示例#1
0
int EnumMtlTree(MtlBase *mb, int subMtl, MtlEnum &tenum)
{
	for (int i=0; i<mb->NumSubTexmaps(); i++) {
		Texmap *st = mb->GetSubTexmap(i);
		if (st) {
			if (!EnumMtlTree(st,subMtl, tenum)) {
				return 0;
			}
		}
	}
	if (IsTex(mb)) {
		if (!tenum.proc(mb,subMtl)) {
			return 0;
		}
	}
	if (IsMtl(mb)) {
		Mtl *m = (Mtl *)mb;
		for (i=0; i<m->NumSubMtls(); i++) {
			Mtl *sm = m->GetSubMtl(i);
			int subm = (mb->IsMultiMtl()&&subMtl<0)?i:subMtl;
			if (sm) {
				if (!EnumMtlTree(sm,subm,tenum)) {
					return 0;
				}
			}
		}
		if (!tenum.proc(mb,subMtl)) {
			return 0;
		}
	}
	return 1;
}
示例#2
0
void SceneExportUtil::getUsedMaterials( INode* node, Vector<Mtl*>& materials )
{
	require( node );

	Mtl* mat = node->GetMtl();
	if ( mat )
	{
		materials.add( mat );

		// get sub-materials (Multi/Sub-Object material)
		for ( int k = 0 ; k < mat->NumSubMtls() ; ++k )
		{
			Mtl* submat = mat->GetSubMtl(k);
			if ( submat )
				materials.add( submat );
		}
	}

	// remove duplicates
	std::sort( materials.begin(), materials.end() );
	std::unique( materials.begin(), materials.end() );

	// sort to abc order
	std::sort( materials.begin(), materials.end(), MtlNameLess() );
}
示例#3
0
int ExportQuake3Model(const TCHAR *filename, ExpInterface *ei, Interface *gi, int start_time, std::list<ExportNode> lTags, std::list<ExportNode> lMeshes)
{
	FILE *file;
	int i, j, totalTags, totalMeshes, current_time = 0;
	long pos_current, totalTris = 0, totalVerts = 0;
	std::list<FrameRange>::iterator range_i;
	std::vector<Point3> lFrameBBoxMin;
	std::vector<Point3> lFrameBBoxMax;
	long pos_tagstart;
	long pos_tagend;
	long pos_filesize;
	long pos_framestart;
	int lazynamesfixed = 0;
	const Point3 x_axis(1, 0, 0);
	const Point3 z_axis(0, 0, 1);

	SceneEnumProc checkScene(ei->theScene, start_time, gi);
	totalTags = (int)lTags.size();
	if (g_tag_for_pivot)
		totalTags++;
	totalMeshes = (int)lMeshes.size();

	// open file
	file = _tfopen(filename, _T("wb"));
	if (!file)
	{
		ExportError("Cannot open file '%s'.", filename);
		return FALSE;
	}
	ExportDebug("%s:", filename);

	// sync pattern and version
	putChars("IDP3", 4, file);
	put32(15, file);
	putChars("Darkplaces MD3 Exporter", 64, file);
	put32(0, file);   // flags
	
	// MD3 header
	ExportState("Writing MD3 header");
	put32(g_total_frames, file);      // how many frames
	put32(totalTags, file);	  // tagsnum
	put32(totalMeshes, file); // meshnum
	put32(1, file);   // maxskinnum
	put32(108, file); // headersize
	pos_tagstart = ftell(file); put32(0, file);   // tagstart
	pos_tagend	= ftell(file);  put32(256, file); // tagend
	pos_filesize = ftell(file); put32(512, file); // filesize
	ExportDebug("    %i frames, %i tags, %i meshes", g_total_frames, totalTags, totalMeshes);

	// frame info
	// bbox arrays get filled while exported mesh and written back then
	ExportState("Writing frame info");
	pos_framestart = ftell(file);
	lFrameBBoxMin.resize(g_total_frames);
	lFrameBBoxMax.resize(g_total_frames);
	for (i = 0; i < g_total_frames; i++)
	{
		// init frame data
		lFrameBBoxMin[i].Set(0, 0, 0);
		lFrameBBoxMax[i].Set(0, 0, 0);
		// put data
		putFloat(-1.0f, file); // bbox min vector
		putFloat(-1.0f, file);
		putFloat(-1.0f, file);	
		putFloat( 1.0f, file); // bbox max vector
		putFloat(1.0f, file);
		putFloat(1.0f, file);
		putFloat(0.0f, file);  // local origin (usually 0 0 0)
		putFloat(0.0f, file);
		putFloat(0.0f, file);
		putFloat(1.0f, file);  // radius of bounding sphere
		putChars("", 16, file);
	}

	// tags
	pos_current = ftell(file);
	fseek(file, pos_tagstart, SEEK_SET);
	put32(pos_current, file);
	fseek(file, pos_current, SEEK_SET);
	
	// for each frame range cycle all frames and write out each tag
	long pos_tags = pos_current;
	if (totalTags)
	{
		long current_frame = 0;
		ExportState("Writing %i tags", totalTags);
		for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++)
		{
			for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++)
			{
				SceneEnumProc current_scene(ei->theScene, i * g_ticks_per_frame, gi);
				current_time = current_scene.time;

				// write out tags
				if (lTags.size())
				{
					for (std::list<ExportNode>::iterator tag_i = lTags.begin(); tag_i != lTags.end(); tag_i++)
					{
						INode *node	= current_scene[tag_i->i]->node;
						Matrix3	tm = node->GetObjTMAfterWSM(current_time);

						ExportState("Writing '%s' frame %i of %i", tag_i->name, i, g_total_frames);

						// tagname
						putChars(tag_i->name, 64, file);
						// origin, rotation matrix
						Point3 row = tm.GetRow(3);
						putFloat(row.x, file);
						putFloat(row.y, file);
						putFloat(row.z, file);
						row = tm.GetRow(0);
						putFloat(row.x, file);
						putFloat(row.y, file);
						putFloat(row.z, file);
						row = tm.GetRow(1);
						putFloat(row.x, file);
						putFloat(row.y, file);
						putFloat(row.z, file);
						row = tm.GetRow(2);
						putFloat(row.x, file);
						putFloat(row.y, file);
						putFloat(row.z, file);
					}
				}

				// write the center of mass tag_pivot which is avg of all objects's pivots
				if (g_tag_for_pivot)
				{
					ExportState("Writing 'tag_pivot' frame %i of %i", i, g_total_frames);

					// write the null data as tag_pivot need to be written after actual geometry
					// (it needs information on frame bound boxes to get proper blendings)
					putChars("tag_pivot", 64, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(1, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(1, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(0, file);
					putFloat(1, file);
				}
			}
		}
	}

	// write the tag object offsets
	pos_current = ftell(file);
	fseek(file, pos_tagend, SEEK_SET);
	put32(pos_current, file);
	fseek(file, pos_current, SEEK_SET);

	// allocate the structs used to calculate tag_pivot
	std::vector<Point3> tag_pivot_origin;
	std::vector<double> tag_pivot_volume;
	if (g_tag_for_pivot)
	{
		tag_pivot_origin.resize(g_total_frames);
		tag_pivot_volume.resize(g_total_frames);
	}

	// mesh objects
	// for each mesh object write uv and frames
	SceneEnumProc scratch(ei->theScene, start_time, gi);
	ExportState("Writing %i meshes", (int)lMeshes.size());
	for (std::list<ExportNode>::iterator mesh_i = lMeshes.begin(); mesh_i != lMeshes.end(); mesh_i++)
	{
		bool needsDel;

		ExportState("Start mesh #%i", mesh_i);
		INode *node = checkScene[mesh_i->i]->node;
		Matrix3 tm	= node->GetObjTMAfterWSM(start_time);
		TriObject *tri = GetTriObjectFromNode(node, start_time, needsDel);
		if (!tri)
			continue;

		// get mesh, compute normals
		Mesh &mesh = tri->GetMesh();
		MeshNormalSpec *meshNormalSpec = mesh.GetSpecifiedNormals();
		if (meshNormalSpec)
		{
			if (!meshNormalSpec->GetNumFaces())
				meshNormalSpec = NULL;
			else
			{
				meshNormalSpec->SetParent(&mesh);
				meshNormalSpec->CheckNormals();
			}
		}
		mesh.checkNormals(TRUE);

		// fix lazy object names
		ExportState("Attempt to fix mesh name '%s'", mesh_i->name);
		char  meshname[64];
		size_t meshnamelen = min(63, strlen(mesh_i->name));
		memset(meshname, 0, 64);
		strncpy(meshname, mesh_i->name, meshnamelen);
		meshname[meshnamelen] = 0;
		if (!strncmp("Box", meshname, 3)    || !strncmp("Sphere", meshname, 6)  || !strncmp("Cylinder", meshname, 8) ||
            !strncmp("Torus", meshname, 5)  || !strncmp("Cone", meshname, 4)    || !strncmp("GeoSphere", meshname, 9) ||
			!strncmp("Tube", meshname, 4)   || !strncmp("Pyramid", meshname, 7) || !strncmp("Plane", meshname, 5) ||
			!strncmp("Teapot", meshname, 6) || !strncmp("Object", meshname, 6))
		{
name_conflict:
			lazynamesfixed++;
			if (lazynamesfixed == 1)
				strcpy(meshname, "base");
			else
				sprintf(meshname, "base%i", lazynamesfixed);

			// check if it's not used by another mesh
			for (std::list<ExportNode>::iterator m_i = lMeshes.begin(); m_i != lMeshes.end(); m_i++)
				if (!strncmp(m_i->name, meshname, strlen(meshname)))
					goto name_conflict;
			// approve name
			ExportWarning("Lazy object name '%s' (mesh renamed to '%s').", node->GetName(), meshname);
		}

		// special mesh check
		bool shadow_or_collision = false;
		if (g_mesh_special)
			  if (!strncmp("collision", meshname, 9) || !strncmp("shadow", meshname, 6))
				shadow_or_collision = true;

		// get material
		const char *shadername = NULL;
		Texmap *tex = 0;
		Mtl *mtl = 0;
		if (!shadow_or_collision)
		{
			mtl = node->GetMtl();
			if (mtl)
			{
				// check for multi-material
				if (mtl->IsMultiMtl())
				{
					// check if it's truly multi material
					// we do support multi-material with only one texture (some importers set it)
					bool multi_material = false;
					MtlID matId = mesh.faces[0].getMatID();
					for (i = 1; i < mesh.getNumFaces(); i++)
						if (mesh.faces[i].getMatID() != matId)
							multi_material = true;

					if (multi_material)
						if (g_mesh_multimaterials == MULTIMATERIALS_NONE)
							ExportWarning("Object '%s' is multimaterial and using multiple materials on its faces, that case is not yet supported (truncating to first submaterial).", node->GetName());
					
					// switch to submaterial
					mtl = mtl->GetSubMtl(matId);
				}

				// get shader from material if supplied
				char *materialname = GetChar(mtl->GetName());
				if (g_mesh_materialasshader && (strstr(materialname, "/") != NULL || strstr(materialname, "\\") != NULL))
					shadername = GetChar(mtl->GetName());
				else
				{
					// get texture
					tex = mtl->GetSubTexmap(ID_DI);
					if (tex)
					{
						if (tex->ClassID() == Class_ID(BMTEX_CLASS_ID, 0x00))
						{
							shadername = GetChar(((BitmapTex *)tex)->GetMapName());
							if (shadername == NULL || !shadername[0])
								ExportWarning("Object '%s' material '%s' has no bitmap.", tex->GetName(), node->GetName());
						}
						else
						{
							tex = NULL;
							ExportWarning("Object '%s' has material with wrong texture type (only Bitmap are supported).", node->GetName());
						}
					}
					else
						ExportWarning("Object '%s' has material but no texture.", node->GetName());
				}
			}
			else
				ExportWarning("Object '%s' has no material.", node->GetName());
		}

		long pos_meshstart = ftell(file);

		// surface object
		ExportState("Writing mesh '%s' header", meshname);
		putChars("IDP3", 4, file);
		putChars(meshname, 64, file);
		put32(0, file); // flags
		put32(g_total_frames, file);                          // framecount
		put32(1, file);                                       // skincount
		long pos_vertexnum = ftell(file); put32(0, file);     // vertexcount
		put32(mesh.getNumFaces(), file);                      // trianglecount
		long pos_trianglestart = ftell(file); put32(0, file); // start triangles
		put32(108, file);                                     // header size
		long pos_texvecstart = ftell(file); put32(0, file);   // texvecstart
		long pos_vertexstart = ftell(file); put32(16, file);  // vertexstart
		long pos_meshsize = ftell(file); put32(32, file);	  // meshsize

		// write out a single 'skin'
		ExportState("Writing mesh %s texture", meshname);
		if (shadow_or_collision)
			putChars(meshname, 64, file);
		else if (shadername) 
			putMaterial(shadername, mtl, tex, file);
		else
			putChars("noshader", 64, file);
		put32(0, file); // flags

		// build geometry
		ExportState("Building vertexes/triangles");
		std::vector<ExportVertex>vVertexes;
		std::vector<ExportTriangle>vTriangles;
		vVertexes.resize(mesh.getNumVerts());
		int vExtraVerts = mesh.getNumVerts();
		for (i = 0; i < mesh.getNumVerts(); i++)
		{
			vVertexes[i].vert = i;
			vVertexes[i].normalfilled = false;
			// todo: check for coincident verts
		}
		int vNumExtraVerts = 0;

		// check normals
		if (!mesh.normalsBuilt && !shadow_or_collision)
			ExportWarning("Object '%s' does not have normals contructed.", node->GetName());

		// get info for triangles
		const float normal_epsilon = 0.01f;
		vTriangles.resize(mesh.getNumFaces());
		for (i = 0; i < mesh.getNumFaces(); i++)
		{
			DWORD smGroup = mesh.faces[i].getSmGroup();
			ExportState("Mesh %s: checking normals for face %i of %i", meshname, i, mesh.getNumFaces());
			for (j = 0; j < 3; j++)
			{
				int vert = mesh.faces[i].getVert(j);
				vTriangles[i].e[j] = vert;
				// find a right normal for this vertex and save its 'address'
				int vni;
				Point3 vn;
				if (!mesh.normalsBuilt || shadow_or_collision)
				{
					vn.Set(0, 0, 0);
					vni = 0;
				}
				else
				{
					int numNormals;
					RVertex *rv = mesh.getRVertPtr(vert);
					if (meshNormalSpec)
					{  
						ExportState("face %i vert %i have normal specified", i, j);
						// mesh have explicit normals (i.e. Edit Normals modifier)
						vn = meshNormalSpec->GetNormal(i, j);
						vni = meshNormalSpec->GetNormalIndex(i, j);
					}
					else if (rv && rv->rFlags & SPECIFIED_NORMAL)
					{
						ExportState("face %i vert %i have SPECIFIED_NORMAL flag", i, j);
						// SPECIFIED_NORMAL flag
						vn = rv->rn.getNormal();
						vni = 0;
					}
					else if (rv && (numNormals = rv->rFlags & NORCT_MASK) && smGroup)
					{
						// If there is only one vertex is found in the rn member.
						if (numNormals == 1)
						{
							ExportState("face %i vert %i have solid smooth group", i, j);
							vn = rv->rn.getNormal();
							vni = 0;
							
						}
						else
						{
							ExportState("face %i vert %i have mixed smoothing groups", i, j);
							// If two or more vertices are there you need to step through them
							// and find the vertex with the same smoothing group as the current face.
							// You will find multiple normals in the ern member.
							for (int k = 0; k < numNormals; k++)
							{
								if (rv->ern[k].getSmGroup() & smGroup)
								{
									vn = rv->ern[k].getNormal();
									vni = 1 + k;
								}
							}
						}
					}
					else
					{
						ExportState("face %i vert %i flat shaded", i, j);
						// Get the normal from the Face if no smoothing groups are there
						vn = mesh.getFaceNormal(i);
						vni = 0 - (i + 1);
					}
				}

				// subdivide to get all normals right
				if (!vVertexes[vert].normalfilled)
				{
					vVertexes[vert].normal = vn;
					vVertexes[vert].normalindex = vni;
					vVertexes[vert].normalfilled = true;
				}
				else if ((vVertexes[vert].normal - vn).Length() >= normal_epsilon)
				{
					// current vertex not matching normal - it was already filled by different smoothing group
					// find a vert in extra verts in case it was already created
					bool vert_found = false;
					for (int ev = vExtraVerts; ev < (int)vVertexes.size(); ev++)
					{
						if (vVertexes[ev].vert == vert && (vVertexes[ev].normal - vn).Length() < normal_epsilon)
						{
							vert_found = true;
							vTriangles[i].e[j] = ev;
							break;
						}
					}
					// we havent found a vertex, create new
					if (!vert_found)
					{
						ExportVertex NewVert;
						NewVert.vert = vVertexes[vert].vert;
						NewVert.normal = vn;
						NewVert.normalindex = vni;
						NewVert.normalfilled = true;
						vTriangles[i].e[j] = (int)vVertexes.size();
						vVertexes.push_back(NewVert);
						vNumExtraVerts++;
					}
				}
			}
		}
		int vNumExtraVertsForSmoothGroups = vNumExtraVerts;

		// generate UV map
		// VorteX: use direct maps reading since getNumTVerts()/getTVert is deprecated
		//  max sets two default mesh maps: 0 - vertex color, 1 : UVW, 2 & up are custom ones
		ExportState("Building UV map");
		std::vector<ExportUV>vUVMap;
		vUVMap.resize(vVertexes.size());
		int meshMap = 1;
		if (!mesh.mapSupport(meshMap) || !mesh.getNumMapVerts(meshMap) || shadow_or_collision)
		{
			for (i = 0; i < mesh.getNumVerts(); i++)
			{
				vUVMap[i].u = 0.5;
				vUVMap[i].v = 0.5;
			}
			if (!shadow_or_collision)
				ExportWarning("No UV mapping was found on object '%s'.", node->GetName());
		}
		else
		{
			UVVert *meshUV = mesh.mapVerts(meshMap);
			for (i = 0; i < (int)vTriangles.size(); i++)
			{
				ExportState("Mesh %s: converting tvert for face %i of %i", meshname, i, (int)vTriangles.size());
				// for 3 face vertexes
				for (j = 0; j < 3; j++)
				{
					int vert = vTriangles[i].e[j];
					int tv = mesh.tvFace[i].t[j];
					UVVert &UV = meshUV[tv];

					if (!vUVMap[vert].filled)
					{
						// fill uvMap vertex
						vUVMap[vert].u = UV.x;
						vUVMap[vert].v = UV.y;
						vUVMap[vert].filled = true;
						vUVMap[vert].tvert = tv;
					}
					else if (tv != vUVMap[vert].tvert)
					{
						// uvMap slot for this vertex has been filled
						// we should arrange triangle to other vertex, which not filled and having same shading and uv
						// check if any of the extra vertices can fit
						bool vert_found = false;
						for (int ev = vExtraVerts; ev < (int)vVertexes.size(); ev++)
						{
							if (vVertexes[ev].vert == vert && vUVMap[vert].u == UV.x &&vUVMap[vert].v == UV.y  && (vVertexes[ev].normal - vVertexes[vert].normal).Length() < normal_epsilon)
							{
								vert_found = true;
								vTriangles[i].e[j] = vVertexes[ev].vert;
								break;
							}
						}
						if (!vert_found)
						{
							// create new vert
							ExportVertex NewVert;
							NewVert.vert = vVertexes[vert].vert;
							NewVert.normal = vVertexes[vert].normal;
							NewVert.normalindex = vVertexes[vert].normalindex;
							NewVert.normalfilled = vVertexes[vert].normalfilled;
							vTriangles[i].e[j] = (int)vVertexes.size();
							vVertexes.push_back(NewVert);
							vNumExtraVerts++;
							// create new TVert
							ExportUV newUV;
							newUV.filled = true;
							newUV.u = UV.x;
							newUV.v = UV.y;
							newUV.tvert = tv;
							vUVMap.push_back(newUV);
						}
					}
				}
			}
		}
		int vNumExtraVertsForUV = (vNumExtraVerts - vNumExtraVertsForSmoothGroups);

		// print some debug stats
		ExportDebug("    mesh %s: %i vertexes +%i %s +%i UV, %i triangles", meshname, ((int)vVertexes.size() - vNumExtraVerts), vNumExtraVertsForSmoothGroups, meshNormalSpec ? "EditNormals" : "SmoothGroups", vNumExtraVertsForUV, (int)vTriangles.size());

		// fill in triangle start
		pos_current = ftell(file);
		fseek(file, pos_trianglestart, SEEK_SET);
		put32(pos_current - pos_meshstart, file);
		fseek(file, pos_current, SEEK_SET);

		// detect if object have negative scale (mirrored)
		// in this canse we should rearrange triangles counterclockwise
		// so stuff will not be inverted
		ExportState("Mesh %s: writing %i triangles", meshname, (int)vTriangles.size());
		if (DotProd(CrossProd(tm.GetRow(0), tm.GetRow(1)), tm.GetRow(2)) < 0.0)
		{
			ExportWarning("Object '%s' is mirrored (having negative scale on it's transformation)", node->GetName());
			for (i = 0; i < (int)vTriangles.size(); i++)
			{
				put32(vTriangles[i].b, file);	// vertex index
				put32(vTriangles[i].c, file);	// for 3 vertices
				put32(vTriangles[i].a, file);	// of triangle
			}
		}
		else
		{
			for (i = 0; i < (int)vTriangles.size(); i++)
			{
				put32(vTriangles[i].a, file);	// vertex index
				put32(vTriangles[i].c, file);	// for 3 vertices
				put32(vTriangles[i].b, file);	// of triangle
			}
		}

		// fill in texvecstart
		// write out UV mapping coords.
		ExportState("Mesh %s: writing %i UV vertexes", meshname, (int)vUVMap.size());
		pos_current = ftell(file);
		fseek(file, pos_texvecstart, SEEK_SET);
		put32(pos_current - pos_meshstart, file);
		fseek(file, pos_current, SEEK_SET);
		for (i = 0; i < (int)vUVMap.size(); i++)
		{
			putFloat(vUVMap[i].u, file); // texture coord u,v
			putFloat(1.0f - vUVMap[i].v, file);	// for vertex
		}
		vUVMap.clear();

		// fill in vertexstart
		pos_current = ftell(file);
		fseek(file, pos_vertexstart, SEEK_SET);
		put32(pos_current - pos_meshstart, file);
		fseek(file, pos_current, SEEK_SET);

		// fill in vertexnum
		pos_current = ftell(file);
		fseek(file, pos_vertexnum, SEEK_SET);
		put32((int)vVertexes.size(), file);
		fseek(file, pos_current, SEEK_SET);

		// write out for each frame the position of each vertex
		long current_frame = 0;
		ExportState("Mesh %s: writing %i frames", meshname, g_total_frames);
		for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++)
		{
			for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++)
			{
				bool _needsDel;

				// get triobject for current frame
				SceneEnumProc current_scene(ei->theScene, i * g_ticks_per_frame, gi);
				current_time = current_scene.time;
				INode *_node = current_scene[mesh_i->i]->node;
				TriObject *_tri	= GetTriObjectFromNode(_node, current_time, _needsDel);
				if (!_tri)
					continue;

				// get mesh, compute normals
				Mesh &_mesh	= _tri->GetMesh();
				MeshNormalSpec *_meshNormalSpec = _mesh.GetSpecifiedNormals();
				if (_meshNormalSpec)
				{
					if (!_meshNormalSpec->GetNumFaces())
						_meshNormalSpec = NULL;
					else
					{
						_meshNormalSpec->SetParent(&_mesh);
						_meshNormalSpec->CheckNormals();
					}
				}
				_mesh.checkNormals(TRUE);

				// get transformations for current frame
				Matrix3 _tm	= _node->GetObjTMAfterWSM(current_time);

				ExportState("Mesh %s: writing frame %i of %i", meshname, current_frame, g_total_frames);

				Point3 BoxMin(0, 0, 0);
				Point3 BoxMax(0, 0, 0);
				for (j = 0; j < (int)vVertexes.size(); j++) // number of vertices
				{
					ExportState("Mesh %s: transform vertex %i of %i", meshname, j, (int)vVertexes.size());

					int vert = vVertexes[j].vert;
					Point3 &v = _tm.PointTransform(_mesh.getVert(vert));
					
					// populate bbox data
					if (!shadow_or_collision)
					{
						BoxMin.x = min(BoxMin.x, v.x);
						BoxMin.y = min(BoxMin.y, v.y);
						BoxMin.z = min(BoxMin.z, v.z);
						BoxMax.x = max(BoxMax.x, v.x);
						BoxMax.y = max(BoxMax.y, v.y);
						BoxMax.z = max(BoxMax.z, v.z);
					}

					// write vertex
					double f;
					f = v.x * 64.0f; if (f < -32768.0) f = -32768.0; if (f > 32767.0) f = 32767.0; put16((short)f, file);
					f = v.y * 64.0f; if (f < -32768.0) f = -32768.0; if (f > 32767.0) f = 32767.0; put16((short)f, file);
					f = v.z * 64.0f; if (f < -32768.0) f = -32768.0; if (f > 32767.0) f = 32767.0; put16((short)f, file);

					// get normal
					ExportState("Mesh %s: transform vertex normal %i of %i", meshname, j, (int)vVertexes.size());
					Point3 n;
					if (_meshNormalSpec) // mesh have explicit normals (i.e. Edit Normals modifier)
						n = _meshNormalSpec->Normal(vVertexes[j].normalindex);
					else if (!vVertexes[j].normalfilled || !_mesh.normalsBuilt)
						n = _mesh.getNormal(vert);
					else
					{
						RVertex *rv = _mesh.getRVertPtr(vert);
						if (vVertexes[j].normalindex < 0)
							n = _mesh.getFaceNormal((0 - vVertexes[j].normalindex) - 1);
						else if (vVertexes[j].normalindex == 0)
							n = rv->rn.getNormal();
						else 
							n = rv->ern[vVertexes[j].normalindex - 1].getNormal();
					}

					// transform normal
					Point3 &nt = _tm.VectorTransform(n).Normalize();

					// encode a normal vector into a 16-bit latitude-longitude value
					double lng = acos(nt.z) * 255 / (2 * pi);
					double lat = atan2(nt.y, nt.x) * 255 / (2 * pi);
					put16((((int)lat & 0xFF) << 8) | ((int)lng & 0xFF), file);
				}

				// blend the pivot positions for tag_pivot using mesh's volumes for blending power
				if (g_tag_for_pivot && !shadow_or_collision)
				{
					ExportState("Mesh %s: writing tag_pivot", meshname);

					Point3 Size = BoxMax - BoxMin;
					double BoxVolume = pow(Size.x * Size.y * Size.z, 0.333f);

					// blend matrices
					float blend = (float)(BoxVolume / (BoxVolume + tag_pivot_volume[current_frame]));
					float iblend = 1 - blend;
					tag_pivot_volume[current_frame]   = tag_pivot_volume[current_frame] + BoxVolume;
					Point3 row = _tm.GetRow(3) - _node->GetObjOffsetPos();
					tag_pivot_origin[current_frame].x = tag_pivot_origin[current_frame].x * iblend + row.x * blend;
					tag_pivot_origin[current_frame].y = tag_pivot_origin[current_frame].y * iblend + row.y * blend;
					tag_pivot_origin[current_frame].z = tag_pivot_origin[current_frame].z * iblend + row.z * blend;
				}

				// populate bbox data for frames
				lFrameBBoxMin[current_frame].x = min(lFrameBBoxMin[current_frame].x, BoxMin.x);
				lFrameBBoxMin[current_frame].y = min(lFrameBBoxMin[current_frame].y, BoxMin.y);
				lFrameBBoxMin[current_frame].z = min(lFrameBBoxMin[current_frame].z, BoxMin.z);
				lFrameBBoxMax[current_frame].x = max(lFrameBBoxMax[current_frame].x, BoxMax.x);
				lFrameBBoxMax[current_frame].y = max(lFrameBBoxMax[current_frame].y, BoxMax.y);
				lFrameBBoxMax[current_frame].z = max(lFrameBBoxMax[current_frame].z, BoxMax.z);

				// delete the working object, if necessary.
				if (_needsDel)
					delete _tri;
			}
		}

		// delete if necessary
		if (needsDel)
			delete tri;

		// fill in meshsize
		pos_current = ftell(file);
		fseek(file, pos_meshsize, SEEK_SET);
		put32(pos_current - pos_meshstart, file);
		fseek(file, pos_current, SEEK_SET);  

		// reset back to first frame
		SceneEnumProc scratch(ei->theScene, start_time, gi);
		totalTris += (long)vTriangles.size();
		totalVerts += (long)vVertexes.size();
		vTriangles.clear();
		vVertexes.clear();
	}

	// write tag_pivot
	ExportState("Writing tag_pivot positions");
	if (g_tag_for_pivot)
	{
		pos_current = ftell(file);
		long current_frame = 0;
		for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++)
		{
			for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++)
			{
				fseek(file, pos_tags + totalTags*112*current_frame + (int)lTags.size()*112 + 64, SEEK_SET);
				// origin
				putFloat(tag_pivot_origin[current_frame].x, file);
				putFloat(tag_pivot_origin[current_frame].y, file);
				putFloat(tag_pivot_origin[current_frame].z, file);
			}
		}
		fseek(file, pos_current, SEEK_SET);
	}
	tag_pivot_volume.clear();
	tag_pivot_origin.clear();

	// write frame data
	ExportState("Writing culling info");
	long current_frame = 0;
	pos_current = ftell(file);
	for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++)
	{
		for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++)
		{
			fseek(file, pos_framestart + current_frame*56, SEEK_SET);
			putFloat(lFrameBBoxMin[current_frame].x, file);	// bbox min vector
			putFloat(lFrameBBoxMin[current_frame].y, file);
			putFloat(lFrameBBoxMin[current_frame].z, file);	
			putFloat(lFrameBBoxMax[current_frame].x, file); // bbox max vector
			putFloat(lFrameBBoxMax[current_frame].y, file);
			putFloat(lFrameBBoxMax[current_frame].z, file);
			putFloat(0, file); // local origin (usually 0 0 0)
			putFloat(0, file);
			putFloat(0, file);
			putFloat(max(lFrameBBoxMin[current_frame].Length(), lFrameBBoxMax[current_frame].Length()) , file); // radius of bounding sphere
		}
	}
	fseek(file, pos_current, SEEK_SET);
	lFrameBBoxMin.clear();
	lFrameBBoxMax.clear();

	// fill in filesize
	pos_current = ftell(file);
	fseek(file, pos_filesize, SEEK_SET);
	put32(pos_current, file);
	fseek(file, pos_current, SEEK_SET);

	fclose(file);

	ExportDebug("    total: %i vertexes, %i triangles", totalVerts, totalTris);

	return TRUE;
}
示例#4
0
static void extractTriangleGeometry( GmModel* gm, INode* node, Mesh* mesh, Mtl* material )
{
#ifdef SGEXPORT_PHYSIQUE
	Modifier*			phyMod		= 0;
	IPhysiqueExport*	phyExport	= 0;
	IPhyContextExport*	mcExport	= 0;
#endif
	Modifier*			skinMod		= 0;
	ISkin*				skin		= 0;
	String				nodeName	( node->GetName() );

	try
	{
		// vertex transform to left-handed system
		Matrix3 pivot = TmUtil::getPivotTransform( node );
		Matrix3 vertexTM = pivot * s_convtm;
		bool insideOut = TmUtil::hasNegativeParity( pivot );

		/*Matrix4x4 pm = TmUtil::toLH( vertexTM );
		Debug::println( "Object {0} vertex local TM is", nodeName );
		Debug::println( "  {0,#.###} {1,#.###} {2,#.###} {3,#.###}", pm(0,0), pm(0,1), pm(0,2), pm(0,3) );
		Debug::println( "  {0,#.###} {1,#.###} {2,#.###} {3,#.###}", pm(1,0), pm(1,1), pm(1,2), pm(1,3) );
		Debug::println( "  {0,#.###} {1,#.###} {2,#.###} {3,#.###}", pm(2,0), pm(2,1), pm(2,2), pm(2,3) );
		Debug::println( "  {0,#.###} {1,#.###} {2,#.###} {3,#.###}", pm(3,0), pm(3,1), pm(3,2), pm(3,3) );*/

		// add vertex positions
		int vertices = mesh->getNumVerts();
		for ( int vi = 0 ; vi < vertices ; ++vi )
		{
			Point3 v = vertexTM * mesh->verts[vi];
			mb::Vertex* vert = gm->addVertex();
			vert->setPosition( v.x, v.y, v.z );
		}

		// add vertex weights (from Physique modifier)
#ifdef SGEXPORT_PHYSIQUE
		phyMod = PhyExportUtil::findPhysiqueModifier( node );
		if ( phyMod )
		{
			Debug::println( "  Found Physique modifier: {0}", gm->name );

			// get (possibly shared) Physique export interface
			phyExport = (IPhysiqueExport*)phyMod->GetInterface( I_PHYINTERFACE );
			if( !phyExport )
				throw Exception( Format("No Physique modifier export interface") );

			// export from initial pose?
			phyExport->SetInitialPose( false );
			
			// get (unique) context dependent export inteface
			mcExport = (IPhyContextExport*)phyExport->GetContextInterface( node );
			if( !mcExport )
				throw Exception( Format("No Physique modifier context export interface") );

			// convert to rigid for time independent vertex assignment
			mcExport->ConvertToRigid( true );

			// allow blending to export multi-link assignments
			mcExport->AllowBlending( true );

			// list bones
			Vector<INode*> bones( Allocator<INode*>(__FILE__,__LINE__) );
			PhyExportUtil::listBones( mcExport, bones );

			// add vertex weight maps
			for ( int i = 0 ; i < bones.size() ; ++i )
			{
				INode* bone = bones[i];
				String name = bone->GetName();
				mb::VertexMap* vmap = gm->addVertexMap( 1, name, mb::VertexMapFormat::VERTEXMAP_WEIGHT );
				PhyExportUtil::addWeights( vmap, bone, mcExport );
			}
		}
#endif // SGEXPORT_PHYSIQUE

		// add vertex weights (from Skin modifier)
		skinMod = SkinExportUtil::findSkinModifier( node );
		if ( skinMod )
		{
			skin = (ISkin*)skinMod->GetInterface(I_SKIN);
			require( skin );
			ISkinContextData* skincx = skin->GetContextInterface( node );
			require( skincx );
			Debug::println( "  Found Skin modifier: {0} ({1} bones, {2} points)", gm->name, skin->GetNumBones(), skincx->GetNumPoints() );
			
			if ( skincx->GetNumPoints() != gm->vertices() )
				throw Exception( Format("Only some vertices ({0}/{1}) of {2} are skinned", skincx->GetNumPoints(), gm->vertices(), gm->name) );

			// list bones
			Vector<INode*> bones( Allocator<INode*>(__FILE__,__LINE__) );
			SkinExportUtil::listBones( skin, bones );

			// add vertex weight maps
			for ( int i = 0 ; i < bones.size() ; ++i )
			{
				INode* bone = bones[i];
				String name = bone->GetName();
				mb::VertexMap* vmap = gm->addVertexMap( 1, name, mb::VertexMapFormat::VERTEXMAP_WEIGHT );
				SkinExportUtil::addWeights( vmap, bone, skin, skincx );
				//Debug::println( "    Bone {0} is affecting {1} vertices", name, vmap->size() );
			}

			// DEBUG: print skin node tm and initial object tm
			/*Matrix3 tm;
			int ok = skin->GetSkinInitTM( node, tm );
			require( ok == SKIN_OK );
			Debug::println( "  NodeInitTM of {0}", nodeName );
			TmUtil::println( tm, 4 );
			ok = skin->GetSkinInitTM( node, tm, true );
			require( ok == SKIN_OK );
			Debug::println( "  NodeObjectTM of {0}", nodeName );
			TmUtil::println( tm, 4 );*/

			// DEBUG: print bones
			/*Debug::println( "  bones of {0}:", nodeName );
			for ( int i = 0 ; i < bones.size() ; ++i )
			{
				Debug::println( "    bone ({0}): {1}", i, String(bones[i]->GetName()) );
				skin->GetBoneInitTM( bones[i], tm );
				Debug::println( "      InitNodeTM:" );
				TmUtil::println( tm, 6 );
				skin->GetBoneInitTM( bones[i], tm, true );
				Debug::println( "      InitObjectTM:" );
				TmUtil::println( tm, 6 );
			}*/

			// DEBUG: print bones used by the points
			/*for ( int i = 0 ; i < skincx->GetNumPoints() ; ++i )
			{
				int bonec = skincx->GetNumAssignedBones(i);
				Debug::println( "    point {0} has {1} bones", i, bonec );
				for ( int k = 0 ; k < bonec ; ++k )
				{
					int boneidx = skincx->GetAssignedBone( i, k );
					float w = skincx->GetBoneWeight( i, k );
					Debug::println( "    point {0} boneidx ({1}): {2}, weight {3}", i, k, boneidx, w );
				}
			}*/
		}

		// ensure clockwise polygon vertex order
		int vx[3] = {2,1,0};
		if ( insideOut )
		{
			int tmp = vx[0];
			vx[0] = vx[2];
			vx[2] = tmp;
		}
	
		// list unique materials used by the triangles
		Vector<ShellMaterial> usedMaterials( Allocator<ShellMaterial>(__FILE__,__LINE__) );
		if ( material )
		{
			for ( int fi = 0 ; fi < mesh->getNumFaces() ; ++fi )
			{
				Face& face = mesh->faces[fi];
				
				int mergesubmaterial = -1;
				int originalsubmaterial = -1;

				for ( int j = 0; j < material->NumSubMtls(); ++j)
				{
					// Get Sub Material Slot name 
					TSTR name = material->GetSubMtlSlotName(j);

					// Light maps are stored in sub material slot named "Baked Material"
					if ( strcmp( name, "Baked Material" ) == 0 ) 
						mergesubmaterial = j;
					else 
						originalsubmaterial = j;				
				}

				if ( mergesubmaterial != -1 ) // A baked material was found, shell materials will be created
				{
					Mtl* mat = material->GetSubMtl( originalsubmaterial );
					Mtl* bakedmtl = material->GetSubMtl( mergesubmaterial );
				
					if ( mat->NumSubMtls() > 0 ) // Check for nested multi-material
					{
						for ( int j = 0; j < mat->NumSubMtls(); ++j)
							usedMaterials.add( ShellMaterial( mat->GetSubMtl( face.getMatID() % mat->NumSubMtls() ), bakedmtl ) );
					} else
						usedMaterials.add( ShellMaterial( mat, bakedmtl ) );
				}
				else if ( material->NumSubMtls() > 0 ) // Multi-material without baked material 
				{  
					usedMaterials.add( ShellMaterial( material->GetSubMtl( face.getMatID() % material->NumSubMtls() ), 0 ) ); 
				}
				else	// Single material without baked material
				{
					usedMaterials.add( ShellMaterial( material, 0 ) );
				}				
			}
			std::sort( usedMaterials.begin(), usedMaterials.end() );
			usedMaterials.setSize( std::unique( usedMaterials.begin(), usedMaterials.end() ) - usedMaterials.begin() );
		}

		// create used materials
		for ( int mi = 0 ; mi < usedMaterials.size() ; ++mi )
		{
			ShellMaterial shellmtl = usedMaterials[mi];
			gm->materials.add( GmUtil::createGmMaterial( shellmtl.original, shellmtl.baked ) );
		}

		// add triangles
		for ( int fi = 0 ; fi < mesh->getNumFaces() ; ++fi )
		{
			mb::Polygon* poly = gm->addPolygon();

			// triangle indices
			Face& face = mesh->faces[fi];
			for ( int vxi = 0 ; vxi < 3 ; ++vxi )
			{
				int vi = face.v[ vx[vxi] ];
				require( vi >= 0 && vi < gm->vertices() );
				mb::Vertex* vert = gm->getVertex( vi );
				poly->addVertex( vert );
			}

			// triangle material
			int polyMaterialIndex = 0;
			if ( material )
			{
				ShellMaterial mat( material, 0 );
				
				int numsubmaterials = material->NumSubMtls();  

				if ( numsubmaterials > 0 )
				{
					mat.original = material->GetSubMtl( face.getMatID() % material->NumSubMtls() );
		
					for ( int j = 0; j < numsubmaterials; ++j) // Is baked material present?
					{
						TSTR name = material->GetSubMtlSlotName(j);
						if ( strcmp( name, "Baked Material" ) == 0 )
							mat.baked = material->GetSubMtl( j );
						if ( strcmp( name, "Original Material" ) == 0 )
							mat.original = material->GetSubMtl( j );
					}
					if ( mat.original->NumSubMtls() > 0 )  // Is there a nested multi-material?
					{
						mat.original = mat.original->GetSubMtl( face.getMatID() % mat.original->NumSubMtls() );
					}
				}

				for ( int mi = 0 ; mi < usedMaterials.size() ; ++mi )
				{
					if ( usedMaterials[mi] == mat )
					{
						polyMaterialIndex = mi;
						break;
					}
				}
			}
			poly->setMaterial( polyMaterialIndex );
		}

		// add vertex colors
		int mp = 0;
		if ( mesh->mapSupport(mp) && mesh->getNumMapVerts(mp) > 0 )
		{
			mb::DiscontinuousVertexMap* vmad = gm->addDiscontinuousVertexMap( 3, "rgb", mb::VertexMapFormat::VERTEXMAP_RGB );

			int tverts = mesh->getNumMapVerts( mp );
			UVVert* tvert = mesh->mapVerts( mp );
			TVFace* tface = mesh->mapFaces( mp );

			//Debug::println( "Vertex colors:" );
			for ( int fi = 0 ; fi < mesh->getNumFaces() ; ++fi )
			{
				Face& face = mesh->faces[fi];
				mb::Polygon* poly = gm->getPolygon( fi );

				for ( int vxi = 0 ; vxi < 3 ; ++vxi )
				{
					int vi = face.v[ vx[vxi] ];
					mb::Vertex* vert = gm->getVertex( vi );
					Point3 tc = tvert[ tface[fi].t[ vx[vxi] ] % tverts ];
					float rgb[3] = {tc.x, tc.y, tc.z};
					vmad->addValue( vert->index(), poly->index(), rgb, 3 );
					//Debug::println( "  vertex[{0}].rgb: {1} {2} {3}", vert->index(), rgb[0], rgb[1], rgb[2] );
				}
			}
		}

		// add texcoord layers
		int lastCoords = MAX_MESHMAPS-2;
		while ( lastCoords > 0 && (!mesh->mapSupport(lastCoords) || 0 == mesh->getNumMapVerts(lastCoords)) )
			--lastCoords;
		if ( lastCoords > 8 )
			throw IOException( Format("Too many texture coordinate sets ({1}) in {0}", gm->name, lastCoords) );

		for ( mp = 1 ; mp <= lastCoords ; ++mp )
		{
			mb::DiscontinuousVertexMap* vmad = gm->addDiscontinuousVertexMap( 2, "uv", mb::VertexMapFormat::VERTEXMAP_TEXCOORD );

			if ( mesh->mapSupport(mp) && mesh->getNumMapVerts(mp) > 0 )
			{
				int tverts = mesh->getNumMapVerts( mp );
				UVVert* tvert = mesh->mapVerts( mp );
				TVFace* tface = mesh->mapFaces( mp );
				
				for ( int fi = 0 ; fi < mesh->getNumFaces() ; ++fi )
				{
					Face& face = mesh->faces[fi];
					mb::Polygon* poly = gm->getPolygon( fi );

					for ( int vxi = 0 ; vxi < 3 ; ++vxi )
					{
						int vi = face.v[ vx[vxi] ];
						mb::Vertex* vert = gm->getVertex( vi );
						Point3 tc = tvert[ tface[fi].t[ vx[vxi] ] % tverts ];
						float uv[2] = {tc.x, 1.f-tc.y};
						vmad->addValue( vert->index(), poly->index(), uv, 2 );
					}
				}
			}
		}

		// compute face vertex normals from smoothing groups
		require( mesh->getNumFaces() == gm->polygons() );
		mb::DiscontinuousVertexMap* vmad = gm->addDiscontinuousVertexMap( 3, "vnormals", mb::VertexMapFormat::VERTEXMAP_NORMALS );
		for ( int fi = 0 ; fi < gm->polygons() ; ++fi )
		{
			mb::Polygon* poly = gm->getPolygon( fi );
			require( poly );
			require( poly->index() >= 0 && poly->index() < mesh->getNumFaces() );
			Face& face = mesh->faces[ poly->index() ];

			require( poly->vertices() == 3 );
			for ( int j = 0 ; j < poly->vertices() ; ++j )
			{
				Vector3 vn(0,0,0);
				mb::Vertex* vert = poly->getVertex( j );

				// sum influencing normals
				for ( int k = 0 ; k < vert->polygons() ; ++k )
				{
					mb::Polygon* vpoly = vert->getPolygon( k );
					require( vpoly );
					require( vpoly->index() >= 0 && vpoly->index() < mesh->getNumFaces() );
					Face& vface = mesh->faces[ vpoly->index() ];

					if ( 0 != (face.smGroup & vface.smGroup) || poly == vpoly )
					{
						Vector3 vpolyn;
						vpoly->getNormal( &vpolyn.x, &vpolyn.y, &vpolyn.z );
						vn += vpolyn;
					}
				}

				// normalize
				float lensqr = vn.lengthSquared();
				if ( lensqr > Float::MIN_VALUE )
					vn *= 1.f / Math::sqrt(lensqr);
				else
					vn = Vector3(0,0,0);

				vmad->addValue( vert->index(), poly->index(), vn.begin(), 3 );
			}
		}

		// re-export mesh points in non-deformed pose if Skin modifier present
		// NOTE: 3ds Mesh must not be used after this, because collapsing can invalidate it
		if ( skin )
		{
			// evaluate derived object before Skin modifier
			TimeValue time = 0;
			bool evalNext = false;
			bool evalDone = false;
			::ObjectState os;
			::Object* obj = node->GetObjectRef();
			while ( obj->SuperClassID() == GEN_DERIVOB_CLASS_ID && !evalDone )
			{
				IDerivedObject* derivedObj = static_cast<IDerivedObject*>(obj);
				for ( int modStack = 0 ; modStack < derivedObj->NumModifiers() ; ++modStack )
				{
					if ( evalNext )
					{
						os = derivedObj->Eval( time, modStack );
						evalDone = true;
						break;
					}

					Modifier* mod = derivedObj->GetModifier(modStack);
					if ( mod->ClassID() == SKIN_CLASSID )
						evalNext = true;
				}
				obj = derivedObj->GetObjRef();
			}

			// evaluate possible non-derived object
			if ( evalNext && !evalDone )
			{
				os = obj->Eval( time );
				evalDone = true;
			}

			// convert to TriObject and get points
			if ( evalDone && os.obj->CanConvertToType( Class_ID(TRIOBJ_CLASS_ID,0) ) )
			{
				Debug::println( "  Evaluating object {0} before Skin modifier", nodeName );

				// get TriObject
				std::auto_ptr<TriObject> triAutoDel(0);
				TriObject* tri = static_cast<TriObject*>( os.obj->ConvertToType( time, Class_ID(TRIOBJ_CLASS_ID,0) ) );
				if ( tri != os.obj )
					triAutoDel = std::auto_ptr<TriObject>( tri );

				// get mesh points before Skin is applied
				//Debug::println( "  Original collapsed mesh has {0} points, before Skin modifier {1} points", mesh->getNumVerts(), tri->mesh.getNumVerts() );
				require( gm->vertices() == tri->mesh.getNumVerts() );
				Mesh* mesh = &tri->mesh;
				int vertices = mesh->getNumVerts();
				for ( int vi = 0 ; vi < vertices ; ++vi )
				{
					Point3 v = vertexTM * mesh->verts[vi];
					mb::Vertex* vert = gm->getVertex( vi );
					vert->setPosition( v.x, v.y, v.z );
				}
			}
		}

		// split vertices with discontinuous vertex map values
		for ( int vmi = 0 ; vmi < gm->discontinuousVertexMaps() ; ++vmi )
		{
			mb::DiscontinuousVertexMap* vmad = gm->getDiscontinuousVertexMap( vmi );
			gm->splitVertexDiscontinuities( vmad );
		}

		// find base texcoord layer
		mb::DiscontinuousVertexMap* texcoords = 0;
		for ( int i = 0 ; i < gm->discontinuousVertexMaps() ; ++i )
		{
			mb::DiscontinuousVertexMap* vmad = gm->getDiscontinuousVertexMap(i);
			if ( vmad->dimensions() == 2 && vmad->format() == mb::VertexMapFormat::VERTEXMAP_TEXCOORD )
			{
				texcoords = vmad;
				break;
			}
		}
		if ( !texcoords )
			Debug::printlnError( "Object {0} must have texture coordinates", gm->name );
			// requires identification of footsteps in MySceneExport::isExportableGeometry
			//throw IOException( Format("Object {0} must have texture coordinates", gm->name) );

		// optimize
		gm->removeUnusedVertices();

		// cleanup export interfaces
#ifdef SGEXPORT_PHYSIQUE
		if ( mcExport )
		{
			require( phyExport );
			phyExport->ReleaseContextInterface( mcExport );
			mcExport = 0;
		}
		if ( phyExport )
		{
			require( phyMod );
			phyMod->ReleaseInterface( I_PHYINTERFACE, phyExport );
			phyExport = 0;
		}
#endif // SGEXPORT_PHYSIQUE
		if ( skin )
		{
			skinMod->ReleaseInterface( I_SKIN, skin );
			skin = 0;
			skinMod = 0;
		}
	}
	catch ( ... )
	{
		// cleanup export interfaces
#ifdef SGEXPORT_PHYSIQUE
		if ( mcExport )
		{
			require( phyExport );
			phyExport->ReleaseContextInterface( mcExport );
			mcExport = 0;
		}
		if ( phyExport )
		{
			require( phyMod );
			phyMod->ReleaseInterface( I_PHYINTERFACE, phyExport );
			phyExport = 0;
		}
#endif // SGEXPORT_PHYSIQUE
		if ( skin )
		{
			skinMod->ReleaseInterface( I_SKIN, skin );
			skin = 0;
			skinMod = 0;
		}
		throw;
	}
}
示例#5
0
int DxStdMtl2::GetMatIndex(Mtl * m_Mtl)
{
	int				i;
	Mtl			*Std;
	StdMat2  * Shader;
	//	MaxShader   *Shader, *s;


	if(m_Mtl->IsMultiMtl())
	{
		Shader = (StdMat2 *)GetRefTarg();

		// I use the SubAnims here, as I do not want any NULL material introduced that are not visible to the user
		// this can happen when you have N materials and you select N+1 mat ID - the material will add a NULL material 
		// to the list to compensate - this screws with the index into the paramblock
		for(i=0; i < m_Mtl->NumSubs(); i++)
		{	
			Std = (Mtl*)m_Mtl->SubAnim(i);

			if(Std!=NULL)
			{
				if(Std->NumSubMtls()>0)
				{

					for(int j=0; j< Std->NumSubMtls();j++)
					{
						Mtl * subMtl = Std->GetSubMtl(j);
						if(subMtl == Shader)
							Std = subMtl;

					}
				}
				MSPlugin* plugin = (MSPlugin*)((ReferenceTarget*)Std)->GetInterface(I_MAXSCRIPTPLUGIN);
				ReferenceTarget * targ = NULL;
				if(plugin){
					targ = plugin->get_delegate();
					Std = (Mtl*)targ;
				}
				if(Std == Shader)
				{
					int id=0;
					// this gets interesting - the MatID are editable !! must get them from the PAramblock
					IParamBlock2 * pblock = m_Mtl->GetParamBlock(0);	// there is only one
					if(pblock)
					{
						ParamBlockDesc2 * pd = pblock->GetDesc();

						for(int j=0;j<pd->count;j++)
						{
							if(_tcsicmp(_T("materialIDList"),pd->paramdefs[j].int_name)==0)	//not localised
							{
								//int id;
								pblock->GetValue(j,0,id,FOREVER,i); 
								id = id+1;	//for some reason this is stored as a zero index, when a 1's based index is used
							}	

						}
						pblock->ReleaseDesc();

					}
					return(id);
				}
			}
		}
	}
	return(0);
}
示例#6
0
//=================================================================
// Methods for DumpModelTEP
//
int DumpModelTEP::callback(INode *pnode)
{
	Object*	pobj;
	int	fHasMat = TRUE;

	// clear physique export parameters
	m_mcExport = NULL;
	m_phyExport = NULL;
    m_phyMod = NULL;

	ASSERT_MBOX(!(pnode)->IsRootNode(), "Encountered a root node!");

	if (::FNodeMarkedToSkip(pnode))
		return TREE_CONTINUE;
	
	int iNode = ::GetIndexOfINode(pnode);
	TSTR strNodeName(pnode->GetName());
	
	// The Footsteps node apparently MUST have a dummy mesh attached!  Ignore it explicitly.
	if (FStrEq((char*)strNodeName, "Bip01 Footsteps"))
		return TREE_CONTINUE;

	// Helper nodes don't have meshes
	pobj = pnode->GetObjectRef();
	if (pobj->SuperClassID() == HELPER_CLASS_ID)
		return TREE_CONTINUE;

	// The model's root is a child of the real "scene root"
	INode *pnodeParent = pnode->GetParentNode();
	BOOL fNodeIsRoot = pnodeParent->IsRootNode( );

	// Get node's material: should be a multi/sub (if it has a material at all)
	Mtl *pmtlNode = pnode->GetMtl();
	if (pmtlNode == NULL)
	{
		return TREE_CONTINUE;
		fHasMat = FALSE;
	}
	else if (!(pmtlNode->ClassID() == Class_ID(MULTI_CLASS_ID, 0) && pmtlNode->IsMultiMtl()))
	{
		// sprintf(st_szDBG, "ERROR--Material on node %s isn't a Multi/Sub-Object", (char*)strNodeName);
		// ASSERT_AND_ABORT(FALSE, st_szDBG);
		fHasMat = FALSE;
	}
	
	// Get Node's object, convert to a triangle-mesh object, so I can access the Faces
	ObjectState os = pnode->EvalWorldState(m_tvToDump);
	pobj = os.obj;
	TriObject *ptriobj;
	BOOL fConvertedToTriObject = 
		pobj->CanConvertToType(triObjectClassID) &&
		(ptriobj = (TriObject*)pobj->ConvertToType(m_tvToDump, triObjectClassID)) != NULL;
	if (!fConvertedToTriObject)
		return TREE_CONTINUE;
	Mesh *pmesh = &ptriobj->mesh;

	// Shouldn't have gotten this far if it's a helper object
	if (pobj->SuperClassID() == HELPER_CLASS_ID)
	{
		sprintf(st_szDBG, "ERROR--Helper node %s has an attached mesh, and it shouldn't.", (char*)strNodeName);
		ASSERT_AND_ABORT(FALSE, st_szDBG);
	}

	// Ensure that the vertex normals are up-to-date
	pmesh->buildNormals();

	// We want the vertex coordinates in World-space, not object-space
	Matrix3 mat3ObjectTM = pnode->GetObjectTM(m_tvToDump);


	// initialize physique export parameters
    m_phyMod = FindPhysiqueModifier(pnode);
    if (m_phyMod)
	{
		// Physique Modifier exists for given Node
	    m_phyExport = (IPhysiqueExport *)m_phyMod->GetInterface(I_PHYINTERFACE);

        if (m_phyExport)
        {
            // create a ModContext Export Interface for the specific node of the Physique Modifier
           m_mcExport = (IPhyContextExport *)m_phyExport->GetContextInterface(pnode);

		   if (m_mcExport)
		   {
		       // convert all vertices to Rigid 
                m_mcExport->ConvertToRigid(TRUE);
		   }
		}
	}

	// Dump the triangle face info
	int cFaces = pmesh->getNumFaces();
	for (int iFace = 0; iFace < cFaces; iFace++)
	{
		Face*	pface		= &pmesh->faces[iFace];
		TVFace*	ptvface		= &pmesh->tvFace[iFace];
		DWORD	smGroupFace	= pface->getSmGroup();

		// Get face's 3 indexes into the Mesh's vertex array(s).
		DWORD iVertex0 = pface->getVert(0);
		DWORD iVertex1 = pface->getVert(1);
		DWORD iVertex2 = pface->getVert(2);
		ASSERT_AND_ABORT((int)iVertex0 < pmesh->getNumVerts(), "Bogus Vertex 0 index");
		ASSERT_AND_ABORT((int)iVertex1 < pmesh->getNumVerts(), "Bogus Vertex 1 index");
		ASSERT_AND_ABORT((int)iVertex2 < pmesh->getNumVerts(), "Bogus Vertex 2 index");
		
		// Get the 3 Vertex's for this face
		Point3 pt3Vertex0 = pmesh->getVert(iVertex0);
		Point3 pt3Vertex1 = pmesh->getVert(iVertex1);
		Point3 pt3Vertex2 = pmesh->getVert(iVertex2);

		// Get the 3 RVertex's for this face
		// NOTE: I'm using getRVertPtr instead of getRVert to work around a 3DSMax bug
		RVertex *prvertex0 = pmesh->getRVertPtr(iVertex0);
		RVertex *prvertex1 = pmesh->getRVertPtr(iVertex1);
		RVertex *prvertex2 = pmesh->getRVertPtr(iVertex2);
		
		// Find appropriate normals for each RVertex
		// A vertex can be part of multiple faces, so the "smoothing group"
		// is used to locate the normal for this face's use of the vertex.
		Point3 pt3Vertex0Normal;
		Point3 pt3Vertex1Normal;
		Point3 pt3Vertex2Normal;
		if (smGroupFace) 
		{
			pt3Vertex0Normal = Pt3GetRVertexNormal(prvertex0, smGroupFace);
			pt3Vertex1Normal = Pt3GetRVertexNormal(prvertex1, smGroupFace);
			pt3Vertex2Normal = Pt3GetRVertexNormal(prvertex2, smGroupFace);
		}
		else 
		{
			pt3Vertex0Normal = pmesh->getFaceNormal( iFace );
			pt3Vertex1Normal = pmesh->getFaceNormal( iFace );
			pt3Vertex2Normal = pmesh->getFaceNormal( iFace );
		}
		ASSERT_AND_ABORT( Length( pt3Vertex0Normal ) <= 1.1, "bogus orig normal 0" );
		ASSERT_AND_ABORT( Length( pt3Vertex1Normal ) <= 1.1, "bogus orig normal 1" );
		ASSERT_AND_ABORT( Length( pt3Vertex2Normal ) <= 1.1, "bogus orig normal 2" );
	
		// Get Face's sub-material from node's material, to get the bitmap name.
		// And no, there isn't a simpler way to get the bitmap name, you have to
		// dig down through all these levels.
		TCHAR szBitmapName[256] = "null.bmp";
		if (fHasMat)
		{
			MtlID mtlidFace = pface->getMatID();
			if (mtlidFace >= pmtlNode->NumSubMtls())
			{
				sprintf(st_szDBG, "ERROR--Bogus sub-material index %d in node %s; highest valid index is %d",
					mtlidFace, (char*)strNodeName, pmtlNode->NumSubMtls()-1);
				// ASSERT_AND_ABORT(FALSE, st_szDBG);
				mtlidFace = 0;
			}
			Mtl *pmtlFace = pmtlNode->GetSubMtl(mtlidFace);
			ASSERT_AND_ABORT(pmtlFace != NULL, "NULL Sub-material returned");
 
			if ((pmtlFace->ClassID() == Class_ID(MULTI_CLASS_ID, 0) && pmtlFace->IsMultiMtl()))
			{
				// it's a sub-sub material.  Gads.
				pmtlFace = pmtlFace->GetSubMtl(mtlidFace);			
				ASSERT_AND_ABORT(pmtlFace != NULL, "NULL Sub-material returned");
			}

			if (!(pmtlFace->ClassID() == Class_ID(DMTL_CLASS_ID, 0)))
			{

				sprintf(st_szDBG,
					"ERROR--Sub-material with index %d (used in node %s) isn't a 'default/standard' material [%x].",
					mtlidFace, (char*)strNodeName, pmtlFace->ClassID());
				ASSERT_AND_ABORT(FALSE, st_szDBG);
			}
			StdMat *pstdmtlFace = (StdMat*)pmtlFace;
			Texmap *ptexmap = pstdmtlFace->GetSubTexmap(ID_DI);
			// ASSERT_AND_ABORT(ptexmap != NULL, "NULL diffuse texture")
			if (ptexmap != NULL) 
			{
				if (!(ptexmap->ClassID() == Class_ID(BMTEX_CLASS_ID, 0)))
				{
					sprintf(st_szDBG,
						"ERROR--Sub-material with index %d (used in node %s) doesn't have a bitmap as its diffuse texture.",
						mtlidFace, (char*)strNodeName);
					ASSERT_AND_ABORT(FALSE, st_szDBG);
				}
				BitmapTex *pbmptex = (BitmapTex*)ptexmap;
				strcpy(szBitmapName, pbmptex->GetMapName());
				TSTR strPath, strFile;
				SplitPathFile(TSTR(szBitmapName), &strPath, &strFile);
				strcpy(szBitmapName,strFile);
			}
		}

		UVVert UVvertex0( 0, 0, 0 );
		UVVert UVvertex1( 1, 0, 0 );
		UVVert UVvertex2( 0, 1, 0 );
		
		// All faces must have textures assigned to them
		if (pface->flags & HAS_TVERTS)
		{
			// Get TVface's 3 indexes into the Mesh's TVertex array(s).
			DWORD iTVertex0 = ptvface->getTVert(0);
			DWORD iTVertex1 = ptvface->getTVert(1);
			DWORD iTVertex2 = ptvface->getTVert(2);
			ASSERT_AND_ABORT((int)iTVertex0 < pmesh->getNumTVerts(), "Bogus TVertex 0 index");
			ASSERT_AND_ABORT((int)iTVertex1 < pmesh->getNumTVerts(), "Bogus TVertex 1 index");
			ASSERT_AND_ABORT((int)iTVertex2 < pmesh->getNumTVerts(), "Bogus TVertex 2 index");

			// Get the 3 TVertex's for this TVFace
			// NOTE: I'm using getRVertPtr instead of getRVert to work around a 3DSMax bug
			UVvertex0 = pmesh->getTVert(iTVertex0);
			UVvertex1 = pmesh->getTVert(iTVertex1);
			UVvertex2 = pmesh->getTVert(iTVertex2);
		}
		else 
		{
			//sprintf(st_szDBG, "ERROR--Node %s has a textureless face.  All faces must have an applied texture.", (char*)strNodeName);
			//ASSERT_AND_ABORT(FALSE, st_szDBG);
		}
		
		/*
		const char *szExpectedExtension = ".bmp";
		if (stricmp(szBitmapName+strlen(szBitmapName)-strlen(szExpectedExtension), szExpectedExtension) != 0)
			{
			sprintf(st_szDBG, "Node %s uses %s, which is not a %s file", (char*)strNodeName, szBitmapName, szExpectedExtension);
			ASSERT_AND_ABORT(FALSE, st_szDBG);
			}
		*/

		// Determine owning bones for the vertices.
		int iNodeV0, iNodeV1, iNodeV2;
		if (m_mcExport)
		{
			// The Physique add-in allows vertices to be assigned to bones arbitrarily
			iNodeV0 = InodeOfPhyVectex( iVertex0 );
			iNodeV1 = InodeOfPhyVectex( iVertex1 );
			iNodeV2 = InodeOfPhyVectex( iVertex2 );
		}
		else
		{
			// Simple 3dsMax model: the vertices are owned by the object, and hence the node
			iNodeV0 = iNode;
			iNodeV1 = iNode;
			iNodeV2 = iNode;
		}
		
		// Rotate the face vertices out of object-space, and into world-space space
		Point3 v0 = pt3Vertex0 * mat3ObjectTM;
		Point3 v1 = pt3Vertex1 * mat3ObjectTM;
		Point3 v2 = pt3Vertex2 * mat3ObjectTM;


		Matrix3 mat3ObjectNTM = mat3ObjectTM;
		mat3ObjectNTM.NoScale( );
		ASSERT_AND_ABORT( Length( pt3Vertex0Normal ) <= 1.1, "bogus pre normal 0" );
		pt3Vertex0Normal = VectorTransform(mat3ObjectNTM, pt3Vertex0Normal);
		ASSERT_AND_ABORT( Length( pt3Vertex0Normal ) <= 1.1, "bogus post normal 0" );
		ASSERT_AND_ABORT( Length( pt3Vertex1Normal ) <= 1.1, "bogus pre normal 1" );
		pt3Vertex1Normal = VectorTransform(mat3ObjectNTM, pt3Vertex1Normal);
		ASSERT_AND_ABORT( Length( pt3Vertex1Normal ) <= 1.1, "bogus post normal 1" );
		ASSERT_AND_ABORT( Length( pt3Vertex2Normal ) <= 1.1, "bogus pre normal 2" );
		pt3Vertex2Normal = VectorTransform(mat3ObjectNTM, pt3Vertex2Normal);
		ASSERT_AND_ABORT( Length( pt3Vertex2Normal ) <= 1.1, "bogus post normal 2" );

		// Finally dump the bitmap name and 3 lines of face info
		fprintf(m_pfile, "%s\n", szBitmapName);
		fprintf(m_pfile, "%3d %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f\n",
				iNodeV0, v0.x, v0.y, v0.z,
				pt3Vertex0Normal.x, pt3Vertex0Normal.y, pt3Vertex0Normal.z,
				UVvertex0.x, UVvertex0.y);
		fprintf(m_pfile, "%3d %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f\n",
				iNodeV1, v1.x, v1.y, v1.z,
				pt3Vertex1Normal.x, pt3Vertex1Normal.y, pt3Vertex1Normal.z,
				UVvertex1.x, UVvertex1.y);
		fprintf(m_pfile, "%3d %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f\n",
				iNodeV2, v2.x, v2.y, v2.z,
				pt3Vertex2Normal.x, pt3Vertex2Normal.y, pt3Vertex2Normal.z,
				UVvertex2.x, UVvertex2.y);
	}

	cleanup( );	
	return TREE_CONTINUE;
}
// --[  Method  ]---------------------------------------------------------------
//
//  - Class     : CStravaganzaMaxTools
//
//  - prototype : bool BuildShaders()
//
//  - Purpose   : Builds the shader list from MAX's materials.
//                Preview mode requires texture files to be stored with full
//                path in order to load them. When we export, we only store the
//                filename. Another thing is that in the export mode, we copy
//                all textures into the path specified by the user if that
//                option is checked.
//
// -----------------------------------------------------------------------------
bool CStravaganzaMaxTools::BuildShaders()
{
	std::vector<Mtl*>::iterator it;

	assert(m_vecShaders.empty());

	if(!m_bPreview && m_bCopyTextures && m_strTexturePath == "")
	{
		CLogger::NotifyWindow("Textures won't be copied\nSpecify a valid output texture path first");
	}

	LOG.Write("\n\n-Building shaders: ");

	for(it = m_vecMaterials.begin(); it != m_vecMaterials.end(); ++it)
	{
		Mtl* pMaxMaterial = *it;
		assert(pMaxMaterial);

		LOG.Write("\n    %s", pMaxMaterial->GetName().data());
		CShaderStandard* pShaderStd = new CShaderStandard;
		pShaderStd->SetName(pMaxMaterial->GetName().data());

		// Properties

		StdMat2 *pMaxStandardMtl = NULL;
		StdMat2 *pMaxBakedMtl    = NULL;

		float fAlpha;

		if(pMaxMaterial->ClassID() == Class_ID(DMTL_CLASS_ID, 0))
		{
			pMaxStandardMtl = (StdMat2 *)pMaxMaterial;
		}
		else if(pMaxMaterial->ClassID() == Class_ID(BAKE_SHELL_CLASS_ID, 0))
		{
			pMaxStandardMtl = (StdMat2 *)pMaxMaterial->GetSubMtl(0);
			pMaxBakedMtl    = (StdMat2 *)pMaxMaterial->GetSubMtl(1);
		}

		if(pMaxStandardMtl)
		{
			// Standard material

			fAlpha = pMaxStandardMtl->GetOpacity(0);

			Shader* pMaxShader = pMaxStandardMtl->GetShader();

			CVector4 v4Specular = ColorToVector4(pMaxStandardMtl->GetSpecular(0), 0.0f) * pMaxShader->GetSpecularLevel(0, 0);

			pShaderStd->SetAmbient  (ColorToVector4(pMaxStandardMtl->GetAmbient(0),  0.0f));
			pShaderStd->SetDiffuse  (ColorToVector4(pMaxStandardMtl->GetDiffuse(0),  fAlpha));
			pShaderStd->SetSpecular (v4Specular);
			pShaderStd->SetShininess(pMaxShader->GetGlossiness(0, 0) * 128.0f);

			if(pMaxStandardMtl->GetTwoSided() == TRUE)
			{
				pShaderStd->SetTwoSided(true);
			}

			// Need to cast to StdMat2 in order to get access to IsFaceted().
			// ¿Is StdMat2 always the interface for standard materials?
			if(((StdMat2*)pMaxStandardMtl)->IsFaceted())
			{
				pShaderStd->SetFaceted(true);
			}

			if(pMaxStandardMtl->GetWire() == TRUE)
			{
				pShaderStd->SetPostWire(true);
				pShaderStd->SetWireLineThickness(pMaxStandardMtl->GetWireSize(0));
			}
		}
		else
		{
			// Material != Standard

			fAlpha = 1.0f; // pMaxMaterial->GetXParency();

			pShaderStd->SetAmbient  (ColorToVector4(pMaxMaterial->GetAmbient(),  0.0f));
			pShaderStd->SetDiffuse  (ColorToVector4(pMaxMaterial->GetDiffuse(),  fAlpha));
			pShaderStd->SetSpecular (CVector4(0.0f, 0.0f, 0.0f, 0.0f));
			pShaderStd->SetShininess(0.0f);
		}

		// Layers

		if(!pMaxStandardMtl)
		{
			m_vecShaders.push_back(pShaderStd);
			continue;
		}

		bool bDiffuseMap32Bits = false;
		StdMat2 *pStandardMtl;

		for(int i = 0; i < 3; i++)
		{
			int nMap;

			pStandardMtl = pMaxStandardMtl;

			// 0 = diffuse, 1 == bump, 2 = lightmap (self illumination slot) or envmap (reflection slot)

			if(i == 0)
			{
				nMap = ID_DI;
			}
			else if(i == 1)
			{
				nMap = ID_BU;

				// If its a baked material, get the bump map from there

				if(pMaxBakedMtl)
				{
					pStandardMtl = pMaxBakedMtl;
				}
			}
			else if(i == 2)
			{
				bool bBaked = false;

				// If its a baked material, get the map2 (lightmap) from there

				if(pMaxBakedMtl)
				{
					if(pMaxBakedMtl->GetMapState(ID_SI) == MAXMAPSTATE_ENABLED)
					{
						bBaked       = true;
						nMap         = ID_SI;
						pStandardMtl = pMaxBakedMtl;
					}
				}

				if(!bBaked)
				{
					if(pStandardMtl->GetMapState(ID_SI) == MAXMAPSTATE_ENABLED)
					{
						nMap = ID_SI;
					}
					else
					{
						nMap = ID_RL;
					}
				}
			}

			// Check validity

			if(pStandardMtl->GetMapState(nMap) != MAXMAPSTATE_ENABLED)
			{
				if(i == 0)
				{
					LOG.Write("\n        No diffuse. Skipping.");
					break;
				}

				continue;
			}

			Texmap* pMaxTexmap = pStandardMtl->GetSubTexmap(nMap);

			if(!pMaxTexmap)
			{
				if(i == 0)
				{
					LOG.Write("\n        No diffuse. Skipping.");
					break;
				}

				continue;
			}

			// Get texmaps

			std::vector<std::string> vecTextures, vecPaths;

			CShaderStandard::SLayerInfo  layerInfo;
			CShaderStandard::SBitmapInfo bitmapInfo;

			if(pMaxTexmap->ClassID() == Class_ID(BMTEX_CLASS_ID, 0))
			{
				BitmapTex* pMaxBitmapTex = (BitmapTex*)pMaxTexmap;
				Bitmap*    pMaxBitmap    = pMaxBitmapTex->GetBitmap(SECONDS_TO_TICKS(m_fStartTime));
				StdUVGen*  pMaxUVGen     = pMaxBitmapTex->GetUVGen();

				if(!pMaxBitmap)
				{
					if(i == 0)
					{
						LOG.Write("\n        Invalid diffuse. Skipping.");
						break;
					}
					continue;
				}

				assert(pMaxUVGen);

				BitmapInfo bi = pMaxBitmap->Storage()->bi;

				// bi.Name() returns the full path
				// bi.Filename() returns just the filename

				vecTextures.push_back(bi.Filename());
				vecPaths.   push_back(bi.Name());

				LOG.Write("\n        Bitmap %s", vecTextures[0].data());

				// Check if diffuse texture has alpha channel

				if(i == 0)
				{
					CBitmap    bitmap;
					CInputFile bitmapFile;

					if(!bitmapFile.Open(bi.Name(), false))
					{
						CLogger::NotifyWindow("WARNING - CStravaganzaMaxTools::BuildShaders():\nUnable to load file %s", bi.Name());
					}
					else
					{
						if(!bitmap.Load(&bitmapFile, GetFileExt(bi.Name())))
						{
							CLogger::NotifyWindow("WARNING - CStravaganzaMaxTools::BuildShaders():\nUnable to load bitmap %s", bi.Name());
						}
						else
						{
							if(bitmap.GetBpp() == 32)
							{
								bDiffuseMap32Bits = true;
								LOG.Write(" (with alpha channel)");
							}
							bitmap.Free();
						}
						bitmapFile.Close();
					}
				}

				// Ok, copy properties

				layerInfo.texInfo.bLoop        = false;
				layerInfo.texInfo.eTextureType = UtilGL::Texturing::CTexture::TEXTURE2D;

				bitmapInfo.strFile         = m_bPreview ? bi.Name() : bi.Filename();
				bitmapInfo.bTile           = ((pMaxUVGen->GetTextureTiling() & (U_WRAP | V_WRAP)) == (U_WRAP | V_WRAP)) ? true : false;
				bitmapInfo.fSeconds        = 0.0f;
				bitmapInfo.bForceFiltering = false;
				bitmapInfo.eFilter         = UtilGL::Texturing::FILTER_TRILINEAR; // won't be used (forcefiltering = false)
				
				layerInfo.texInfo.m_vecBitmaps.push_back(bitmapInfo);

				layerInfo.eTexEnv          = nMap == ID_RL ? CShaderStandard::TEXENV_ADD : CShaderStandard::TEXENV_MODULATE;
				layerInfo.eUVGen           = pMaxUVGen->GetCoordMapping(0) == UVMAP_SPHERE_ENV ? CShaderStandard::UVGEN_ENVMAPPING : CShaderStandard::UVGEN_EXPLICITMAPPING;
				layerInfo.uMapChannel      = pMaxUVGen->GetMapChannel();
				layerInfo.v3ScrollSpeed    = CVector3(0.0f, 0.0f, 0.0f);
				layerInfo.v3RotationSpeed  = CVector3(0.0f, 0.0f, 0.0f);
				layerInfo.v3ScrollOffset   = CVector3(pMaxUVGen->GetUOffs(0), pMaxUVGen->GetVOffs(0), 0.0f);
				layerInfo.v3RotationOffset = CVector3(pMaxUVGen->GetUAng(0),  pMaxUVGen->GetVAng(0),  pMaxUVGen->GetWAng(0));
			}
			else if(pMaxTexmap->ClassID() == Class_ID(ACUBIC_CLASS_ID, 0))
			{
				ACubic*       pMaxCubic  = (ACubic*)pMaxTexmap;
				IParamBlock2* pBlock     = pMaxCubic->pblock;
				Interval      validRange = m_pMaxInterface->GetAnimRange();

				for(int nFace = 0; nFace < 6; nFace++)
				{
					int nMaxFace;

					switch(nFace)
					{
					case 0: nMaxFace = 3; break;
					case 1: nMaxFace = 2; break;
					case 2: nMaxFace = 1; break;
					case 3: nMaxFace = 0; break;
					case 4: nMaxFace = 5; break;
					case 5: nMaxFace = 4; break;
					}

					TCHAR *name;
					pBlock->GetValue(acubic_bitmap_names, TICKS_TO_SECONDS(m_fStartTime), name, validRange, nMaxFace);

					vecPaths.push_back(name);

					CStr path, file, ext;
					SplitFilename(CStr(name), &path, &file, &ext);

					std::string strFile = std::string(file.data()) + ext.data();

					vecTextures.push_back(strFile);

					bitmapInfo.strFile         = m_bPreview ? name : strFile;
					bitmapInfo.bTile           = false;
					bitmapInfo.fSeconds        = 0.0f;
					bitmapInfo.bForceFiltering = false;
					bitmapInfo.eFilter         = UtilGL::Texturing::FILTER_TRILINEAR;
					
					layerInfo.texInfo.m_vecBitmaps.push_back(bitmapInfo);
				}

				layerInfo.texInfo.bLoop        = false;
				layerInfo.texInfo.eTextureType = UtilGL::Texturing::CTexture::TEXTURECUBEMAP;

				layerInfo.eTexEnv          = nMap == ID_RL ? CShaderStandard::TEXENV_ADD : CShaderStandard::TEXENV_MODULATE;
				layerInfo.eUVGen           = CShaderStandard::UVGEN_ENVMAPPING;
				layerInfo.uMapChannel      = 0;
				layerInfo.v3ScrollSpeed    = CVector3(0.0f, 0.0f, 0.0f);
				layerInfo.v3RotationSpeed  = CVector3(0.0f, 0.0f, 0.0f);
				layerInfo.v3ScrollOffset   = CVector3(0.0f, 0.0f, 0.0f);
				layerInfo.v3RotationOffset = CVector3(0.0f, 0.0f, 0.0f);
			}
			else
			{
				if(i == 0)
				{
					LOG.Write("\n        No diffuse. Skipping.");
					break;
				}
				continue;
			}

			if(!m_bPreview && m_bCopyTextures && m_strTexturePath != "")
			{
				for(int nTex = 0; nTex != vecTextures.size(); nTex++)
				{
					// Copy textures into the specified folder

					std::string strDestPath = m_strTexturePath;

					if(strDestPath[strDestPath.length() - 1] != '\\')
					{
						strDestPath.append("\\", 1);
					}

					strDestPath.append(vecTextures[nTex]);

					if(!CopyFile(vecPaths[nTex].data(), strDestPath.data(), FALSE))
					{
						CLogger::NotifyWindow("Unable to copy %s to\n%s", vecPaths[i], strDestPath.data());
					}
				}
			}

			if(layerInfo.eUVGen == CShaderStandard::UVGEN_ENVMAPPING && i == 1)
			{
				CLogger::NotifyWindow("%s : Bump with spheremapping not supported", pShaderStd->GetName().data());
			}
			else
			{
				// Add layer

				switch(i)
				{
				case 0: pShaderStd->SetLayer(CShaderStandard::LAYER_DIFF, layerInfo); break;
				case 1: pShaderStd->SetLayer(CShaderStandard::LAYER_BUMP, layerInfo); break;
				case 2: pShaderStd->SetLayer(CShaderStandard::LAYER_MAP2, layerInfo); break;
				}
			}
		}

		// ¿Do we need blending?

		if(ARE_EQUAL(fAlpha, 1.0f) && !bDiffuseMap32Bits)
		{
			pShaderStd->SetBlendSrcFactor(UtilGL::States::BLEND_ONE);
			pShaderStd->SetBlendDstFactor(UtilGL::States::BLEND_ZERO);
		}
		else
		{
			pShaderStd->SetBlendSrcFactor(UtilGL::States::BLEND_SRCALPHA);
			pShaderStd->SetBlendDstFactor(UtilGL::States::BLEND_INVSRCALPHA);
		}

		// Add shader

		m_vecShaders.push_back(pShaderStd);
	}

	return true;
}
//----------------------------------------------------------------------------
void SceneBuilder::ConvertMaterial (Mtl &mtl, MtlTree &mtlTree)
{
	// 光照属性
	PX2::Shine *shine = new0 PX2::Shine;
	Color color = mtl.GetAmbient();
	float alpha = 1.0f - mtl.GetXParency();
	shine->Ambient = PX2::Float4(color.r, color.g, color.b, 1.0f);
	color = mtl.GetDiffuse();
	shine->Diffuse = PX2::Float4(color.r, color.g, color.b, alpha);
	color = mtl.GetSpecular();
	float shininess = mtl.GetShininess()*2.0f;
	shine->Specular = PX2::Float4(color.r, color.g, color.b, shininess);

	const char *name = (const char*)mtl.GetName();
	shine->SetName(name);

	mtlTree.SetShine(shine);

	bool IsDirect9Shader = false;

	if (mtl.ClassID() == Class_ID(CMTL_CLASS_ID, 0)
		|| mtl.ClassID() == Class_ID(DMTL_CLASS_ID, 0))
	{
		StdMat2 *stdMat2 = (StdMat2*)(&mtl);
		Interval valid = FOREVER;
		stdMat2->Update(mTimeStart, valid);

		std::string strName(stdMat2->GetName());
		bool doubleSide = (stdMat2->GetTwoSided()==1);

		char strBitMapName[256];
		memset(strBitMapName, 0, 256*sizeof(char));
		std::string resourcePath;

		PX2::Shader::SamplerFilter filter = PX2::Shader::SF_LINEAR_LINEAR;
		PX2::Shader::SamplerCoordinate uvCoord = PX2::Shader::SC_REPEAT;
		PX2_UNUSED(uvCoord);

		if (stdMat2->MapEnabled(ID_DI))
		{
			BitmapTex *tex = (BitmapTex*)stdMat2->GetSubTexmap(ID_DI);

			BitmapInfo bI;
			const char *mapName = tex->GetMapName();
			TheManager->GetImageInfo(&bI, mapName);
			strcpy(strBitMapName, bI.Name());

			std::string fullName = std::string(strBitMapName);
			std::string::size_type sizeT = fullName.find_first_not_of(mSettings->SrcRootDir);
			resourcePath = std::string(strBitMapName).substr(sizeT);

			StdUVGen* uvGen = tex->GetUVGen();
			PX2_UNUSED(uvGen);
			int filType = tex->GetFilterType();
			switch (filType)
			{
				case FILTER_PYR:
					filter = PX2::Shader::SF_LINEAR_LINEAR;
					break;
				case FILTER_SAT:
					filter = PX2::Shader::SF_NEAREST;
					break;
				default:
					break;
			}
		}
		else
		{
			sprintf(strBitMapName, "%s/%s", mSettings->SrcRootDir, PX2_DEFAULT_TEXTURE);
			resourcePath = PX2_DEFAULT_TEXTURE;
		}

		PX2::Texture2D *tex2d = PX2::DynamicCast<PX2::Texture2D>(
			PX2::ResourceManager::GetSingleton().BlockLoad(strBitMapName));
		tex2d->SetResourcePath(resourcePath);

		if (tex2d)
		{
			PX2::Texture2DMaterial *tex2dMtl = new0 PX2::Texture2DMaterial(filter, 
				uvCoord, uvCoord);
			if (doubleSide)
			{
				tex2dMtl->GetCullProperty(0, 0)->Enabled = false;
			}

			PX2::MaterialInstance *instance = tex2dMtl->CreateInstance(tex2d);

			mtlTree.SetMaterialInstance(instance);
		}
		else
		{
			PX2::VertexColor4Material *vcMtl = new0 PX2::VertexColor4Material();
			PX2::MaterialInstance *instance = vcMtl->CreateInstance();
			mtlTree.SetMaterialInstance(instance);
		}
	}
	else if (mtl.ClassID() == Class_ID(MULTI_CLASS_ID, 0))
	{
	}
	else if (mtl.ClassID() == DIRECTX_9_SHADER_CLASS_ID)
	{
		IsDirect9Shader = true;

		IDxMaterial* dxMtl = (IDxMaterial*)mtl.GetInterface(IDXMATERIAL_INTERFACE);
		char *effectName = dxMtl->GetEffectFilename();
		IParamBlock2 *paramBlock = mtl.GetParamBlock(0);

		std::string outPath;
		std::string outBaseName;
		std::string outExtention;
		PX2::StringHelp::SplitFullFilename(effectName, outPath, outBaseName,
			outExtention);

		PX2::ShinePtr shineStandard = new0 PX2::Shine();
		bool alphaVertex = false;
		PX2::Texture2DPtr diffTex;
		bool normalEnable = false;
		PX2::Texture2DPtr normalTex;
		float normalScale = 0.0f;
		bool specEnable = false;
		PX2::Texture2DPtr specTex;
		float specPower = 0.0f;
		bool reflectEnable = false;
		PX2::TextureCubePtr reflectTex;
		float reflectPower = 0.0f;
		bool doubleSide = false;
		int blendMode = 2;

		ParamBlockDesc2 *paramDesc = 0;
		int numParam = 0;
		if (paramBlock)
		{
			paramDesc = paramBlock->GetDesc();
			numParam = paramBlock->NumParams();

			ParamType2 paramType;
			for (int i=0; i<numParam; i++)
			{
				std::string parmName;
				PX2::Float4 color4 = PX2::Float4(0.0f, 0.0f, 0.0f, 0.0f);
				PX2::Float3 color3 = PX2::Float3(0.0f, 0.0f, 0.0f);
				float floatValue = 0.0f;
				bool boolValue = false;
				float *floatTable = 0;
				int intValue = 0;
				std::string str;
				PX2::Texture2D *tex2d = 0;

				paramType = paramBlock->GetParameterType((ParamID)i);

				if (TYPE_STRING == paramType)
					ConvertStringAttrib(paramBlock, i, parmName, str);
				else if (TYPE_FLOAT == paramType)
					ConvertFloatAttrib(paramBlock, i, parmName, floatValue);
				else if (TYPE_INT == paramType)
					ConvertIntAttrib(paramBlock, i, parmName, intValue);
				else if (TYPE_RGBA == paramType)
					ConvertColorAttrib(paramBlock, i, parmName, color4, i);
				else if (TYPE_POINT3 == paramType)
					ConvertPoint3Attrib(paramBlock, i, parmName, color3);
				else if (TYPE_POINT4 == paramType)
					ConvertPoint4Attrib(paramBlock, i, parmName, color4);
				else if (TYPE_BOOL == paramType)
					ConvertBoolAttrib(paramBlock, i, parmName, boolValue);
				else if (TYPE_FLOAT_TAB == paramType)
					ConvertFloatTabAttrib(paramBlock, i, parmName, floatTable);
				else if (TYPE_BITMAP == paramType)
					ConvertBitMapAttrib(paramBlock, i, parmName, tex2d);
				else if (TYPE_FRGBA ==paramType)
					ConvertFRGBAAttrib(paramBlock, i, parmName, color4);

				// shine
				if (parmName == "gBlendMode")
				{
					blendMode = intValue;
				}
				else if (parmName == "gShineEmissive")
				{
					shineStandard->Emissive = color4;
				}
				else if (parmName == "gShineAmbient")
				{
					shineStandard->Ambient = color4;
				}
				else if (parmName == "gShineDiffuse")
				{
					shineStandard->Diffuse = color4;
				}
				// alpha vertex
				else if (parmName == "gAlphaVertex")
				{
					alphaVertex = boolValue;
				}
				// diffuse
				else if (parmName == "gDiffuseTexture")
				{
					diffTex = tex2d;
				}
				// normal
				else if (parmName == "gNormalEnable")
				{
					normalEnable = boolValue;
				}
				else if (parmName == "gNormalTexture")
				{
					normalTex = tex2d;
				}
				else if (parmName == "gNormalScale")
				{
					normalScale = floatValue;
				}
				// specular
				else if (parmName == "gSpecularEnable")
				{
					specEnable = boolValue;
				}
				else if (parmName == "gSpecularTexture")
				{
					specTex = tex2d;
				}
				else if (parmName == "gSpecularPower")
				{
					specPower = floatValue;
				}
				// reflect
				else if (parmName == "gReflectionEnable")
				{
					reflectEnable = boolValue;
				}
				else if (parmName == "gReflectTexture")
				{
					//reflectTex = tex2d;
				}
				else if (parmName == "gReflectPower")
				{
					reflectPower = floatValue;
				}
				// other
				else if (parmName == "gDoubleSide")
				{
					doubleSide = boolValue;
				}
			}
		}

		PX2::MaterialInstance *inst = 0;
		PX2::StandardMaterial *standardMtl = 0;
		PX2::StandardESMaterial_Default *standardESMtl_D = 0;
		PX2::StandardESMaterial_Specular *standardESMtl_S = 0;
		if (outBaseName == "Standard")
		{
			char mtlName[256];
			memset(mtlName, 0, 256*sizeof(char));
			sprintf(mtlName, "%s/%s", mSettings->DstRootDir, 
				"Data/mtls/Standard.pxfx");
			standardMtl = new0 PX2::StandardMaterial(mtlName);
		}
		else if (outBaseName == "StandardES")
		{
			if (false == specEnable)
			{
				standardESMtl_D = new0 PX2::StandardESMaterial_Default();

				if (0 == blendMode)
				{
					standardESMtl_D->GetAlphaProperty(0, 0)->BlendEnabled = false;
					standardESMtl_D->GetAlphaProperty(0, 0)->CompareEnabled = false;
				}
				else if (1 == blendMode)
				{
					standardESMtl_D->GetAlphaProperty(0, 0)->BlendEnabled = true;
				}
				else if (2 == blendMode)
				{
					standardESMtl_D->GetAlphaProperty(0, 0)->BlendEnabled = false;
					standardESMtl_D->GetAlphaProperty(0, 0)->CompareEnabled = true;
					standardESMtl_D->GetAlphaProperty(0, 0)->Compare = PX2::AlphaProperty::CM_GEQUAL;
					standardESMtl_D->GetAlphaProperty(0, 0)->Reference = 0.2f;
				}
			}
			else
			{
				char mtlName[256];
				memset(mtlName, 0, 256*sizeof(char));
				sprintf(mtlName, "%s/%s", mSettings->DstRootDir, 
					"Data/mtls/StandardES_Specular.pxfx");
				standardESMtl_S = new0 PX2::StandardESMaterial_Specular(mtlName);
			}
		}

		if (standardMtl && diffTex)
		{
			if (doubleSide)
			{
				standardMtl->GetCullProperty(0, 0)->Enabled = false;
			}

			inst = standardMtl->CreateInstance(diffTex, alphaVertex, 
				normalEnable, normalTex, normalScale, specEnable, specTex,
				specPower, 0, shineStandard);
		}
		else if (standardESMtl_D && diffTex)
		{
			if (doubleSide)
			{
				standardESMtl_D->GetCullProperty(0, 0)->Enabled = false;
			}

			inst = standardESMtl_D->CreateInstance(diffTex, 0, shineStandard);
		}
		else if (standardESMtl_S && diffTex && specTex)
		{
			if (doubleSide)
			{
				standardESMtl_S->GetCullProperty(0, 0)->Enabled = false;
			}

			inst = standardESMtl_S->CreateInstance(diffTex, specTex, specPower,
				0, shineStandard);
		}

		if (inst)
		{
			mtlTree.SetMaterialInstance(inst);
		}
		else
		{
			PX2::MaterialInstance *instance = 
				PX2::VertexColor4Material::CreateUniqueInstance();
			mtlTree.SetMaterialInstance(instance);
		}
	}
	else
	{
		PX2::VertexColor4Material *vcMtl = new0 PX2::VertexColor4Material();
		PX2::MaterialInstance *instance = vcMtl->CreateInstance();
		mtlTree.SetMaterialInstance(instance);
	}

	// 对子材质进行处理
	if (IsDirect9Shader)
		return;

	int mQuantity = mtl.NumSubMtls(); // Class_ID(MULTI_CLASS_ID, 0)
	if (mQuantity > 0)
	{
		mtlTree.SetMChildQuantity(mQuantity);
		for (int i=0; i<mQuantity; i++)
		{
			Mtl *subMtl = 0;
			subMtl = mtl.GetSubMtl(i);
			if (subMtl)
			{
				ConvertMaterial(*subMtl, mtlTree.GetMChild(i));
			}
		}
	}
}