示例#1
0
// ===========================================================================
// method definitions
// ===========================================================================
// ---------------------------------------------------------------------------
// static methods (interface in this case)
// ---------------------------------------------------------------------------
void
NIImporter_ArcView::loadNetwork(const OptionsCont& oc, NBNetBuilder& nb) {
    if (!oc.isSet("shapefile-prefix")) {
        return;
    }
    // check whether the correct set of entries is given
    //  and compute both file names
    std::string dbf_file = oc.getString("shapefile-prefix") + ".dbf";
    std::string shp_file = oc.getString("shapefile-prefix") + ".shp";
    std::string shx_file = oc.getString("shapefile-prefix") + ".shx";
    // check whether the files do exist
    if (!FileHelpers::isReadable(dbf_file)) {
        WRITE_ERROR("File not accessible: " + dbf_file);
    }
    if (!FileHelpers::isReadable(shp_file)) {
        WRITE_ERROR("File not accessible: " + shp_file);
    }
    if (!FileHelpers::isReadable(shx_file)) {
        WRITE_ERROR("File not accessible: " + shx_file);
    }
    if (MsgHandler::getErrorInstance()->wasInformed()) {
        return;
    }
    // load the arcview files
    NIImporter_ArcView loader(oc,
                              nb.getNodeCont(), nb.getEdgeCont(), nb.getTypeCont(),
                              dbf_file, shp_file, oc.getBool("speed-in-kmh"));
    loader.load();
}
示例#2
0
// ===========================================================================
// method definitions
// ===========================================================================
// ---------------------------------------------------------------------------
// static methods
// ---------------------------------------------------------------------------
void
NIImporter_DlrNavteq::loadNetwork(const OptionsCont& oc, NBNetBuilder& nb) {
    // check whether the option is set (properly)
    if (!oc.isSet("dlr-navteq-prefix")) {
        return;
    }
    time_t csTime;
    time(&csTime);
    // parse file(s)
    LineReader lr;
    // load nodes
    std::map<std::string, PositionVector> myGeoms;
    PROGRESS_BEGIN_MESSAGE("Loading nodes");
    std::string file = oc.getString("dlr-navteq-prefix") + "_nodes_unsplitted.txt";
    NodesHandler handler1(nb.getNodeCont(), file, myGeoms);
    if (!lr.setFile(file)) {
        throw ProcessError("The file '" + file + "' could not be opened.");
    }
    lr.readAll(handler1);
    PROGRESS_DONE_MESSAGE();

    // load street names if given and wished
    std::map<std::string, std::string> streetNames; // nameID : name
    if (oc.getBool("output.street-names")) {
        file = oc.getString("dlr-navteq-prefix") + "_names.txt";
        if (lr.setFile(file)) {
            PROGRESS_BEGIN_MESSAGE("Loading Street Names");
            NamesHandler handler4(file, streetNames);
            lr.readAll(handler4);
            PROGRESS_DONE_MESSAGE();
        } else {
            WRITE_WARNING("Output will not contain street names because the file '" + file + "' was not found");
        }
    }

    // load edges
    PROGRESS_BEGIN_MESSAGE("Loading edges");
    file = oc.getString("dlr-navteq-prefix") + "_links_unsplitted.txt";
    // parse the file
    EdgesHandler handler2(nb.getNodeCont(), nb.getEdgeCont(), nb.getTypeCont(), file, myGeoms, streetNames);
    if (!lr.setFile(file)) {
        throw ProcessError("The file '" + file + "' could not be opened.");
    }
    lr.readAll(handler2);
    nb.getEdgeCont().recheckLaneSpread();
    PROGRESS_DONE_MESSAGE();

    // load traffic lights if given
    file = oc.getString("dlr-navteq-prefix") + "_traffic_signals.txt";
    if (lr.setFile(file)) {
        PROGRESS_BEGIN_MESSAGE("Loading traffic lights");
        TrafficlightsHandler handler3(nb.getNodeCont(), nb.getTLLogicCont(), nb.getEdgeCont(), file);
        lr.readAll(handler3);
        PROGRESS_DONE_MESSAGE();
    }

    // load prohibited manoeuvres if given
    file = oc.getString("dlr-navteq-prefix") + "_prohibited_manoeuvres.txt";
    if (lr.setFile(file)) {
        PROGRESS_BEGIN_MESSAGE("Loading prohibited manoeuvres");
        ProhibitionHandler handler6(nb.getEdgeCont(), file, csTime);
        lr.readAll(handler6);
        PROGRESS_DONE_MESSAGE();
    }

    // load connected lanes if given
    file = oc.getString("dlr-navteq-prefix") + "_connected_lanes.txt";
    if (lr.setFile(file)) {
        PROGRESS_BEGIN_MESSAGE("Loading connected lanes");
        ConnectedLanesHandler handler7(nb.getEdgeCont());
        lr.readAll(handler7);
        PROGRESS_DONE_MESSAGE();
    }

    // load time restrictions if given
    file = oc.getString("dlr-navteq-prefix") + "_links_timerestrictions.txt";
    if (lr.setFile(file)) {
        PROGRESS_BEGIN_MESSAGE("Loading time restrictions");
        if (!oc.isDefault("construction-date")) {
            csTime = readDate(oc.getString("construction-date"));
        }
        TimeRestrictionsHandler handler5(nb.getEdgeCont(), nb.getDistrictCont(), csTime);
        lr.readAll(handler5);
        handler5.printSummary();
        PROGRESS_DONE_MESSAGE();
    }
}
void
NIImporter_OpenStreetMap::_loadNetwork(const OptionsCont& oc, NBNetBuilder& nb) {
    // check whether the option is set (properly)
    if (!oc.isSet("osm-files")) {
        return;
    }
    // preset types
    //  for highways
    NBTypeCont& tc = nb.getTypeCont();
    SUMOReal const WIDTH = NBEdge::UNSPECIFIED_WIDTH;
    tc.insert("highway.motorway",      3, (SUMOReal)(160./ 3.6), 13, WIDTH, SVC_UNKNOWN, true);
    tc.insert("highway.motorway_link", 1, (SUMOReal)(80. / 3.6), 12, WIDTH, SVC_UNKNOWN, true);
    tc.insert("highway.trunk",         2, (SUMOReal)(100./ 3.6), 11, WIDTH); // !!! 130km/h?
    tc.insert("highway.trunk_link",    1, (SUMOReal)(80. / 3.6), 10, WIDTH);
    tc.insert("highway.primary",       2, (SUMOReal)(100./ 3.6),  9, WIDTH);
    tc.insert("highway.primary_link",  1, (SUMOReal)(80. / 3.6),  8, WIDTH);
    tc.insert("highway.secondary",     2, (SUMOReal)(100./ 3.6),  7, WIDTH);
    tc.insert("highway.secondary_link",1, (SUMOReal)(80. / 3.6),  6, WIDTH);
    tc.insert("highway.tertiary",      1, (SUMOReal)(80. / 3.6),  6, WIDTH);
    tc.insert("highway.tertiary_link", 1, (SUMOReal)(80. / 3.6),  5, WIDTH);
    tc.insert("highway.unclassified",  1, (SUMOReal)(80. / 3.6),  5, WIDTH);
    tc.insert("highway.residential",   1, (SUMOReal)(50. / 3.6),  4, WIDTH); // actually, maybe one lane for parking would be nice...
    tc.insert("highway.living_street", 1, (SUMOReal)(10. / 3.6),  3, WIDTH);
    tc.insert("highway.service",       1, (SUMOReal)(20. / 3.6),  2, WIDTH, SVC_DELIVERY);
    tc.insert("highway.track",         1, (SUMOReal)(20. / 3.6),  1, WIDTH);
    tc.insert("highway.services",      1, (SUMOReal)(30. / 3.6),  1, WIDTH);
    tc.insert("highway.unsurfaced",    1, (SUMOReal)(30. / 3.6),  1, WIDTH); // unofficial value, used outside germany
    tc.insert("highway.footway",       1, (SUMOReal)(30. / 3.6),  1, WIDTH, SVC_PEDESTRIAN); 
    tc.insert("highway.pedestrian",    1, (SUMOReal)(30. / 3.6),  1, WIDTH, SVC_PEDESTRIAN);

    tc.insert("highway.path",          1, (SUMOReal)(10. / 3.6),  1, WIDTH, SVC_PEDESTRIAN);
    tc.insert("highway.bridleway",     1, (SUMOReal)(10. / 3.6),  1, WIDTH, SVC_BICYCLE); // no horse stuff
    tc.insert("highway.cycleway",      1, (SUMOReal)(20. / 3.6),  1, WIDTH, SVC_BICYCLE);
    tc.insert("highway.footway",       1, (SUMOReal)(10. / 3.6),  1, WIDTH, SVC_PEDESTRIAN);
    tc.insert("highway.step",          1, (SUMOReal)(5.  / 3.6),  1, WIDTH, SVC_PEDESTRIAN); // additional
    tc.insert("highway.steps",         1, (SUMOReal)(5.  / 3.6),  1, WIDTH, SVC_PEDESTRIAN); // :-) do not run too fast
    tc.insert("highway.stairs",        1, (SUMOReal)(5.  / 3.6),  1, WIDTH, SVC_PEDESTRIAN); // additional
    tc.insert("highway.bus_guideway",  1, (SUMOReal)(30. / 3.6),  1, WIDTH, SVC_BUS);
    tc.insert("highway.raceway",       2, (SUMOReal)(300./ 3.6), 14, WIDTH, SVC_VIP);
    tc.insert("highway.ford",          1, (SUMOReal)(10. / 3.6),  1, WIDTH, SVC_PUBLIC_ARMY);

    //  for railways
    tc.insert("railway.rail",          1, (SUMOReal)(30. / 3.6),  1, WIDTH, SVC_RAIL_FAST);
    tc.insert("railway.tram",          1, (SUMOReal)(30. / 3.6),  1, WIDTH, SVC_CITYRAIL);
    tc.insert("railway.light_rail",    1, (SUMOReal)(30. / 3.6),  1, WIDTH, SVC_LIGHTRAIL);
    tc.insert("railway.subway",        1, (SUMOReal)(30. / 3.6),  1, WIDTH, SVC_CITYRAIL);
    tc.insert("railway.preserved",     1, (SUMOReal)(30. / 3.6),  1, WIDTH, SVC_LIGHTRAIL);
    tc.insert("railway.monorail",      1, (SUMOReal)(30. / 3.6),  1, WIDTH, SVC_LIGHTRAIL); // rail stuff has to be discussed


    /* Parse file(s)
     * Each file is parsed twice: first for nodes, second for edges. */
    std::vector<std::string> files = oc.getStringVector("osm-files");
    // load nodes, first
    NodesHandler nodesHandler(myOSMNodes, myUniqueNodes);
    for (std::vector<std::string>::const_iterator file = files.begin(); file != files.end(); ++file) {
        // nodes
        if (!FileHelpers::exists(*file)) {
            WRITE_ERROR("Could not open osm-file '" + *file + "'.");
            return;
        }
        nodesHandler.setFileName(*file);
        PROGRESS_BEGIN_MESSAGE("Parsing nodes from osm-file '" + *file + "'");
        if (!XMLSubSys::runParser(nodesHandler, *file)) {
            return;
        }
        PROGRESS_DONE_MESSAGE();
    }
    // load edges, then
    EdgesHandler edgesHandler(myOSMNodes, myEdges);
    for (std::vector<std::string>::const_iterator file = files.begin(); file != files.end(); ++file) {
        // edges
        edgesHandler.setFileName(*file);
        PROGRESS_BEGIN_MESSAGE("Parsing edges from osm-file '" + *file + "'");
        XMLSubSys::runParser(edgesHandler, *file);
        PROGRESS_DONE_MESSAGE();
    }

    /* Remove duplicate edges with the same shape and attributes */
    if (!OptionsCont::getOptions().getBool("osm.skip-duplicates-check")) {
        PROGRESS_BEGIN_MESSAGE("Removing duplicate edges");
        if (myEdges.size() > 1) {
            std::set<const Edge*, CompareEdges> dupsFinder;
            for (std::map<std::string, Edge*>::iterator it = myEdges.begin(); it != myEdges.end();) {
                if (dupsFinder.count(it->second) > 0) {
                    WRITE_MESSAGE("Found duplicate edges. Removing " + it->first);
                    delete it->second;
                    myEdges.erase(it++);
                } else {
                    dupsFinder.insert(it->second);
                    it++;
                }
            }
        }
        PROGRESS_DONE_MESSAGE();
    }

    /* Mark which nodes are used (by edges or traffic lights).
     * This is necessary to detect which OpenStreetMap nodes are for
     * geometry only */
    std::map<int, int> nodeUsage;
    // Mark which nodes are used by edges (begin and end)
    for (std::map<std::string, Edge*>::const_iterator i = myEdges.begin(); i != myEdges.end(); ++i) {
        Edge* e = (*i).second;
        assert(e->myCurrentIsRoad);
        for (std::vector<int>::const_iterator j = e->myCurrentNodes.begin(); j != e->myCurrentNodes.end(); ++j) {
            if (nodeUsage.find(*j) == nodeUsage.end()) {
                nodeUsage[*j] = 0;
            }
            nodeUsage[*j] = nodeUsage[*j] + 1;
        }
    }
    // Mark which nodes are used by traffic lights
    for (std::map<int, NIOSMNode*>::const_iterator nodesIt = myOSMNodes.begin(); nodesIt != myOSMNodes.end(); ++nodesIt) {
        if (nodesIt->second->tlsControlled) {
            // If the key is not found in the map, the value is automatically
            // initialized with 0.
            nodeUsage[nodesIt->first] += 1;
        }
    }
    /* Instantiate edges
     * Only those nodes in the middle of an edge which are used by more than
     * one edge are instantiated. Other nodes are considered as geometry nodes. */
    NBNodeCont& nc = nb.getNodeCont();
    NBEdgeCont& ec = nb.getEdgeCont();
    NBTrafficLightLogicCont& tlsc = nb.getTLLogicCont();
    for (std::map<std::string, Edge*>::iterator i = myEdges.begin(); i != myEdges.end(); ++i) {
        Edge* e = (*i).second;
        assert(e->myCurrentIsRoad);
        // build nodes;
        //  the from- and to-nodes must be built in any case
        //  the geometry nodes are only built if more than one edge references them
        NBNode* currentFrom = insertNodeChecking(*e->myCurrentNodes.begin(), nc, tlsc);
        NBNode* last = insertNodeChecking(*(e->myCurrentNodes.end() - 1), nc, tlsc);
        int running = 0;
        std::vector<int> passed;
        for (std::vector<int>::iterator j = e->myCurrentNodes.begin(); j != e->myCurrentNodes.end(); ++j) {
            passed.push_back(*j);
            if (nodeUsage[*j] > 1 && j != e->myCurrentNodes.end() - 1 && j != e->myCurrentNodes.begin()) {
                NBNode* currentTo = insertNodeChecking(*j, nc, tlsc);
                insertEdge(e, running, currentFrom, currentTo, passed, ec, tc);
                currentFrom = currentTo;
                running++;
                passed.clear();
            }
        }
        if (running == 0) {
            running = -1;
        }
        insertEdge(e, running, currentFrom, last, passed, ec, tc);
    }
}
示例#4
0
// ===========================================================================
// method definitions
// ===========================================================================
// ---------------------------------------------------------------------------
// static methods (interface in this case)
// ---------------------------------------------------------------------------
void
NIImporter_OpenDrive::loadNetwork(const OptionsCont &oc, NBNetBuilder &nb) {
    // check whether the option is set (properly)
    if (!oc.isUsableFileList("opendrive")) {
        return;
    }
    // build the handler
    std::vector<OpenDriveEdge> innerEdges, outerEdges;
    NIImporter_OpenDrive handler(nb.getNodeCont(), innerEdges, outerEdges);
    // parse file(s)
    std::vector<std::string> files = oc.getStringVector("opendrive");
    for (std::vector<std::string>::const_iterator file=files.begin(); file!=files.end(); ++file) {
        if (!FileHelpers::exists(*file)) {
            MsgHandler::getErrorInstance()->inform("Could not open opendrive file '" + *file + "'.");
            return;
        }
        handler.setFileName(*file);
        MsgHandler::getMessageInstance()->beginProcessMsg("Parsing opendrive from '" + *file + "'...");
        XMLSubSys::runParser(handler, *file);
        MsgHandler::getMessageInstance()->endProcessMsg("done.");
    }
    // convert geometries into a discretised representation
    computeShapes(innerEdges);
    computeShapes(outerEdges);

    // -------------------------
    // node building
    // -------------------------
    // build nodes#1
    //  look at all links which belong to a node, collect their bounding boxes
    //  and place the node in the middle of this bounding box
    std::map<std::string, Boundary> posMap;
    std::map<std::string, std::string> edge2junction;
    //   compute node positions
    for (std::vector<OpenDriveEdge>::iterator i=innerEdges.begin(); i!=innerEdges.end(); ++i) {
        OpenDriveEdge &e = *i;
        assert(e.junction!="-1" && e.junction!="");
        edge2junction[e.id] = e.junction;
        if (posMap.find(e.junction)==posMap.end()) {
            posMap[e.junction] = Boundary();
        }
        posMap[e.junction].add(e.geom.getBoxBoundary());
    }
    //   build nodes
    for (std::map<std::string, Boundary>::iterator i=posMap.begin(); i!=posMap.end(); ++i) {
        if (!nb.getNodeCont().insert((*i).first, (*i).second.getCenter())) {
            throw ProcessError("Could not add node '" + (*i).first + "'.");
        }
    }
    //  assign built nodes
    for (std::vector<OpenDriveEdge>::iterator i=outerEdges.begin(); i!=outerEdges.end(); ++i) {
        OpenDriveEdge &e = *i;
        for (std::vector<OpenDriveLink>::iterator j=e.links.begin(); j!=e.links.end(); ++j) {
            OpenDriveLink &l = *j;
            if (l.elementType!=OPENDRIVE_ET_ROAD) {
                // set node information
                setNodeSecure(nb.getNodeCont(), e, l.elementID, l.linkType);
                continue;
            }
            if (edge2junction.find(l.elementID)!=edge2junction.end()) {
                // set node information of an internal road
                setNodeSecure(nb.getNodeCont(), e, edge2junction[l.elementID], l.linkType);
                continue;
            }
        }
    }
    //  we should now have all nodes set for links which are not outer edge-to-outer edge links


    // build nodes#2
    //  build nodes for all outer edge-to-outer edge connections
    for (std::vector<OpenDriveEdge>::iterator i=outerEdges.begin(); i!=outerEdges.end(); ++i) {
        OpenDriveEdge &e = *i;
        for (std::vector<OpenDriveLink>::iterator j=e.links.begin(); j!=e.links.end(); ++j) {
            OpenDriveLink &l = *j;
            if (l.elementType!=OPENDRIVE_ET_ROAD || edge2junction.find(l.elementID)!=edge2junction.end()) {
                // is a connection to an internal edge, or a node, skip
                continue;
            }
            // we have a direct connection between to external edges
            std::string id1 = e.id;
            std::string id2 = l.elementID;
            if (id1<id2) {
                std::swap(id1, id2);
            }
            std::string nid = id1+"."+id2;
            if (nb.getNodeCont().retrieve(nid)==0) {
                // not yet seen, build
                Position2D pos = l.linkType==OPENDRIVE_LT_SUCCESSOR ? e.geom[(int)e.geom.size()-1] : e.geom[0];
                if (!nb.getNodeCont().insert(nid, pos)) {
                    throw ProcessError("Could not build node '" + nid + "'.");
                }
            }
            /* debug-stuff
            else {
                Position2D pos = l.linkType==OPENDRIVE_LT_SUCCESSOR ? e.geom[e.geom.size()-1] : e.geom[0];
                cout << nid << " " << pos << " " << nb.getNodeCont().retrieve(nid)->getPosition() << endl;
            }
            */
            setNodeSecure(nb.getNodeCont(), e, nid, l.linkType);
        }
    }
    // we should now have start/end nodes for all outer edge-to-outer edge connections


    // build nodes#3
    //  assign further nodes generated from inner-edges
    //  these nodes have not been assigned earlier, because the connectiosn are referenced in inner-edges
    for (std::vector<OpenDriveEdge>::iterator i=outerEdges.begin(); i!=outerEdges.end(); ++i) {
        OpenDriveEdge &e = *i;
        if (e.to!=0&&e.from!=0) {
            continue;
        }
        for (std::vector<OpenDriveEdge>::iterator j=innerEdges.begin(); j!=innerEdges.end(); ++j) {
            OpenDriveEdge &ie = *j;
            for (std::vector<OpenDriveLink>::iterator k=ie.links.begin(); k!=ie.links.end(); ++k) {
                OpenDriveLink &il = *k;
                if (il.elementType!=OPENDRIVE_ET_ROAD || il.elementID!=e.id) {
                    // not conneted to the currently investigated outer edge
                    continue;
                }
                std::string nid = edge2junction[ie.id];
                if (il.contactPoint==OPENDRIVE_CP_START) {
                    setNodeSecure(nb.getNodeCont(), e, nid, OPENDRIVE_LT_PREDECESSOR);
                } else {
                    setNodeSecure(nb.getNodeCont(), e, nid, OPENDRIVE_LT_SUCCESSOR);
                }
            }
        }

    }
    //


    // build start/end nodes which were not defined previously
    for (std::vector<OpenDriveEdge>::iterator i=outerEdges.begin(); i!=outerEdges.end(); ++i) {
        OpenDriveEdge &e = *i;
        if (e.from==0) {
            std::string nid = e.id + ".begin";
            Position2D pos(e.geometries[0].x, e.geometries[0].y);
            e.from = getOrBuildNode(nid, e.geom[0], nb.getNodeCont());
        }
        if (e.to==0) {
            std::string nid = e.id + ".end";
            Position2D pos(e.geometries[e.geometries.size()-1].x, e.geometries[e.geometries.size()-1].y);
            e.to = getOrBuildNode(nid, e.geom[(int)e.geom.size()-1], nb.getNodeCont());
        }
    }


    // -------------------------
    // edge building
    // -------------------------
    std::map<NBEdge*, std::map<int, int> > fromLaneMap;
    std::map<NBEdge*, std::map<int, int> > toLaneMap;
    // build edges
    for (std::vector<OpenDriveEdge>::iterator i=outerEdges.begin(); i!=outerEdges.end(); ++i) {
        OpenDriveEdge &e = *i;
        SUMOReal speed = nb.getTypeCont().getDefaultSpeed();
        int priority = nb.getTypeCont().getDefaultPriority();
        unsigned int nolanes = e.getMaxLaneNumber(SUMO_TAG_OPENDRIVE_RIGHT);
        if (nolanes>0) {
            NBEdge *nbe = new NBEdge("-" + e.id, e.from, e.to, "", speed, nolanes, priority, e.geom, NBEdge::LANESPREAD_RIGHT, true);
            if (!nb.getEdgeCont().insert(nbe)) {
                throw ProcessError("Could not add edge '" + std::string("-") + e.id + "'.");
            }
            fromLaneMap[nbe] = e.laneSections.back().buildLaneMapping(SUMO_TAG_OPENDRIVE_RIGHT);
            toLaneMap[nbe] = e.laneSections[0].buildLaneMapping(SUMO_TAG_OPENDRIVE_RIGHT);
        }
        nolanes = e.getMaxLaneNumber(SUMO_TAG_OPENDRIVE_LEFT);
        if (nolanes>0) {
            NBEdge *nbe = new NBEdge(e.id, e.to, e.from, "", speed, nolanes, priority, e.geom.reverse(), NBEdge::LANESPREAD_RIGHT, true);
            if (!nb.getEdgeCont().insert(nbe)) {
                throw ProcessError("Could not add edge '" + e.id + "'.");
            }
            fromLaneMap[nbe] = e.laneSections[0].buildLaneMapping(SUMO_TAG_OPENDRIVE_LEFT);
            toLaneMap[nbe] = e.laneSections.back().buildLaneMapping(SUMO_TAG_OPENDRIVE_LEFT);
        }
    }


    // -------------------------
    // connections building
    // -------------------------
    std::vector<Connection> connections;
    // connections#1
    //  build connections between outer-edges
    for (std::vector<OpenDriveEdge>::iterator i=outerEdges.begin(); i!=outerEdges.end(); ++i) {
        OpenDriveEdge &e = *i;
        for (std::vector<OpenDriveLink>::iterator j=e.links.begin(); j!=e.links.end(); ++j) {
            OpenDriveLink &l = *j;
            if (l.elementType!=OPENDRIVE_ET_ROAD) {
                // we are not interested in connections to nodes
                continue;
            }
            if (edge2junction.find(l.elementID)!=edge2junction.end()) {
                // connection via an inner-road
                addViaConnectionSecure(nb.getEdgeCont(),
                                       nb.getNodeCont().retrieve(edge2junction[l.elementID]),
                                       e, l.linkType, l.elementID, connections);
            } else {
                // connection between two outer-edges; can be used directly
                std::vector<OpenDriveEdge>::iterator p = std::find_if(outerEdges.begin(), outerEdges.end(), edge_by_id_finder(l.elementID));
                if (p==outerEdges.end()) {
                    throw ProcessError("Could not find connection edge.");
                }
                std::string id1 = e.id;
                std::string id2 = (*p).id;
                if (id1<id2) {
                    std::swap(id1, id2);
                }
                std::string nid = id1+"."+id2;
                if (l.linkType==OPENDRIVE_LT_PREDECESSOR) {
                    addE2EConnectionsSecure(nb.getEdgeCont(), nb.getNodeCont().retrieve(nid), *p, e, connections);
                } else {
                    addE2EConnectionsSecure(nb.getEdgeCont(), nb.getNodeCont().retrieve(nid), e, *p, connections);
                }
            }
        }
    }

    /*
    for (std::vector<OpenDriveEdge>::iterator i=innerEdges.begin(); i!=innerEdges.end(); ++i) {
        OpenDriveEdge &e = *i;
        std::string pred, succ;
        ContactPoint predC, succC;
        for (std::vector<OpenDriveLink>::iterator j=e.links.begin(); j!=e.links.end(); ++j) {
            OpenDriveLink &l = *j;
            if (l.elementType!=OPENDRIVE_ET_ROAD) {
                // we are not interested in connections to nodes
                cout << "unsupported" << endl;
                continue;
            }
            if(edge2junction.find(l.elementID)!=edge2junction.end()) {
                // not supported
                cout << "unsupported" << endl;
                continue;
            }
            if(l.linkType==OPENDRIVE_LT_SUCCESSOR) {
                if(succ!="") {
                    cout << "double succ" << endl;
                }
                succ = l.elementID;
                succC = l.contactPoint;
            } else {
                if(pred!="") {
                    cout << "double pred" << endl;
                }
                pred = l.elementID;
                predC = l.contactPoint;
            }
        }

        if(e.getMaxLaneNumber(SUMO_TAG_OPENDRIVE_LEFT)!=0&&e.getMaxLaneNumber(SUMO_TAG_OPENDRIVE_RIGHT)!=0) {
            cout << "Both dirs given!" << endl;
        }

        bool isReversed = false;
        if(e.getMaxLaneNumber(SUMO_TAG_OPENDRIVE_LEFT)!=0) {
    //            std::swap(pred, succ);
            //std::swap(predC, succC);
            isReversed = true;
        }

        if(succ==""||pred=="") {
            cout << "Missing edge." << endl;
            continue; // yes, occurs
        }
        NBNode *n = nb.getNodeCont().retrieve(edge2junction[e.id]);
        std::vector<OpenDriveEdge>::iterator predEdge = std::find_if(outerEdges.begin(), outerEdges.end(), edge_by_id_finder(pred));
        if(predEdge==outerEdges.end()) {
            throw ProcessError("Could not find connection edge.");
        }
        std::vector<OpenDriveEdge>::iterator succEdge = std::find_if(outerEdges.begin(), outerEdges.end(), edge_by_id_finder(succ));
        if(succEdge==outerEdges.end()) {
            throw ProcessError("Could not find connection edge.");
        }
        NBEdge *fromEdge, *toEdge;
        if(!isReversed) {
            fromEdge = predC==OPENDRIVE_CP_END ? nb.getEdgeCont().retrieve("-" + pred) : nb.getEdgeCont().retrieve(pred);
            toEdge = succC==OPENDRIVE_CP_START ? nb.getEdgeCont().retrieve("-" + succ) : nb.getEdgeCont().retrieve(succ);
        } else {
            fromEdge = predC!=OPENDRIVE_CP_END ? nb.getEdgeCont().retrieve("-" + pred) : nb.getEdgeCont().retrieve(pred);
            toEdge = succC!=OPENDRIVE_CP_START ? nb.getEdgeCont().retrieve("-" + succ) : nb.getEdgeCont().retrieve(succ);
        }
        /*
        Connection c(
            n->hasIncoming(nb.getEdgeCont().retrieve("-" + pred)) ? nb.getEdgeCont().retrieve("-" + pred) : nb.getEdgeCont().retrieve(pred),
            e.id,
            n->hasOutgoing(nb.getEdgeCont().retrieve("-" + succ)) ? nb.getEdgeCont().retrieve("-" + succ) : nb.getEdgeCont().retrieve(succ));
            /
        Connection c(fromEdge, e.id, toEdge);
        if(c.from==0||c.to==0||c.from==c.to) {
            throw ProcessError("Something's false");
        }
        setLaneConnections(c,
            *predEdge, c.from->getID()[0]!='-', c.from->getID()[0]=='-' ? SUMO_TAG_OPENDRIVE_RIGHT : SUMO_TAG_OPENDRIVE_LEFT,
            e, isReversed, !isReversed ? SUMO_TAG_OPENDRIVE_RIGHT : SUMO_TAG_OPENDRIVE_LEFT,
            *succEdge, c.to->getID()[0]!='-', c.to->getID()[0]=='-' ? SUMO_TAG_OPENDRIVE_RIGHT : SUMO_TAG_OPENDRIVE_LEFT);
        connections.push_back(c);
    }
    */
    for (std::vector<Connection>::const_iterator i=connections.begin(); i!=connections.end(); ++i) {
        if ((*i).from==0 || (*i).to==0) {
            std::cout << "Nope." << std::endl;
            continue;
        }
        (*i).from->addEdge2EdgeConnection((*i).to);
        std::map<int, int> fromMap = fromLaneMap[(*i).from];
        std::map<int, int> toMap = fromLaneMap[(*i).to];
        for (std::vector<std::pair<int, int> >::const_iterator j=(*i).lanes.begin(); j!=(*i).lanes.end(); ++j) {
            int fromLane = fromMap[(*j).first];
            int toLane = toMap[(*j).second];
            if (static_cast<unsigned int>(fromLane)>=(*i).from->getNoLanes()||fromLane<0) {
                std::cout << "False " << std::endl;
            }
            if (static_cast<unsigned int>(toLane)>=(*i).to->getNoLanes()||toLane<0) {
                std::cout << "False " << std::endl;
            }

            (*i).from->addLane2LaneConnection(fromLane, (*i).to, toLane, NBEdge::L2L_VALIDATED, true);
        }
    }
}
示例#5
0
// ===========================================================================
// method definitions
// ===========================================================================
// ---------------------------------------------------------------------------
// static methods
// ---------------------------------------------------------------------------
void
NWWriter_SUMO::writeNetwork(const OptionsCont& oc, NBNetBuilder& nb) {
    // check whether a sumo net-file shall be generated
    if (!oc.isSet("output-file")) {
        return;
    }
    OutputDevice& device = OutputDevice::getDevice(oc.getString("output-file"));
    const std::string lefthand = oc.getBool("lefthand") ? " " + toString(SUMO_ATTR_LEFTHAND) + "=\"true\"" : "";
    const int cornerDetail = oc.getInt("junctions.corner-detail");
    const int linkDetail = oc.getInt("junctions.internal-link-detail");
    const std::string junctionCornerDetail = (cornerDetail > 0
            ? " " + toString(SUMO_ATTR_CORNERDETAIL) + "=\"" + toString(cornerDetail) + "\"" : "");
    const std::string junctionLinkDetail = (oc.isDefault("junctions.internal-link-detail") ? "" :
                                            " " + toString(SUMO_ATTR_LINKDETAIL) + "=\"" + toString(linkDetail) + "\"");
    device.writeXMLHeader("net", NWFrame::MAJOR_VERSION + lefthand + junctionCornerDetail + junctionLinkDetail +
                          " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo.dlr.de/xsd/net_file.xsd\""); // street names may contain non-ascii chars
    device.lf();
    // get involved container
    const NBNodeCont& nc = nb.getNodeCont();
    const NBEdgeCont& ec = nb.getEdgeCont();
    const NBDistrictCont& dc = nb.getDistrictCont();

    // write network offsets and projection
    GeoConvHelper::writeLocation(device);

    // write edge types and restrictions
    nb.getTypeCont().writeTypes(device);

    // write inner lanes
    bool origNames = oc.getBool("output.original-names");
    if (!oc.getBool("no-internal-links")) {
        bool hadAny = false;
        for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
            hadAny |= writeInternalEdges(device, *(*i).second, origNames);
        }
        if (hadAny) {
            device.lf();
        }
    }

    // write edges with lanes and connected edges
    bool noNames = !oc.getBool("output.street-names");
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        writeEdge(device, *(*i).second, noNames, origNames);
    }
    device.lf();

    // write tls logics
    writeTrafficLights(device, nb.getTLLogicCont());

    // write the nodes (junctions)
    std::set<NBNode*> roundaboutNodes;
    const bool checkLaneFoesAll = oc.getBool("check-lane-foes.all");
    const bool checkLaneFoesRoundabout = !checkLaneFoesAll && oc.getBool("check-lane-foes.roundabout");
    if (checkLaneFoesRoundabout) {
        const std::set<EdgeSet>& roundabouts = ec.getRoundabouts();
        for (std::set<EdgeSet>::const_iterator i = roundabouts.begin(); i != roundabouts.end(); ++i) {
            for (EdgeSet::const_iterator j = (*i).begin(); j != (*i).end(); ++j) {
                roundaboutNodes.insert((*j)->getToNode());
            }
        }
    }
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        const bool checkLaneFoes = checkLaneFoesAll || (checkLaneFoesRoundabout && roundaboutNodes.count((*i).second) > 0);
        writeJunction(device, *(*i).second, checkLaneFoes);
    }
    device.lf();
    const bool includeInternal = !oc.getBool("no-internal-links");
    if (includeInternal) {
        // ... internal nodes if not unwanted
        bool hadAny = false;
        for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
            hadAny |= writeInternalNodes(device, *(*i).second);
        }
        if (hadAny) {
            device.lf();
        }
    }

    // write the successors of lanes
    unsigned int numConnections = 0;
    for (std::map<std::string, NBEdge*>::const_iterator it_edge = ec.begin(); it_edge != ec.end(); it_edge++) {
        NBEdge* from = it_edge->second;
        from->sortOutgoingConnectionsByIndex();
        const std::vector<NBEdge::Connection> connections = from->getConnections();
        numConnections += (unsigned int)connections.size();
        for (std::vector<NBEdge::Connection>::const_iterator it_c = connections.begin(); it_c != connections.end(); it_c++) {
            writeConnection(device, *from, *it_c, includeInternal);
        }
    }
    if (numConnections > 0) {
        device.lf();
    }
    if (includeInternal) {
        // ... internal successors if not unwanted
        bool hadAny = false;
        for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
            hadAny |= writeInternalConnections(device, *(*i).second);
        }
        if (hadAny) {
            device.lf();
        }
    }
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        NBNode* node = (*i).second;
        // write connections from pedestrian crossings
        const std::vector<NBNode::Crossing>& crossings = node->getCrossings();
        for (std::vector<NBNode::Crossing>::const_iterator it = crossings.begin(); it != crossings.end(); it++) {
            NWWriter_SUMO::writeInternalConnection(device, (*it).id, (*it).nextWalkingArea, 0, 0, "");
        }
        // write connections from pedestrian walking areas
        const std::vector<NBNode::WalkingArea>& WalkingAreas = node->getWalkingAreas();
        for (std::vector<NBNode::WalkingArea>::const_iterator it = WalkingAreas.begin(); it != WalkingAreas.end(); it++) {
            if ((*it).nextCrossing != "") {
                const NBNode::Crossing& nextCrossing = node->getCrossing((*it).nextCrossing);
                // connection to next crossing (may be tls-controlled)
                device.openTag(SUMO_TAG_CONNECTION);
                device.writeAttr(SUMO_ATTR_FROM, (*it).id);
                device.writeAttr(SUMO_ATTR_TO, (*it).nextCrossing);
                device.writeAttr(SUMO_ATTR_FROM_LANE, 0);
                device.writeAttr(SUMO_ATTR_TO_LANE, 0);
                if (node->isTLControlled()) {
                    device.writeAttr(SUMO_ATTR_TLID, (*node->getControllingTLS().begin())->getID());
                    assert(nextCrossing.tlLinkNo >= 0);
                    device.writeAttr(SUMO_ATTR_TLLINKINDEX, nextCrossing.tlLinkNo);
                }
                device.writeAttr(SUMO_ATTR_DIR, LINKDIR_STRAIGHT);
                device.writeAttr(SUMO_ATTR_STATE, nextCrossing.priority ? LINKSTATE_MAJOR : LINKSTATE_MINOR);
                device.closeTag();
            }
            // optional connections from/to sidewalk
            for (std::vector<std::string>::const_iterator it_sw = (*it).nextSidewalks.begin(); it_sw != (*it).nextSidewalks.end(); ++it_sw) {
                NWWriter_SUMO::writeInternalConnection(device, (*it).id, (*it_sw), 0, 0, "");
            }
            for (std::vector<std::string>::const_iterator it_sw = (*it).prevSidewalks.begin(); it_sw != (*it).prevSidewalks.end(); ++it_sw) {
                NWWriter_SUMO::writeInternalConnection(device, (*it_sw), (*it).id, 0, 0, "");
            }
        }
    }

    // write loaded prohibitions
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        writeProhibitions(device, i->second->getProhibitions());
    }

    // write roundabout information
    writeRoundabouts(device, ec.getRoundabouts(), ec);

    // write the districts
    for (std::map<std::string, NBDistrict*>::const_iterator i = dc.begin(); i != dc.end(); i++) {
        writeDistrict(device, *(*i).second);
    }
    if (dc.size() != 0) {
        device.lf();
    }
    device.close();
}