bool
checkPlane( Integer a, Integer b, Integer c, Integer d, 
            int diameter, unsigned int nbpoints,
            Statistic<double> & stats )
{
  typedef typename NaivePlaneComputer::Point Point;
  typedef typename Point::Component PointInteger;
  IntegerComputer<Integer> ic;
  Integer absA = ic.abs( a );
  Integer absB = ic.abs( b );
  Integer absC = ic.abs( c );
  Integer x, y, z;
  Dimension axis;
  if ( ( absA >= absB ) && ( absA >= absC ) )
    axis = 0;
  else if ( ( absB >= absA ) && ( absB >= absC ) )
    axis = 1;
  else
    axis = 2;
  Point p;
  NaivePlaneComputer plane;
  plane.init( axis, diameter, 1, 1 );
  // Checks that points within the naive plane are correctly recognized.
  unsigned int nb = 0;
  unsigned int nbok = 0;
  unsigned int nbchanges = 0;
  unsigned int complexity = plane.complexity();
  while ( nb != nbpoints )
    {
      p[ 0 ] = getRandomInteger<PointInteger>( -diameter+1, diameter ); 
      p[ 1 ] = getRandomInteger<PointInteger>( -diameter+1, diameter ); 
      p[ 2 ] = getRandomInteger<PointInteger>( -diameter+1, diameter );
      x = (Integer) p[ 0 ];
      y = (Integer) p[ 1 ];
      z = (Integer) p[ 2 ];
      switch ( axis ) {
      case 0: p[ 0 ] = NumberTraits<Integer>::castToInt64_t( ic.ceilDiv( d - b * y - c * z, a ) ); break;
      case 1: p[ 1 ] = NumberTraits<Integer>::castToInt64_t( ic.ceilDiv( d - a * x - c * z, b ) ); break;
      case 2: p[ 2 ] = NumberTraits<Integer>::castToInt64_t( ic.ceilDiv( d - a * x - b * y, c ) ); break;
      } 
      bool ok = plane.extend( p ); // should be ok
      ++nb, nbok += ok ? 1 : 0;
      if ( ! ok )
        {
          std::cerr << "[ERROR] p=" << p << " NOT IN plane=" << plane << std::endl;
          break;
        }
      if ( plane.complexity() != complexity )
        {
          complexity = plane.complexity();
          ++nbchanges;
        }
    }
  stats.addValue( (double) nbchanges );
  return nb == nbok;
}
int main( int argc, char** argv )
{
    //! [greedy-plane-segmentation-ex3-parseCommandLine]
    trace.info() << "Segments the surface at given threshold within given volume into digital planes of rational width num/den." << std::endl;
    // Setting default options: ----------------------------------------------
    // input file used:
    string inputFilename =   examplesPath + "samples/Al.100.vol" ;
    trace.info() << "input file used " << inputFilename << std::endl;
    // parameter threshold
    unsigned int threshold = 0;
    trace.info() << "the value that defines the isosurface in the image (an integer between 0 and 255)= " << threshold<< std::endl;
    // parameter widthNum
    unsigned int widthNum = 1;
    trace.info() << "the numerator of the rational width (a non-null integer) =" << widthNum<< std::endl;
    // parameter widthDen
    unsigned int widthDen = 1;
    trace.info() << "the denominator of the rational width (a non-null integer)= " << widthDen<< std::endl;
    //! [greedy-plane-segmentation-ex3-parseCommandLine]

    //! [greedy-plane-segmentation-ex3-loadVolume]
    QApplication application(argc,argv);
    typedef ImageSelector < Domain, int>::Type Image;
    Image image = VolReader<Image>::importVol(inputFilename);
    DigitalSet set3d (image.domain());
    SetFromImage<DigitalSet>::append<Image>(set3d, image, threshold,255);
    //! [greedy-plane-segmentation-ex3-loadVolume]

    //! [greedy-plane-segmentation-ex3-makeSurface]
    trace.beginBlock( "Set up digital surface." );
    // We initializes the cellular grid space used for defining the
    // digital surface.
    KSpace ks;
    bool ok = ks.init( set3d.domain().lowerBound(),
                       set3d.domain().upperBound(), true );
    if ( ! ok ) std::cerr << "[KSpace.init] Failed." << std::endl;
    SurfelAdjacency<KSpace::dimension> surfAdj( true ); // interior in all directions.
    MyDigitalSurfaceContainer* ptrSurfContainer =
        new MyDigitalSurfaceContainer( ks, set3d, surfAdj );
    MyDigitalSurface digSurf( ptrSurfContainer ); // acquired
    trace.endBlock();
    //! [greedy-plane-segmentation-ex3-makeSurface]

    //! [greedy-plane-segmentation-ex3-segment]
    Point p;
    Dimension axis;
    unsigned int j = 0;
    unsigned int nb = digSurf.size();

    // First pass to find biggest planes.
    trace.beginBlock( "1) Segmentation first pass. Computes all planes so as to sort vertices by the plane size." );
    std::map<Vertex,unsigned int> v2size;
    NaivePlaneComputer planeComputer;
    std::priority_queue<VertexSize> Q;
    std::vector<Point> layer;
    for ( ConstIterator it = digSurf.begin(), itE= digSurf.end(); it != itE; ++it )
    {
        if ( ( (++j) % 50 == 0 ) || ( j == nb ) ) trace.progressBar( j, nb );
        Vertex v = *it;
        axis = ks.sOrthDir( v );
        planeComputer.init( axis, 500, widthNum, widthDen );
        // The visitor takes care of all the breadth-first traversal.
        Visitor visitor( digSurf, v );
        layer.clear();
        Visitor::Size currentSize = visitor.current().second;
        while ( ! visitor.finished() )
        {
            Visitor::Node node = visitor.current();
            v = node.first;
            axis = ks.sOrthDir( v );
            p = ks.sCoords( ks.sDirectIncident( v, axis ) );
            if ( node.second != currentSize )
            {
                // std::cerr << "Layer " << currentSize << ", size=" << layer.size() << std::endl;
                bool isExtended = planeComputer.extend( layer.begin(), layer.end() );
                if ( ! isExtended )
                    break;
                layer.clear();
                currentSize = node.second;
            }
            layer.push_back( p );
            visitor.expand();
        }
        // std::cerr << v << " -> " << planeComputer.size() << std::endl;
        Q.push( VertexSize( v, planeComputer.size() ) );
    }
    trace.endBlock();

    trace.beginBlock( "2) Segmentation second pass. Visits vertices from the one with biggest plane to the one with smallest plane." );
    std::set<Vertex> processedVertices;
    std::map<Vertex,SegmentedPlane*> v2plane;
    std::vector<SegmentedPlane*> segmentedPlanes;
    j = 0;
    while ( ! Q.empty() )
    {
        if ( ( (++j) % 50 == 0 ) || ( j == nb ) ) trace.progressBar( j, nb );
        Vertex v = Q.top().v;
        Q.pop();
        if ( processedVertices.find( v ) != processedVertices.end() ) // already in set
            continue; // process to next vertex

        SegmentedPlane* ptrSegment = new SegmentedPlane;
        segmentedPlanes.push_back( ptrSegment ); // to delete them afterwards.
        axis = ks.sOrthDir( v );
        ptrSegment->plane.init( axis, 500, widthNum, widthDen );
        // The visitor takes care of all the breadth-first traversal.
        Visitor visitor( digSurf, v );
        while ( ! visitor.finished() )
        {
            Visitor::Node node = visitor.current();
            v = node.first;
            if ( processedVertices.find( v ) == processedVertices.end() )
            {   // Vertex is not in processedVertices
                axis = ks.sOrthDir( v );
                p = ks.sCoords( ks.sDirectIncident( v, axis ) );
                bool isExtended = ptrSegment->plane.extend( p );
                if ( isExtended )
                {   // surfel is in plane.
                    processedVertices.insert( v );
                    v2plane[ v ] = ptrSegment;
                    visitor.expand();
                }
                else // surfel is not in plane and should not be used in the visit.
                    visitor.ignore();
            }
            else // surfel is already in some plane.
                visitor.ignore();
        }
        // Assign random color for each plane.
        ptrSegment->color = Color( rand() % 256, rand() % 256, rand() % 256, 255 );
    }
    trace.endBlock();
    //! [greedy-plane-segmentation-ex3-segment]

    //! [greedy-plane-segmentation-ex3-visualization]
    Viewer3D<> viewer( ks );
    viewer.show();
    Color col( 255, 255, 120 );
    for ( std::map<Vertex,SegmentedPlane*>::const_iterator
            it = v2plane.begin(), itE = v2plane.end();
            it != itE; ++it )
    {
        viewer << CustomColors3D( it->second->color, it->second->color );
        viewer << ks.unsigns( it->first );
    }
    viewer << Viewer3D<>::updateDisplay;
    //! [greedy-plane-segmentation-ex3-visualization]

    //! [greedy-plane-segmentation-ex3-freeMemory]
    for ( std::vector<SegmentedPlane*>::iterator
            it = segmentedPlanes.begin(), itE = segmentedPlanes.end();
            it != itE; ++it )
        delete *it;
    segmentedPlanes.clear();
    v2plane.clear();
    //! [greedy-plane-segmentation-ex3-freeMemory]

    return application.exec();
}
示例#3
0
int main( int argc, char** argv )
{
  QApplication application(argc,argv);
  string inputFilename = argc > 1 ? argv[ 1 ] : examplesPath+"/samples/Al.100.vol";
  int threshold = argc > 2 ? atoi( argv[ 2 ] ) : 0;
  int widthNum = argc > 3 ? atoi( argv[ 3 ] ) : 2;
  int widthDen = argc > 4 ? atoi( argv[ 4 ] ) : 1;

  //! [polyhedralizer-readVol]
  trace.beginBlock( "Reading vol file into an image." );
  typedef ImageContainerBySTLVector< Domain, int> Image;
  Image image = VolReader<Image>::importVol(inputFilename);
  typedef functors::SimpleThresholdForegroundPredicate<Image> DigitalObject;
  DigitalObject digitalObject( image, threshold );
  trace.endBlock();
  //! [polyhedralizer-readVol]

  //! [polyhedralizer-KSpace]
  trace.beginBlock( "Construct the Khalimsky space from the image domain." );
  KSpace ks;
  bool space_ok = ks.init( image.domain().lowerBound(), image.domain().upperBound(), true );
  if (!space_ok)
    {
      trace.error() << "Error in the Khamisky space construction."<<endl;
      return 2;
    }
  trace.endBlock();
  //! [polyhedralizer-KSpace]

  //! [polyhedralizer-SurfelAdjacency]
  typedef SurfelAdjacency<KSpace::dimension> MySurfelAdjacency;
  MySurfelAdjacency surfAdj( false ); // exterior in all directions.
  //! [polyhedralizer-SurfelAdjacency]

  //! [polyhedralizer-ExtractingSurface]
  trace.beginBlock( "Extracting boundary by tracking the surface. " );
  typedef KSpace::Surfel Surfel;
  Surfel start_surfel = Surfaces<KSpace>::findABel( ks, digitalObject, 100000 );
  typedef ImplicitDigitalSurface< KSpace, DigitalObject > MyContainer;
  typedef DigitalSurface< MyContainer > MyDigitalSurface;
  typedef MyDigitalSurface::ConstIterator ConstIterator;
  MyContainer container( ks, digitalObject, surfAdj, start_surfel );
  MyDigitalSurface digSurf( container );
  trace.info() << "Digital surface has " << digSurf.size() << " surfels."
               << endl;
  trace.endBlock();
  //! [polyhedralizer-ExtractingSurface]

  //! [polyhedralizer-ComputingPlaneSize]
  // First pass to find biggest planes.
  trace.beginBlock( "Decomposition first pass. Computes all planes so as to sort vertices by the plane size." );
  typedef BreadthFirstVisitor<MyDigitalSurface> Visitor;
  typedef ChordGenericNaivePlaneComputer<Z3,Z3::Point, DGtal::int64_t> NaivePlaneComputer;
  map<Surfel,unsigned int> v2size;
  for ( ConstIterator it = digSurf.begin(), itE= digSurf.end(); it != itE; ++it )
    v2size[ *it ] = 0;
  int j = 0;
  int nb = digSurf.size();
  NaivePlaneComputer planeComputer;
  vector<Point> layer;
  vector<Surfel> layer_surfel;
  for ( ConstIterator it = digSurf.begin(), itE= digSurf.end(); it != itE; ++it )
    {
      if ( ( (++j) % 50 == 0 ) || ( j == nb ) ) trace.progressBar( j, nb );
      Surfel v = *it;
      planeComputer.init( widthNum, widthDen );
      // The visitor takes care of all the breadth-first traversal.
      Visitor visitor( digSurf, v );
      layer.clear();
      layer_surfel.clear();
      Visitor::Size currentSize = visitor.current().second;
      while ( ! visitor.finished() )
        {
          Visitor::Node node = visitor.current();
          v = node.first;
          int axis = ks.sOrthDir( v );
          Point p = ks.sCoords( ks.sDirectIncident( v, axis ) );
          if ( node.second != currentSize )
            {
              bool isExtended = planeComputer.extend( layer.begin(), layer.end() );
              if ( isExtended )
                {
                  for ( vector<Surfel>::const_iterator it_layer = layer_surfel.begin(),
                          it_layer_end = layer_surfel.end(); it_layer != it_layer_end; ++it_layer )
                    {
                      ++v2size[ *it_layer ];
                    }
                  layer_surfel.clear();
                  layer.clear();
                  currentSize = node.second;
                }
              else
                break;
            }
          layer_surfel.push_back( v );
          layer.push_back( p );
          visitor.expand();
        }
    }
  // Prepare queue
  typedef PairSorted2nd<Surfel,int> SurfelWeight;
  priority_queue<SurfelWeight> Q;
  for ( ConstIterator it = digSurf.begin(), itE= digSurf.end(); it != itE; ++it )
    Q.push( SurfelWeight( *it, v2size[ *it ] ) );
  trace.endBlock();
  //! [polyhedralizer-ComputingPlaneSize]

  //! [polyhedralizer-segment]
  // Segmentation into planes
  trace.beginBlock( "Decomposition second pass. Visits vertices from the one with biggest plane to the one with smallest plane." );
  typedef Triple<NaivePlaneComputer, Color, pair<RealVector,double> > RoundPlane;
  set<Surfel> processedVertices;
  vector<RoundPlane*> roundPlanes;
  map<Surfel,RoundPlane*> v2plane;
  j = 0;
  while ( ! Q.empty() )
    {
      if ( ( (++j) % 50 == 0 ) || ( j == nb ) ) trace.progressBar( j, nb );
      Surfel v = Q.top().first;
      Q.pop();
      if ( processedVertices.find( v ) != processedVertices.end() ) // already in set
        continue; // process to next vertex

      RoundPlane* ptrRoundPlane = new RoundPlane;
      roundPlanes.push_back( ptrRoundPlane ); // to delete them afterwards.
      v2plane[ v ] = ptrRoundPlane;
      ptrRoundPlane->first.init( widthNum, widthDen );
      ptrRoundPlane->third = make_pair( RealVector::zero, 0.0 );
      // The visitor takes care of all the breadth-first traversal.
      Visitor visitor( digSurf, v );
      layer.clear();
      layer_surfel.clear();
      Visitor::Size currentSize = visitor.current().second;
      while ( ! visitor.finished() )
        {
          Visitor::Node node = visitor.current();
          v = node.first;
          Dimension axis = ks.sOrthDir( v );
          Point p = ks.sCoords( ks.sDirectIncident( v, axis ) );
          if ( node.second != currentSize )
            {
              bool isExtended = ptrRoundPlane->first.extend( layer.begin(), layer.end() );
              if ( isExtended )
                {
                  for ( vector<Surfel>::const_iterator it_layer = layer_surfel.begin(),
                          it_layer_end = layer_surfel.end(); it_layer != it_layer_end; ++it_layer )
                    {
                      Surfel s = *it_layer;
                      processedVertices.insert( s );
                      if ( v2plane.find( s ) == v2plane.end() )
                        v2plane[ s ] = ptrRoundPlane;
                    }
                  layer.clear();
                  layer_surfel.clear();
                  currentSize = node.second;
                }
              else break;
            }
          layer_surfel.push_back( v );
          layer.push_back( p );
          if ( processedVertices.find( v ) != processedVertices.end() )
            // surfel is already in some plane.
            visitor.ignore();
          else
            visitor.expand();
        }
      if ( visitor.finished() )
        {
          for ( vector<Surfel>::const_iterator it_layer = layer_surfel.begin(),
                  it_layer_end = layer_surfel.end(); it_layer != it_layer_end; ++it_layer )
            {
              Surfel s = *it_layer;
              processedVertices.insert( s );
              if ( v2plane.find( s ) == v2plane.end() )
                v2plane[ s ] = ptrRoundPlane;
            }
        }
      // Assign random color for each plane.
      ptrRoundPlane->second = Color( rand() % 192 + 64, rand() % 192 + 64, rand() % 192 + 64, 255 );
    }
  trace.endBlock();
  //! [polyhedralizer-segment]

  //! [polyhedralizer-lsf]
  for ( vector<RoundPlane*>::iterator
          it = roundPlanes.begin(), itE = roundPlanes.end();
        it != itE; ++it )
    {
      NaivePlaneComputer& computer = (*it)->first;
      RealVector normal;
      double mu = LSF( normal, computer.begin(), computer.end() );
      (*it)->third = make_pair( normal, mu );
    }
  //! [polyhedralizer-lsf]

  //! [polyhedralizer-projection]
  map<Surfel, RealPoint> coordinates;
  for ( map<Surfel,RoundPlane*>::const_iterator
          it = v2plane.begin(), itE = v2plane.end();
        it != itE; ++it )
    {
      Surfel v = it->first;
      RoundPlane* rplane = it->second;
      Point p = ks.sKCoords( v );
      RealPoint rp( (double)p[ 0 ]/2.0, (double)p[ 1 ]/2.0, (double)p[ 2 ]/2.0 );
      double mu = rplane->third.second;
      RealVector normal = rplane->third.first;
      double lambda = mu - rp.dot( normal );
      coordinates[ v ] = rp + lambda*normal;
    }
  typedef vector<Surfel> SurfelRange;
  map<Surfel, RealPoint> new_coordinates;
  for ( ConstIterator it = digSurf.begin(), itE= digSurf.end(); it != itE; ++it )
    {
      Surfel s = *it;
      SurfelRange neighbors;
      back_insert_iterator<SurfelRange> writeIt = back_inserter( neighbors );
      digSurf.writeNeighbors( writeIt, *it );
      RealPoint x = RealPoint::zero;
      for ( SurfelRange::const_iterator its = neighbors.begin(), itsE = neighbors.end();
            its != itsE; ++its )
        x += coordinates[ *its ];
      new_coordinates[ s ] = x / neighbors.size();
    }
  //! [polyhedralizer-projection]

  //! [polyhedralizer-MakeMesh]
  typedef unsigned int Number;
  typedef Mesh<RealPoint> MyMesh;
  typedef MyMesh::MeshFace MeshFace;
  typedef MyDigitalSurface::FaceSet FaceSet;
  typedef MyDigitalSurface::VertexRange VertexRange;
  map<Surfel, Number> index;   // Numbers all vertices.
  Number nbv = 0;
  MyMesh polyhedron( true );
  // Insert all projected surfels as vertices of the polyhedral surface.
  for ( ConstIterator it = digSurf.begin(), itE= digSurf.end(); it != itE; ++it )
    {
      polyhedron.addVertex( new_coordinates[ *it ] );
      index[ *it ] = nbv++;
    }
  // Define faces of the mesh. Outputs closed faces.
  FaceSet faces = digSurf.allClosedFaces();
  for ( typename FaceSet::const_iterator itf = faces.begin(), itf_end = faces.end();
        itf != itf_end; ++itf )
    {
      MeshFace mface( itf->nbVertices );
      VertexRange vtcs = digSurf.verticesAroundFace( *itf );
      int i = 0;
      for ( typename VertexRange::const_iterator itv = vtcs.begin(), itv_end = vtcs.end();
            itv != itv_end; ++itv )
        {
          mface[ i++ ] = index[ *itv ];
        }
      polyhedron.addFace( mface, Color( 255, 243, 150, 255 ) );
    }
  //! [polyhedralizer-MakeMesh]

  //! [polyhedralizer-visualization]
  typedef Viewer3D<Space,KSpace> MyViewer3D;
  MyViewer3D viewer( ks );
  viewer.show();
  bool isOK = polyhedron >> "test.off";
  bool isOK2 = polyhedron >> "test.obj";
  viewer << polyhedron;
  viewer << MyViewer3D::updateDisplay;
  application.exec();
  //! [polyhedralizer-visualization]

  //! [polyhedralizer-freeMemory]
  for ( vector<RoundPlane*>::iterator
          it = roundPlanes.begin(), itE = roundPlanes.end();
        it != itE; ++it )
    delete *it;
  //! [polyhedralizer-freeMemory]

  if (isOK && isOK2)
    return 0;
  else
    return 1;
}