/* Test the method 'getDuration'*/ TEST(NBTrafficLightLogic, test_method_getDuration) { NBTrafficLightLogic *edge = new NBTrafficLightLogic("1","11",2); EXPECT_EQ(0, edge->getDuration()); edge->addStep(3,"gr"); edge->addStep(5,"rG"); EXPECT_EQ(8, edge->getDuration()); }
bool NBTrafficLightLogicCont::computeSingleLogic(OptionsCont& oc, NBTrafficLightDefinition* def) { const std::string& id = def->getID(); const std::string& programID = def->getProgramID(); // build program NBTrafficLightLogic* built = def->compute(oc); if (built == 0) { WRITE_WARNING("Could not build program '" + programID + "' for traffic light '" + id + "'"); return false; } // compute offset SUMOTime T = built->getDuration(); if (myHalfOffsetTLS.count(id)) { built->setOffset((SUMOTime)(T / 2.)); } if (myQuarterOffsetTLS.count(id)) { built->setOffset((SUMOTime)(T / 4.)); } // and insert the result after computation // make sure we don't leak memory if computeSingleLogic is called externally if (myComputed[id][programID] != 0) { delete myComputed[id][programID]; } myComputed[id][programID] = built; return true; }
void NBTrafficLightLogicCont::computeLogics(NBEdgeCont &ec, OptionsCont &oc) throw() { unsigned int no = 0; for (DefinitionContType::iterator i=myDefinitions.begin(); i!=myDefinitions.end(); i++) { std::string id = (*i).first; if (myComputed.find(id)!=myComputed.end()) { WRITE_WARNING("Traffic light '" + id + "' was already built."); continue; } // build program NBTrafficLightDefinition *def = (*i).second; NBTrafficLightLogic *built = def->compute(ec, oc); if (built==0) { WRITE_WARNING("Could not build traffic lights '" + id + "'"); continue; } // compute offset SUMOTime T = built->getDuration(); if (find(myHalfOffsetTLS.begin(), myHalfOffsetTLS.end(), id)!=myHalfOffsetTLS.end()) { built->setOffset((SUMOTime)(T/2.)); } if (find(myQuarterOffsetTLS.begin(), myQuarterOffsetTLS.end(), id)!=myQuarterOffsetTLS.end()) { built->setOffset((SUMOTime)(T/4.)); } // and insert the result after computation myComputed[(*i).first] = built; no++; } WRITE_MESSAGE(toString<int>(no) + " traffic light(s) computed."); }
NBTrafficLightLogic* NBOwnTLDef::myCompute(const NBEdgeCont&, unsigned int brakingTimeSeconds) { const SUMOTime brakingTime = TIME2STEPS(brakingTimeSeconds); const SUMOTime leftTurnTime = TIME2STEPS(6); // make configurable ? // build complete lists first const EdgeVector& incoming = getIncomingEdges(); EdgeVector fromEdges, toEdges; std::vector<bool> isLeftMoverV, isTurnaround; unsigned int noLanesAll = 0; unsigned int noLinksAll = 0; for (unsigned int i1 = 0; i1 < incoming.size(); i1++) { unsigned int noLanes = incoming[i1]->getNumLanes(); noLanesAll += noLanes; for (unsigned int i2 = 0; i2 < noLanes; i2++) { NBEdge* fromEdge = incoming[i1]; std::vector<NBEdge::Connection> approached = fromEdge->getConnectionsFromLane(i2); noLinksAll += (unsigned int) approached.size(); for (unsigned int i3 = 0; i3 < approached.size(); i3++) { if (!fromEdge->mayBeTLSControlled(i2, approached[i3].toEdge, approached[i3].toLane)) { --noLinksAll; continue; } assert(i3 < approached.size()); NBEdge* toEdge = approached[i3].toEdge; fromEdges.push_back(fromEdge); //myFromLanes.push_back(i2); toEdges.push_back(toEdge); if (toEdge != 0) { isLeftMoverV.push_back( isLeftMover(fromEdge, toEdge) || fromEdge->isTurningDirectionAt(fromEdge->getToNode(), toEdge)); isTurnaround.push_back( fromEdge->isTurningDirectionAt( fromEdge->getToNode(), toEdge)); } else { isLeftMoverV.push_back(true); isTurnaround.push_back(true); } } } } NBTrafficLightLogic* logic = new NBTrafficLightLogic(getID(), getProgramID(), noLinksAll, myOffset, myType); EdgeVector toProc = incoming; const SUMOTime greenTime = TIME2STEPS(OptionsCont::getOptions().getInt("tls.green.time")); // build all phases while (toProc.size() > 0) { std::pair<NBEdge*, NBEdge*> chosen; if (incoming.size() == 2) { chosen = std::pair<NBEdge*, NBEdge*>(toProc[0], static_cast<NBEdge*>(0)); toProc.erase(toProc.begin()); } else { chosen = getBestPair(toProc); } unsigned int pos = 0; std::string state((size_t) noLinksAll, 'o'); // plain straight movers for (unsigned int i1 = 0; i1 < (unsigned int) incoming.size(); ++i1) { NBEdge* fromEdge = incoming[i1]; const bool inChosen = fromEdge == chosen.first || fromEdge == chosen.second; //chosen.find(fromEdge)!=chosen.end(); const unsigned int numLanes = fromEdge->getNumLanes(); for (unsigned int i2 = 0; i2 < numLanes; i2++) { std::vector<NBEdge::Connection> approached = fromEdge->getConnectionsFromLane(i2); for (unsigned int i3 = 0; i3 < approached.size(); ++i3) { if (!fromEdge->mayBeTLSControlled(i2, approached[i3].toEdge, approached[i3].toLane)) { continue; } if (inChosen) { state[pos] = 'G'; } else { state[pos] = 'r'; } ++pos; } } } // correct behaviour for those that are not in chosen, but may drive, though for (unsigned int i1 = 0; i1 < pos; ++i1) { if (state[i1] == 'G') { continue; } bool isForbidden = false; for (unsigned int i2 = 0; i2 < pos && !isForbidden; ++i2) { if (state[i2] == 'G' && !isTurnaround[i2] && (forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1], true) || forbids(fromEdges[i1], toEdges[i1], fromEdges[i2], toEdges[i2], true))) { isForbidden = true; } } if (!isForbidden) { state[i1] = 'G'; } } // correct behaviour for those that have to wait (mainly left-mover) bool haveForbiddenLeftMover = false; for (unsigned int i1 = 0; i1 < pos; ++i1) { if (state[i1] != 'G') { continue; } for (unsigned int i2 = 0; i2 < pos; ++i2) { if ((state[i2] == 'G' || state[i2] == 'g') && forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1], true)) { state[i1] = 'g'; if (!isTurnaround[i1]) { haveForbiddenLeftMover = true; } } } } // add step logic->addStep(greenTime, state); if (brakingTime > 0) { // build yellow (straight) for (unsigned int i1 = 0; i1 < pos; ++i1) { if (state[i1] != 'G' && state[i1] != 'g') { continue; } if ((state[i1] >= 'a' && state[i1] <= 'z') && haveForbiddenLeftMover) { continue; } state[i1] = 'y'; } // add step logic->addStep(brakingTime, state); } if (haveForbiddenLeftMover && !myHaveSinglePhase) { // build left green for (unsigned int i1 = 0; i1 < pos; ++i1) { if (state[i1] == 'Y' || state[i1] == 'y') { state[i1] = 'r'; continue; } if (state[i1] == 'g') { state[i1] = 'G'; } } // add step logic->addStep(leftTurnTime, state); // build left yellow if (brakingTime > 0) { for (unsigned int i1 = 0; i1 < pos; ++i1) { if (state[i1] != 'G' && state[i1] != 'g') { continue; } state[i1] = 'y'; } // add step logic->addStep(brakingTime, state); } } } const SUMOTime totalDuration = logic->getDuration(); if (totalDuration > 0) { if (totalDuration > 3 * (greenTime + 2 * brakingTime + leftTurnTime)) { WRITE_WARNING("The traffic light '" + getID() + "' has a high cycle time of " + time2string(totalDuration) + "."); } return logic; } else { delete logic; return 0; } }
NBTrafficLightLogic * NBOwnTLDef::myCompute(const NBEdgeCont &, unsigned int brakingTime) throw() { // build complete lists first const EdgeVector &incoming = getIncomingEdges(); std::vector<NBEdge*> fromEdges, toEdges; std::vector<bool> isLeftMoverV, isTurnaround; unsigned int noLanesAll = 0; unsigned int noLinksAll = 0; for (unsigned int i1=0; i1<incoming.size(); i1++) { unsigned int noLanes = incoming[i1]->getNoLanes(); noLanesAll += noLanes; for (unsigned int i2=0; i2<noLanes; i2++) { NBEdge *fromEdge = incoming[i1]; std::vector<NBEdge::Connection> approached = fromEdge->getConnectionsFromLane(i2); noLinksAll += (unsigned int) approached.size(); for (unsigned int i3=0; i3<approached.size(); i3++) { if (!fromEdge->mayBeTLSControlled(i2, approached[i3].toEdge, approached[i3].toLane)) { --noLinksAll; continue; } assert(i3<approached.size()); NBEdge *toEdge = approached[i3].toEdge; fromEdges.push_back(fromEdge); //myFromLanes.push_back(i2); toEdges.push_back(toEdge); if (toEdge!=0) { isLeftMoverV.push_back( isLeftMover(fromEdge, toEdge) || fromEdge->isTurningDirectionAt(fromEdge->getToNode(), toEdge)); isTurnaround.push_back( fromEdge->isTurningDirectionAt( fromEdge->getToNode(), toEdge)); } else { isLeftMoverV.push_back(true); isTurnaround.push_back(true); } } } } NBTrafficLightLogic *logic = new NBTrafficLightLogic(getID(), "0", noLinksAll); std::vector<NBEdge*> toProc = incoming; // build all phases while (toProc.size()>0) { std::pair<NBEdge*, NBEdge*> chosen; if (incoming.size()==2) { chosen = std::pair<NBEdge*, NBEdge*>(toProc[0], static_cast<NBEdge*>(0)); toProc.erase(toProc.begin()); } else { chosen = getBestPair(toProc); } unsigned int pos = 0; unsigned int duration = 31; if (OptionsCont::getOptions().isSet("traffic-light-green")) { duration = OptionsCont::getOptions().getInt("traffic-light-green"); } std::string state((size_t) noLinksAll, 'o'); // plain straight movers for (unsigned int i1=0; i1<(unsigned int) incoming.size(); ++i1) { NBEdge *fromEdge = incoming[i1]; bool inChosen = fromEdge==chosen.first||fromEdge==chosen.second;//chosen.find(fromEdge)!=chosen.end(); unsigned int noLanes = fromEdge->getNoLanes(); for (unsigned int i2=0; i2<noLanes; i2++) { std::vector<NBEdge::Connection> approached = fromEdge->getConnectionsFromLane(i2); for (unsigned int i3=0; i3<approached.size(); ++i3) { if (!fromEdge->mayBeTLSControlled(i2, approached[i3].toEdge, approached[i3].toLane)) { continue; } if (inChosen) { state[pos] = 'G'; } else { state[pos] = 'r'; } ++pos; } } } // correct behaviour for those that are not in chosen, but may drive, though for (unsigned int i1=0; i1<pos; ++i1) { if (state[i1]=='G') { continue; } bool isForbidden = false; for (unsigned int i2=0; i2<pos&&!isForbidden; ++i2) { if (state[i2]=='G'&&!isTurnaround[i2]&& (forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1], true)||forbids(fromEdges[i1], toEdges[i1], fromEdges[i2], toEdges[i2], true))) { isForbidden = true; } } if (!isForbidden) { state[i1] = 'G'; } } // correct behaviour for those that have to wait (mainly left-mover) bool haveForbiddenLeftMover = false; for (unsigned int i1=0; i1<pos; ++i1) { if (state[i1]!='G') { continue; } for (unsigned int i2=0; i2<pos; ++i2) { if ((state[i2]=='G'||state[i2]=='g')&&forbids(fromEdges[i2], toEdges[i2], fromEdges[i1], toEdges[i1], true)) { state[i1] = 'g'; if (!isTurnaround[i1]) { haveForbiddenLeftMover = true; } } } } // add step logic->addStep(duration, state); if (brakingTime>0) { // build yellow (straight) duration = brakingTime; for (unsigned int i1=0; i1<pos; ++i1) { if (state[i1]!='G'&&state[i1]!='g') { continue; } if ((state[i1]>='a'&&state[i1]<='z')&&haveForbiddenLeftMover) { continue; } state[i1] = 'y'; } // add step logic->addStep(duration, state); } if (haveForbiddenLeftMover) { // build left green duration = 6; for (unsigned int i1=0; i1<pos; ++i1) { if (state[i1]=='Y'||state[i1]=='y') { state[i1] = 'r'; continue; } if (state[i1]=='g') { state[i1] = 'G'; } } // add step logic->addStep(duration, state); // build left yellow if (brakingTime>0) { duration = brakingTime; for (unsigned int i1=0; i1<pos; ++i1) { if (state[i1]!='G'&&state[i1]!='g') { continue; } state[i1] = 'y'; } // add step logic->addStep(duration, state); } } } if (logic->getDuration()>0) { return logic; } else { delete logic; return 0; } }