// Try to make up a 1st derivative if one is zero length static void CookDerivativesHelper( ON_3dVector& du, ON_3dVector& dv, ON_3dVector& duu, ON_3dVector& duv, ON_3dVector& dvv) { bool du_ok = du.LengthSquared() > ON_SQRT_EPSILON; bool dv_ok = dv.LengthSquared() > ON_SQRT_EPSILON; if( !du_ok || !dv_ok) { ON_3dVector normal; bool normal_ok = ON_EvNormal( 0, du, dv, duu, duv, dvv, normal ) ? true : false; if( normal_ok) normal_ok = normal.LengthSquared() > ON_SQRT_EPSILON; if( normal_ok) { if(( !du_ok) && ( dv_ok && normal_ok)) { du = ON_CrossProduct( dv, normal); du_ok = du.Unitize(); du *= (0.00390625*dv.Length()); } if( du_ok && ( !dv_ok) && normal_ok) { dv = ON_CrossProduct( normal, du); dv_ok = dv.Unitize(); dv *= (0.00390625*du.Length()); } } } }
bool ON_Line::ClosestPointTo( const ON_3dPoint& point, double *t ) const { bool rc = false; if ( t ) { const ON_3dVector D = Direction(); const double DoD = D.LengthSquared(); if ( DoD > 0.0 ) { if ( point.DistanceTo(from) <= point.DistanceTo(to) ) { *t = ((point - from)*D)/DoD; } else { *t = 1.0 + ((point - to)*D)/DoD; } rc = true; } else { *t = 0.0; } } return rc; }