void RandomPlacer::placeOneLevel(MultilevelGraph &MLG) { int level = MLG.getLevel(); DPoint center(0.0, 0.0); double radius = 0.0; Graph &G = MLG.getGraph(); double n = G.numberOfNodes(); if (n > 0) { for(node v : G.nodes) { center = center + DPoint( MLG.x(v), MLG.y(v) ); } center = DPoint(center.m_x / n, center.m_y / n); for(node v : G.nodes) { double r = sqrt( MLG.x(v) * MLG.x(v) + MLG.y(v) * MLG.y(v) ); if (r > radius) radius = r; } radius *= m_circleSizeFactor; } else { radius = 10.0 * m_circleSizeFactor; } while (MLG.getLevel() == level && MLG.getLastMerge() != nullptr) { placeOneNode(MLG, center, radius); } }
void RandomPlacer::placeOneNode(MultilevelGraph &MLG, DPoint center, double radius) { node merged = MLG.undoLastMerge(); float angle = (float)randomDouble(0.0, 2 * Math::pi); float randRadius = float(sqrt(randomDouble(0.0, radius * radius))); MLG.x(merged, cos(angle) * randRadius + ((m_randomOffset)?(float)randomDouble(-1.0, 1.0):0.f)); MLG.y(merged, sin(angle) * randRadius + ((m_randomOffset)?(float)randomDouble(-1.0, 1.0):0.f)); }
void ZeroPlacer::placeOneLevel(MultilevelGraph &MLG) { int level = MLG.getLevel(); while (MLG.getLevel() == level && MLG.getLastMerge() != 0) { placeOneNode(MLG); } }
void BarycenterPlacer::placeOneLevel(MultilevelGraph &MLG) { int level = MLG.getLevel(); while (MLG.getLevel() == level && MLG.getLastMerge() != nullptr) { placeOneNode(MLG); } }
void MedianPlacer::placeOneNode(MultilevelGraph &MLG) { node merged = MLG.undoLastMerge(); int i = 0; std::vector<double> xVector; std::vector<double> yVector; adjEntry adj; forall_adj(adj, merged) { i++; xVector.push_back(MLG.x(adj->twinNode())); yVector.push_back(MLG.y(adj->twinNode())); }
void RandomPlacer::placeOneLevel(MultilevelGraph &MLG) { int level = MLG.getLevel(); DPoint center(0.0, 0.0); double radius = 0.0; Graph &G = MLG.getGraph(); double n = G.numberOfNodes(); if (n > 0) { node v; forall_nodes(v, G) { center = center + DPoint( MLG.x(v), MLG.y(v) ); }
void MultilevelGraph::reInsertGraph(MultilevelGraph &MLG) { std::map<node, node> tempNodeAssociations; for(node v : MLG.m_G->nodes) { MLG.copyNodeTo(v, *this, tempNodeAssociations, false, MLG.m_nodeAssociations[v]); } for(edge e : MLG.m_G->edges) { MLG.copyEdgeTo(e, *this, tempNodeAssociations, false, MLG.m_edgeAssociations[e]); } initReverseIndizes(); }
void BarycenterPlacer::placeOneNode(MultilevelGraph &MLG) { node merged = MLG.undoLastMerge(); double x = 0.0; double y = 0.0; double i = 0.0; for(adjEntry adj : merged->adjEdges) { if(m_weightedPositions) { double weight = 1.0 / MLG.weight(adj->theEdge()); i = i + weight; x += MLG.x(adj->twinNode()) * weight; y += MLG.y(adj->twinNode()) * weight; } else { i = i + 1.f; x += MLG.x(adj->twinNode()); y += MLG.y(adj->twinNode()); } } OGDF_ASSERT(i > 0); x = x / i; y = y / i; MLG.x(merged, x + ((m_randomOffset)?(float)randomDouble(-1.0, 1.0):0.f)); MLG.y(merged, y + ((m_randomOffset)?(float)randomDouble(-1.0, 1.0):0.f)); }
void CirclePlacer::placeOneLevel(MultilevelGraph &MLG) { int level = MLG.getLevel(); DPoint center(0.0, 0.0); float radius = 0.0; std::map<node, bool> oldNodes; Graph &G = MLG.getGraph(); double n = G.numberOfNodes(); if (n > 0) { node v; forall_nodes(v, G) { oldNodes[v] = true; center = center + DPoint( MLG.x(v), MLG.y(v) ); }
void IndependentSetMerger::buildAllLevels(MultilevelGraph &MLG) { m_numLevels = 1; MLG.updateReverseIndizes(); std::vector< std::vector<node> > levelNodes; Graph &G = MLG.getGraph(); // calc MIS NodeArray<bool> nodeMarks(G, false); std::vector<node> IScandidates; node v; forall_nodes(v, G) { IScandidates.push_back(v); }
void ModularMultilevelMixer::call(MultilevelGraph &MLG) { const Graph &G = MLG.getGraph(); m_errorCode = ercNone; clock_t time = clock(); if ((m_multilevelBuilder.valid() == false || m_initialPlacement.valid() == false) && m_oneLevelLayoutModule.valid() == false) { OGDF_THROW(AlgorithmFailureException); } if (m_fixedEdgeLength > 0.0) { edge e; forall_edges(e,G) { MLG.weight(e, m_fixedEdgeLength); }
void MultilevelGraph::copyNodeTo(node v, MultilevelGraph &MLG, std::map<node, node> &tempNodeAssociations, bool associate, int index) { node v_new; if (index == -1) { v_new = MLG.m_G->newNode(); } else { v_new = MLG.m_G->newNode(index); } tempNodeAssociations[v] = v_new; if(associate) { MLG.m_nodeAssociations[v_new] = v->index(); } MLG.m_radius[v_new] = m_radius[v]; MLG.x(v_new, x(v)); MLG.y(v_new, y(v)); }
bool RandomMerger::buildOneLevel(MultilevelGraph &MLG) { Graph &G = MLG.getGraph(); int level = MLG.getLevel() + 1; int numNodes = G.numberOfNodes(); if (numNodes <= 3) { return false; } node v; int index = 0; Array<node> candidates(numNodes); forall_nodes(v, G) { candidates[index] = v; index++; }
MultilevelGraph * MultilevelGraph::removeOneCC(std::vector<node> &componentSubArray) { MultilevelGraph * MLGcomponent = new MultilevelGraph(); std::map<node, node> tempNodeAssociations; // copy nodes for (node v : componentSubArray) { copyNodeTo(v, *MLGcomponent, tempNodeAssociations, true); } // move edges for (node v : componentSubArray) { #if 0 std::vector<edge> toDelete; #endif for(adjEntry adj : v->adjEntries) { edge e = adj->theEdge(); if (e->source() == v) { copyEdgeTo(e, *MLGcomponent, tempNodeAssociations, true); #if 0 toDelete.push_back(e); #endif } } #if 0 // Test if this is good for Performace. // makes Assert Edges == 0 fail! // Because of self loops! for(std::vector<edge>::iterator j = toDelete.begin(); j != toDelete.end(); j++) { m_G->delEdge(*j); } #endif } tempNodeAssociations.clear(); // delete nodes for (node v : componentSubArray) { m_G->delNode(v); } MLGcomponent->initReverseIndizes(); return MLGcomponent; }
void ZeroPlacer::placeOneNode(MultilevelGraph &MLG) { NodeMerge * NM = MLG.getLastMerge(); node parent = MLG.getNode(NM->m_changedNodes[0]); node merged = MLG.undoLastMerge(); MLG.x(merged, MLG.x(parent) + ((m_randomOffset)?(float)randomDouble(-m_randomRange, m_randomRange):0.f)); MLG.y(merged, MLG.y(parent) + ((m_randomOffset)?(float)randomDouble(-m_randomRange, m_randomRange):0.f)); }
std::vector<node> SolarMerger::selectSuns(MultilevelGraph &MLG) { Graph &G = MLG.getGraph(); std::vector<node> suns; std::vector<node> candidates; node v; forall_nodes(v, G) { candidates.push_back(v); }
bool RandomMerger::buildOneLevel(MultilevelGraph &MLG) { Graph &G = MLG.getGraph(); int level = MLG.getLevel() + 1; int numNodes = G.numberOfNodes(); if (numNodes <= 3) { return false; } int index = 0; Array<node> candidates(numNodes); for(node v : G.nodes) { candidates[index] = v; index++; } int candSize = candidates.size(); while (candSize > numNodes / m_levelSizeFactor) { index = randomNumber(0, candSize-1); node mergeNode = candidates[index]; candidates[index] = candidates[candSize-1]; candSize--; node parent = nullptr; if (mergeNode->degree() > 0) { int index = randomNumber(0, mergeNode->degree()-1); int i = 0; for(adjEntry adj : mergeNode->adjEntries) { if (i == index) { parent = adj->twinNode(); break; } else { i++; } } } else { do { index = randomNumber(0, candSize-1); parent = candidates[index]; } while (parent == mergeNode); candidates[index] = candidates[candSize-1]; candSize--; } NodeMerge * NM = new NodeMerge(level); bool ret = MLG.changeNode(NM, parent, MLG.radius(parent), mergeNode); OGDF_ASSERT( ret ); MLG.moveEdgesToParent(NM, mergeNode, parent, true, m_adjustEdgeLengths); ret = MLG.postMerge(NM, mergeNode); if( !ret ) { delete NM; } } return true; }
bool MatchingMerger::buildOneLevel(MultilevelGraph &MLG) { Graph &G = MLG.getGraph(); int level = MLG.getLevel() + 1; int numNodes = G.numberOfNodes(); if (level == 1 && m_selectByMass) { m_mass.init(G, 1); } if (numNodes <= 3) { return false; } NodeArray<bool> nodeMarks(G, false); std::vector<edge> matching; std::vector<node> candidates; node v; forall_nodes(v, G) { candidates.push_back(v); }
bool MatchingMerger::buildOneLevel(MultilevelGraph &MLG) { Graph &G = MLG.getGraph(); int level = MLG.getLevel() + 1; int numNodes = G.numberOfNodes(); if (level == 1 && m_selectByMass) { m_mass.init(G, 1); } if (numNodes <= 3) { return false; } NodeArray<bool> nodeMarks(G, false); std::vector<edge> matching; std::vector<node> candidates; for(node v : G.nodes) { candidates.push_back(v); } while (!candidates.empty()) { int rndIndex = randomNumber(0, (int)candidates.size()-1); node one = candidates[rndIndex]; candidates[rndIndex] = candidates.back(); candidates.pop_back(); if (nodeMarks[one]) { continue; } nodeMarks[one] = true; std::vector<node> candNeighbors; std::vector<edge> candEdges; unsigned int minMass = numeric_limits<unsigned int>::max(); for(adjEntry adj : one->adjEntries) { node cand = adj->twinNode(); if (!nodeMarks[cand] && (!m_selectByMass || m_mass[cand] <= minMass)) { if (m_selectByMass && m_mass[cand] < minMass) { minMass = m_mass[cand]; candNeighbors.clear(); candEdges.clear(); } candNeighbors.push_back(cand); candEdges.push_back(adj->theEdge()); } } if (candNeighbors.empty()) { continue; } int index = randomNumber(0, int(candNeighbors.size())-1); nodeMarks[candNeighbors[index]] = true; matching.push_back(candEdges[index]); } while (!matching.empty()) { edge matchingEdge = matching.back(); matching.pop_back(); node mergeNode; node parent; // choose high degree node as parent! mergeNode = matchingEdge->source(); parent = matchingEdge->target(); if (mergeNode->degree() > parent->degree()) { mergeNode = matchingEdge->target(); parent = matchingEdge->source(); } NodeMerge * NM = new NodeMerge(level); bool ret = MLG.changeNode(NM, parent, MLG.radius(parent), mergeNode); OGDF_ASSERT( ret ); if (m_selectByMass) { m_mass[parent] = m_mass[parent] + m_mass[mergeNode]; } MLG.moveEdgesToParent(NM, mergeNode, parent, true, m_adjustEdgeLengths); ret = MLG.postMerge(NM, mergeNode); if( !ret ) { delete NM; } } return true; }
void SolarPlacer::placeOneNode(MultilevelGraph &MLG) { NodeMerge * lastNM = MLG.getLastMerge(); double x = 0.0; double y = 0.0; int i = 0; node sun = MLG.getNode(lastNM->m_changedNodes.front()); std::vector< std::pair<int, double> > positions = lastNM->m_position; node merged = MLG.undoLastMerge(); if (positions.size() > 0) { for (const std::pair<int, double> &p : positions) { double factor = p.second; node other_sun = MLG.getNode(p.first); i++; x += MLG.x(sun) * factor + MLG.x(other_sun) * (1.0f-factor); y += MLG.y(sun) * factor + MLG.y(other_sun) * (1.0f-factor); } } else { i++; x += MLG.x(sun); y += MLG.y(sun); } OGDF_ASSERT(i > 0); if (positions.size() == 0 || m_randomOffset) { x += randomDouble(-1.0, 1.0); y += randomDouble(-1.0, 1.0); } MLG.x(merged, (x / static_cast<double>(i))); MLG.y(merged, (y / static_cast<double>(i))); }
void FastMultipoleEmbedder::call(MultilevelGraph &MLG) { Graph &G = MLG.getGraph(); call(G, MLG.getXArray(), MLG.getYArray(), MLG.getWArray(), MLG.getRArray()); }
void SolarPlacer::placeOneNode(MultilevelGraph &MLG) { NodeMerge * lastNM = MLG.getLastMerge(); float x = 0.0; float y = 0.0; int i = 0; node sun = MLG.getNode(lastNM->m_changedNodes.front()); std::vector< std::pair<int, float> > positions = lastNM->m_position; node merged = MLG.undoLastMerge(); if (positions.size() > 0) { for (std::vector< std::pair<int, float> >::iterator j = positions.begin(); j != positions.end(); j++) { float factor = (*j).second; node other_sun = MLG.getNode((*j).first); i++; x += MLG.x(sun) * factor + MLG.x(other_sun) * (1.0f-factor); y += MLG.y(sun) * factor + MLG.y(other_sun) * (1.0f-factor); } } else { i++; x += MLG.x(sun); y += MLG.y(sun); } OGDF_ASSERT(i > 0); if (positions.size() == 0 || m_randomOffset) { x += (float)randomDouble(-1.0, 1.0); y += (float)randomDouble(-1.0, 1.0); } MLG.x(merged, (x / static_cast<float>(i))); MLG.y(merged, (y / static_cast<float>(i))); }