GEODE_NEVER_INLINE static void add_constraint_edges(MutableTriangleTopology& mesh, RawField<const EV,VertexId> X, RawArray<const Vector<int,2>> edges, const bool validate) { if (!edges.size()) return; IntervalScope scope; Hashtable<Vector<VertexId,2>> constrained; Array<VertexId> left_cavity, right_cavity; // List of vertices for both cavities const auto random = new_<Random>(key+7); for (int i=0;i<edges.size();i++) { // Randomly choose an edge to ensure optimal time complexity const auto edge = edges[int(random_permute(edges.size(),key+5,i))].sorted(); auto v0 = VertexId(edge.x), v1 = VertexId(edge.y); const auto vs = vec(v0,v1); GEODE_ASSERT(mesh.valid(v0) && mesh.valid(v1)); { // Check if the edge already exists in the triangulation. To ensure optimal complexity, // we loop around both vertices interleaved so that our time is O(min(degree(v0),degree(v1))). const auto s0 = mesh.halfedge(v0), s1 = mesh.halfedge(v1); { auto e0 = s0, e1 = s1; do { if (mesh.dst(e0)==v1 || mesh.dst(e1)==v0) goto success; // The edge already exists, so there's nothing to be done. e0 = mesh.left(e0); e1 = mesh.left(e1); } while (e0!=s0 && e1!=s1); } // Find a triangle touching v0 or v1 containing part of the v0-v1 segment. // As above, we loop around both vertices interleaved. auto e0 = s0; { auto e1 = s1; if (mesh.is_boundary(e0)) e0 = mesh.left(e0); if (mesh.is_boundary(e1)) e1 = mesh.left(e1); const auto x0 = Perturbed2(v0.id,X[v0]), x1 = Perturbed2(v1.id,X[v1]); const auto e0d = mesh.dst(e0), e1d = mesh.dst(e1); bool e0o = triangle_oriented(x0,Perturbed2(e0d.id,X[e0d]),x1), e1o = triangle_oriented(x1,Perturbed2(e1d.id,X[e1d]),x0); for (;;) { // No need to check for an end condition, since we're guaranteed to terminate const auto n0 = mesh.left(e0), n1 = mesh.left(e1); const auto n0d = mesh.dst(n0), n1d = mesh.dst(n1); const bool n0o = triangle_oriented(x0,Perturbed2(n0d.id,X[n0d]),x1), n1o = triangle_oriented(x1,Perturbed2(n1d.id,X[n1d]),x0); if (e0o && !n0o) break; if (e1o && !n1o) { // Swap v0 with v1 and e0 with e1 so that our ray starts at v0 swap(v0,v1); swap(e0,e1); break; } e0 = n0; e1 = n1; e0o = n0o; e1o = n1o; } } // If we only need to walk one step, the retriangulation is a single edge flip auto cut = mesh.reverse(mesh.next(e0)); if (mesh.dst(mesh.next(cut))==v1) { if (constrained.contains(vec(mesh.src(cut),mesh.dst(cut)).sorted())) throw DelaunayConstraintConflict(vec(v0.id,v1.id),vec(mesh.src(cut).id,mesh.dst(cut).id)); cut = mesh.flip_edge(cut); goto success; } // Walk from v0 to v1, collecting the two cavities. const auto x0 = Perturbed2(v0.id,X[v0]), x1 = Perturbed2(v1.id,X[v1]); right_cavity.copy(vec(v0,mesh.dst(cut))); left_cavity .copy(vec(v0,mesh.src(cut))); mesh.erase(mesh.face(e0)); for (;;) { if (constrained.contains(vec(mesh.src(cut),mesh.dst(cut)).sorted())) throw DelaunayConstraintConflict(vec(v0.id,v1.id),vec(mesh.src(cut).id,mesh.dst(cut).id)); const auto n = mesh.reverse(mesh.next(cut)), p = mesh.reverse(mesh.prev(cut)); const auto v = mesh.src(n); mesh.erase(mesh.face(cut)); if (v == v1) { left_cavity.append(v); right_cavity.append(v); break; } else if (triangle_oriented(x0,x1,Perturbed2(v.id,X[v]))) { left_cavity.append(v); cut = n; } else { right_cavity.append(v); cut = p; } } // Retriangulate both cavities left_cavity.reverse(); cavity_delaunay(mesh,X,left_cavity,random), cavity_delaunay(mesh,X,right_cavity,random); } success: constrained.set(vs); } // If desired, check that the final mesh is constrained Delaunay if (validate) assert_delaunay("constrained delaunay validate: ",mesh,X,constrained); }
// Delaunay retriangulate a triangle fan static void chew_fan(MutableTriangleTopology& parent_mesh, RawField<const Perturbed2,VertexId> X, const VertexId u, RawArray<HalfedgeId> fan, Random& random) { chew_fan_count_ += 1; #ifndef NDEBUG for (const auto e : fan) assert(parent_mesh.opposite(e)==u); for (int i=0;i<fan.size()-1;i++) GEODE_ASSERT(parent_mesh.src(fan[i])==parent_mesh.dst(fan[i+1])); #endif const int n = fan.size(); if (n < 2) return; chew_fan_count_ += 1024*n; // Collect vertices const Field<VertexId,VertexId> vertices(n+2,uninit); vertices.flat[0] = u; vertices.flat[1] = parent_mesh.src(fan[n-1]); for (int i=0;i<n;i++) vertices.flat[i+2] = parent_mesh.dst(fan[n-1-i]); // Delete original vertices for (const auto e : fan) parent_mesh.erase(parent_mesh.face(e)); // Make the vertices into a doubly linked list const Field<VertexId,VertexId> prev(n+2,uninit), next(n+2,uninit); prev.flat[0].id = n+1; next.flat[n+1].id = 0; for (int i=0;i<n+1;i++) { prev.flat[i+1].id = i; next.flat[i].id = i+1; } // Randomly shuffle the vertices, then pulling elements off the linked list in reverse order of our final shuffle. const Array<VertexId> pi(n+2,uninit); for (int i=0;i<n+2;i++) pi[i].id = i; random.shuffle(pi); for (int i=n+1;i>=0;i--) { const auto j = pi[i]; prev[next[j]] = prev[j]; next[prev[j]] = next[j]; } // Make a new singleton mesh const auto mesh = new_<MutableTriangleTopology>(); mesh->add_vertices(n+2); small_sort(pi[0],pi[1],pi[2]); mesh->add_face(vec(pi[0],pi[1],pi[2])); // Insert remaining vertices Array<HalfedgeId> work; for (int i=3;i<n+2;i++) { const auto j = pi[i]; const auto f = mesh->add_face(vec(j,next[j],prev[j])); work.append(mesh->reverse(mesh->opposite(f,j))); while (work.size()) { auto e = work.pop(); if ( !mesh->is_boundary(e) && incircle(X[vertices[mesh->src(e)]], X[vertices[mesh->dst(e)]], X[vertices[mesh->opposite(e)]], X[vertices[mesh->opposite(mesh->reverse(e))]])) { work.append(mesh->reverse(mesh->next(e))); work.append(mesh->reverse(mesh->prev(e))); e = mesh->unsafe_flip_edge(e); } } } // Copy triangles back to parent for (const auto f : mesh->faces()) { const auto vs = mesh->vertices(f); parent_mesh.add_face(vec(vertices[vs.x],vertices[vs.y],vertices[vs.z])); } }