILE *o = fopen(datname, "w"); //fprintf(o, "%g\t%.15g\n", diameter/nm, energy - EperCell); fprintf(o, "%g\t%.15g\t%.15g\t%.15g\t%.15g\n", diameter/nm, energy - EperNumber*density.integrate(), energy - EperCell, hughes_water_prop.kT*(entropy - SperNumber*density.integrate()), hughes_water_prop.kT*(hentropy - otherS(hughes_water_prop.kT, n_1atm)*density.integrate()/n_1atm)); fclose(o); char *plotname = (char *)malloc(1024); sprintf(plotname, "papers/hughes-saft/figs/sphere-%04.2f.dat", diameter/nm); plot_grids_y_direction(plotname, density); free(plotname); //density.epsNativeSlice("papers/hughes-saft/figs/sphere.eps", // Cartesian(0,ymax,0), Cartesian(0,0,zmax), // Cartesian(0,ymax/2,zmax/2)); double peak = peak_memory()/1024.0/1024; printf("Peak memory use is %g M\n", peak); double oldN = density.integrate(); density = n_1atm*VectorXd::Ones(gd.NxNyNz);; double hentropyb = otherS.integral(hughes_water_prop.kT, density); printf("bulklike thingy has %g molecules\n", density.integrate()); otherS.print_summary(" ", hentropyb, "bulk-like entropy"); printf("entropy difference is %g\n", hentropy - hentropyb*oldN/density.integrate()); // } clock_t end_time = clock(); double seconds = (end_time - start_time)/double(CLOCKS_PER_SEC); double hours = seconds/60/60; printf("Entire calculation took %.0f hours %.0f minutes\n", hours, 60*(hours-floor(hours))); }
int main(int argc, char *argv[]) { if (argc == 5) { if (sscanf(argv[1], "%lg", &xmax) != 1) { printf("Got bad x argument: %s\n", argv[1]); return 1; } if (sscanf(argv[2], "%lg", &ymax) != 1) { printf("Got bad y argument: %s\n", argv[2]); return 1; } if (sscanf(argv[3], "%lg", &zmax) != 1) { printf("Got bad z argument: %s\n", argv[3]); return 1; } if (sscanf(argv[4], "%lg", &N) != 1) { printf("Got bad N argument: %s\n", argv[4]); return 1; } using_default_box = false; printf("Box is %g x %g x %g hard sphere diameters, and it holds %g of them\n", xmax, ymax, zmax, N); } char *datname = (char *)malloc(1024); sprintf(datname, "papers/contact/figs/box-%02.0f,%02.0f,%02.0f-%02.0f-energy.dat", xmax, ymax, zmax, N); FILE *o = fopen(datname, "w"); const double myvolume = (xmax+2)*(ymax+2)*(zmax+2); const double meandensity = N/myvolume; Functional f = OfEffectivePotential(HS + IdealGas()); double mu = find_chemical_potential(f, 1, meandensity); f = OfEffectivePotential(HS + IdealGas() + ChemicalPotential(mu)); Lattice lat(Cartesian(xmax+3,0,0), Cartesian(0,ymax+3,0), Cartesian(0,0,zmax+3)); GridDescription gd(lat, 0.05); Grid potential(gd); Grid constraint(gd); constraint.Set(notinwall); took("Setting the constraint"); printf("xmax = %g\nymax = %g\nzmax = %g\nmeandensity=%g\n", xmax, ymax, zmax, meandensity); f = constrain(constraint, f); constraint.epsNativeSlice("papers/contact/figs/box-constraint.eps", Cartesian(0,ymax+4,0), Cartesian(0,0,zmax+4), Cartesian(0,-ymax/2-2,-zmax/2-2)); printf("Constraint has become a graph!\n"); potential = meandensity*constraint + 1e-4*meandensity*VectorXd::Ones(gd.NxNyNz); potential = -potential.cwise().log(); Minimizer min = Precision(1e-6, PreconditionedConjugateGradient(f, gd, 1, &potential, QuadraticLineMinimizer)); double mumax = mu, mumin = mu, dmu = 4.0/N; double Nnow = N_from_mu(&min, &potential, constraint, mu); const double fraccuracy = 1e-3; if (fabs(Nnow/N - 1) > fraccuracy) { if (Nnow > N) { while (Nnow > N) { mumin = mumax; mumax += dmu; dmu *= 2; Nnow = N_from_mu(&min, &potential, constraint, mumax); // Grid density(gd, EffectivePotentialToDensity()(1, gd, potential)); // density = EffectivePotentialToDensity()(1, gd, potential); // density.epsNativeSlice("papers/contact/figs/box.eps", // Cartesian(0,ymax+2,0), Cartesian(0,0,zmax+2), // Cartesian(0,-ymax/2-1,-zmax/2-1)); // density.epsNativeSlice("papers/contact/figs/box-diagonal.eps", // Cartesian(xmax+2,0,zmax+2), Cartesian(0,ymax+2,0), // Cartesian(-xmax/2-1,-ymax/2-1,-zmax/2-1)); printf("mumax %g gives N %g\n", mumax, Nnow); took("Finding N from mu"); } printf("mu is between %g and %g\n", mumin, mumax); } else { while (Nnow < N) { mumax = mumin; if (mumin > dmu) { mumin -= dmu; dmu *= 2; } else if (mumin > 0) { mumin = -mumin; } else { mumin *= 2; } Nnow = N_from_mu(&min, &potential, constraint, mumin); // density = EffectivePotentialToDensity()(1, gd, potential); // density.epsNativeSlice("papers/contact/figs/box.eps", // Cartesian(0,ymax+2,0), Cartesian(0,0,zmax+2), // Cartesian(0,-ymax/2-1,-zmax/2-1)); // density.epsNativeSlice("papers/contact/figs/box-diagonal.eps", // Cartesian(xmax+2,0,zmax+2), Cartesian(0,ymax+2,0), // Cartesian(-xmax/2-1,-ymax/2-1,-zmax/2-1)); printf("mumin %g gives N %g\n", mumin, Nnow); took("Finding N from mu"); } printf("mu is between %g and %g\n", mumin, mumax); } while (fabs(N/Nnow-1) > fraccuracy) { mu = 0.5*(mumin + mumax); Nnow = N_from_mu(&min, &potential, constraint, mu); // density = EffectivePotentialToDensity()(1, gd, potential); // density.epsNativeSlice("papers/contact/figs/box.eps", // Cartesian(0,ymax+2,0), Cartesian(0,0,zmax+2), // Cartesian(0,-ymax/2-1,-zmax/2-1)); // density.epsNativeSlice("papers/contact/figs/box-diagonal.eps", // Cartesian(xmax+2,0,zmax+2), Cartesian(0,ymax+2,0), // Cartesian(-xmax/2-1,-ymax/2-1,-zmax/2-1)); printf("Nnow is %g vs %g with mu %g\n", Nnow, N, mu); took("Finding N from mu"); if (Nnow > N) { mumin = mu; } else { mumax = mu; } } } printf("N final is %g (vs %g) with mu = %g\n", Nnow, N, mu); double energy = min.energy(); printf("Energy is %.15g\n", energy); Grid density(gd, EffectivePotentialToDensity()(1, gd, potential)); double mean_contact_density = ContactDensitySimplest(1.0).integral(1, density)/myvolume; fprintf(o, "%g\t%g\t%g\t%.15g\t%.15g\n", xmax, ymax, zmax, energy, mean_contact_density); Grid energy_density(gd, f(1, gd, potential)); Grid contact_density(gd, ContactDensitySimplest(1.0)(1, gd, density)); Grid n0(gd, ShellConvolve(1)(1, density)); Grid wu_contact_density(gd, FuWuContactDensity(1.0)(1, gd, density)); char *plotname = (char *)malloc(1024); sprintf(plotname, "papers/contact/figs/box-100c--%02.0f,%02.0f,%02.0f-%02.0f.dat", xmax, ymax, zmax, N); plot_grids_100_center(plotname, density, energy_density, contact_density); sprintf(plotname, "papers/contact/figs/box-100s--%02.0f,%02.0f,%02.0f-%02.0f.dat", xmax, ymax, zmax, N); plot_grids_100_side(plotname, density, energy_density, contact_density); sprintf(plotname, "papers/contact/figs/box-110c--%02.0f,%02.0f,%02.0f-%02.0f.dat", xmax, ymax, zmax, N); plot_grids_110(plotname, density, energy_density, contact_density); sprintf(plotname, "papers/contact/figs/box-x-%02.0f,%02.0f,%02.0f-%02.0f.dat", xmax, ymax, zmax, N); x_plot(plotname, density, energy_density, contact_density, wu_contact_density); free(plotname); density.epsNativeSlice("papers/contact/figs/box.eps", Cartesian(0,ymax+2,0), Cartesian(0,0,zmax+2), Cartesian(0,-ymax/2-1,-zmax/2-1)); density.epsNativeSlice("papers/contact/figs/box-diagonal.eps", Cartesian(xmax+2,0,zmax+2), Cartesian(0,ymax+2,0), Cartesian(-xmax/2-1,-ymax/2-1,-zmax/2-1)); took("Plotting stuff"); fclose(o); }
int main(int argc, char *argv[]) { clock_t start_time = clock(); if (argc == 3) { if (sscanf(argv[2], "%lg", &temperature) != 1) { printf("Got bad argument: %s\n", argv[2]); return 1; } temperature *= kB; bool good_element = false; for (int i=0; i<numelements; i++) { if (strcmp(elements[i], argv[1]) == 0) { sigma = sigmas[i]; epsilon = epsilons[i]; good_element = true; } } if (!good_element) { printf("Bad element: %s\n", argv[1]); return 1; } } else { printf("Need element and temperature.\n"); return 1; } char *datname = (char *)malloc(1024); sprintf(datname, "papers/water-saft/figs/hughes-lj-%s-%gK-energy.dat", argv[1], temperature/kB); Functional f = OfEffectivePotential(SaftFluid2(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling, 0)); double n_1atm = pressure_to_density(f, temperature, lj_pressure, 0.001, 0.01); double mu = find_chemical_potential(f, temperature, n_1atm); f = OfEffectivePotential(SaftFluid2(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling, mu)); Functional S = OfEffectivePotential(EntropySaftFluid2(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling)); const double EperVolume = f(temperature, -temperature*log(n_1atm)); const double EperNumber = EperVolume/n_1atm; const double SperNumber = S(temperature, -temperature*log(n_1atm))/n_1atm; const double EperCell = EperVolume*(zmax*ymax*xmax - (4*M_PI/3)*sigma*sigma*sigma); Lattice lat(Cartesian(xmax,0,0), Cartesian(0,ymax,0), Cartesian(0,0,zmax)); GridDescription gd(lat, 0.20); Grid potential(gd); Grid externalpotential(gd); externalpotential.Set(externalpotentialfunction); f = OfEffectivePotential(SaftFluid2(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling, mu) + ExternalPotential(externalpotential)); Functional X = WaterX(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling, mu); Functional HB = HughesHB(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling, mu); externalpotential.epsNativeSlice("papers/water-saft/figs/hughes-lj-potential.eps", Cartesian(0,ymax,0), Cartesian(0,0,zmax), Cartesian(0,ymax/2,zmax/2)); printf("Done outputting hughes-lj-potential.eps\n"); potential = 0*externalpotential - temperature*log(n_1atm)*VectorXd::Ones(gd.NxNyNz); // ??? double energy; { const double surface_tension = 5e-5; // crude guess from memory... const double surfprecision = 1e-4*M_PI*sigma*sigma*surface_tension; // four digits precision const double bulkprecision = 1e-12*fabs(EperCell); // but there's a limit on our precision const double precision = (bulkprecision + surfprecision)*1e-6; Minimizer min = Precision(precision, PreconditionedConjugateGradient(f, gd, temperature, &potential, QuadraticLineMinimizer)); const int numiters = 200; for (int i=0;i<numiters && min.improve_energy(true);i++) { double peak = peak_memory()/1024.0/1024; double current = current_memory()/1024.0/1024; printf("Peak memory use is %g M (current is %g M)\n", peak, current); fflush(stdout); { char* name = new char[1000]; sprintf(name, "papers/water-saft/figs/hughes-lj-%s-%gK-density-%d.eps", argv[1], temperature/kB, i); Grid density(gd, EffectivePotentialToDensity()(temperature, gd, potential)); density.epsNativeSlice(name, Cartesian(0,ymax,0), Cartesian(0,0,zmax), Cartesian(0,ymax/2,zmax/2)); } Grid gradient(gd, potential); gradient *= 0; f.integralgrad(temperature, potential, &gradient); char* gradname = new char[1000]; sprintf(gradname, "papers/water-saft/figs/hughes-lj-%s-%gK-gradient-%d.eps", argv[1], temperature/kB, i); gradient.epsNativeSlice(gradname, Cartesian(0,ymax,0), Cartesian(0,0,zmax), Cartesian(0,ymax/2,zmax/2)); Grid density(gd, EffectivePotentialToDensity()(temperature, gd, potential)); char *plotname = (char *)malloc(1024); sprintf(plotname, "papers/water-saft/figs/hughes-lj-%s-%gK-%d.dat", argv[1], temperature/kB, i); plot_grids_y_direction(plotname, density, gradient); // Grid gradient(gd, potential); // gradient *= 0; // f.integralgrad(temperature, potential, &gradient); // sprintf(name, "papers/water-saft/figs/lj-%s-%d-gradient-big.eps", argv[1], i); // gradient.epsNativeSlice("papers/water-saft/figs/lj-gradient-big.eps", // Cartesian(0,ymax,0), Cartesian(0,0,zmax), // Cartesian(0,ymax/2,zmax/2)); // sprintf(name, "papers/water-saft/figs/lj-%s-%d-big.dat", argv[1], i); // plot_grids_y_direction(name, density, gradient); } double peak = peak_memory()/1024.0/1024; double current = current_memory()/1024.0/1024; printf("Peak memory use is %g M (current is %g M)\n", peak, current); energy = min.energy(); printf("Total energy is %.15g\n", energy); // Here we free the minimizer with its associated data structures. } { double peak = peak_memory()/1024.0/1024; double current = current_memory()/1024.0/1024; printf("Peak memory use is %g M (current is %g M)\n", peak, current); } Grid gradient(gd, potential); gradient *= 0; f.integralgrad(temperature, potential, &gradient); gradient.epsNativeSlice("papers/water-saft/figs/hughes-lj-gradient.eps", Cartesian(0,ymax,0), Cartesian(0,0,zmax), Cartesian(0,ymax/2,zmax/2)); double entropy = S.integral(temperature, potential); Grid density(gd, EffectivePotentialToDensity()(temperature, gd, potential)); // Grid zeroed_out_density(gd, density.cwise()*constraint); // this is zero inside the sphere! Grid X_values(gd, X(temperature, gd, density)); //Grid H_bonds_grid(gd, zeroed_out_density.cwise()*(4*(VectorXd::Ones(gd.NxNyNz)-X_values))); //const double broken_H_bonds = (HB(temperature, n_1atm)/n_1atm)*zeroed_out_density.integrate() - H_bonds_grid.integrate(); //printf("Number of water molecules is %g\n", density.integrate()); printf("The bulk energy per cell should be %g\n", EperCell); printf("The bulk energy based on number should be %g\n", EperNumber*density.integrate()); printf("The bulk entropy is %g/N\n", SperNumber); Functional otherS = EntropySaftFluid2(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling); printf("The bulk entropy (haskell) = %g/N\n", otherS(temperature, n_1atm)/n_1atm); //printf("My entropy is %g when I would expect %g\n", entropy, entropy - SperNumber*density.integrate()); double hentropy = otherS.integral(temperature, density); otherS.print_summary(" ", hentropy, "total entropy"); printf("My haskell entropy is %g, when I would expect = %g, difference is %g\n", hentropy, otherS(temperature, n_1atm)*density.integrate()/n_1atm, hentropy - otherS(temperature, n_1atm)*density.integrate()/n_1atm); FILE *o = fopen(datname, "w"); fprintf(o, "%g\t%.15g\t%.15g\t%.15g\n", temperature/kB, energy - EperNumber*density.integrate(), temperature*(entropy - SperNumber*density.integrate()), temperature*(hentropy - otherS(temperature, n_1atm)*density.integrate()/n_1atm)); fclose(o); char *plotname = (char *)malloc(1024); sprintf(plotname, "papers/water-saft/figs/hughes-lj-%s-%gK.dat", argv[1], temperature/kB); //plot_grids_y_direction(plotname, density, X_values); plot_grids_y_direction(plotname, density, gradient); free(plotname); double peak = peak_memory()/1024.0/1024; printf("Peak memory use is %g M\n", peak); double oldN = density.integrate(); density = n_1atm*VectorXd::Ones(gd.NxNyNz);; double hentropyb = otherS.integral(temperature, density); printf("bulklike thingy has %g molecules\n", density.integrate()); otherS.print_summary(" ", hentropyb, "bulk-like entropy"); printf("entropy difference is %g\n", hentropy - hentropyb*oldN/density.integrate()); clock_t end_time = clock(); double seconds = (end_time - start_time)/double(CLOCKS_PER_SEC); double hours = seconds/60/60; printf("Entire calculation took %.0f hours %.0f minutes\n", hours, 60*(hours-floor(hours))); }
int main(int, char **) { FILE *o = fopen("papers/hughes-saft/figs/single-rod-in-water-low-res.dat", "w"); Functional f = OfEffectivePotential(SaftFluid2(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling, 0)); double n_1atm = pressure_to_density(f, hughes_water_prop.kT, atmospheric_pressure, 0.001, 0.01); double mu_satp = find_chemical_potential(f, hughes_water_prop.kT, n_1atm); f = OfEffectivePotential(SaftFluid2(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling, mu_satp)); const double EperVolume = f(hughes_water_prop.kT, -hughes_water_prop.kT*log(n_1atm)); for (cavitysize=1.0*nm; cavitysize<=1.1*nm; cavitysize += 0.5*nm) { Lattice lat(Cartesian(width,0,0), Cartesian(0,ymax,0), Cartesian(0,0,zmax)); GridDescription gd(lat, 0.5); Grid potential(gd); Grid constraint(gd); constraint.Set(notinwall); f = OfEffectivePotential(SaftFluid2(hughes_water_prop.lengthscale, hughes_water_prop.epsilonAB, hughes_water_prop.kappaAB, hughes_water_prop.epsilon_dispersion, hughes_water_prop.lambda_dispersion, hughes_water_prop.length_scaling, mu_satp)); f = constrain(constraint, f); // constraint.epsNativeSlice("papers/hughes-saft/figs/single-rod-in-water-constraint.eps", // Cartesian(0,ymax,0), Cartesian(0,0,zmax), // Cartesian(0,ymax/2,zmax/2)); //printf("Constraint has become a graph!\n"); potential = hughes_water_prop.liquid_density*constraint + 1000*hughes_water_prop.vapor_density*VectorXd::Ones(gd.NxNyNz); //potential = hughes_water_prop.liquid_density*VectorXd::Ones(gd.NxNyNz); potential = -hughes_water_prop.kT*potential.cwise().log(); Minimizer min = Precision(1e-11, PreconditionedConjugateGradient(f, gd, hughes_water_prop.kT, &potential, QuadraticLineMinimizer)); //printf("\nDiameter of rod = %g bohr (%g nm)\n", cavitysize, cavitysize/nm); const int numiters = 50; for (int i=0;i<numiters && min.improve_energy(false);i++) { fflush(stdout); //Grid density(gd, EffectivePotentialToDensity()(hughes_water_prop.kT, gd, potential)); //density.epsNativeSlice("papers/hughes-saft/figs/single-rod-in-water.eps", // Cartesian(0,ymax,0), Cartesian(0,0,zmax), // Cartesian(0,ymax/2,zmax/2)); // sleep(3); } const double EperCell = EperVolume*(zmax*ymax - 0.25*M_PI*cavitysize*cavitysize)*width; //printf("The bulk energy per cell should be %g\n", EperCell); double energy = (min.energy() - EperCell)/width; //printf("Energy is %.15g\n", energy); fprintf(o, "%g\t%.15g\n", cavitysize/nm, energy); char *plotname = (char *)malloc(1024); sprintf(plotname, "papers/hughes-saft/figs/single-rod-res0.5-slice-%04.1f.dat", cavitysize/nm); Grid density(gd, EffectivePotentialToDensity()(hughes_water_prop.kT, gd, potential)); plot_grids_y_direction(plotname, density); free(plotname); } fclose(o); }